Statistics
| Branch: | Revision:

root / hw / hpet.c @ ee951a37

History | View | Annotate | Download (22.7 kB)

1
/*
2
 *  High Precisition Event Timer emulation
3
 *
4
 *  Copyright (c) 2007 Alexander Graf
5
 *  Copyright (c) 2008 IBM Corporation
6
 *
7
 *  Authors: Beth Kon <bkon@us.ibm.com>
8
 *
9
 * This library is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2 of the License, or (at your option) any later version.
13
 *
14
 * This library is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21
 *
22
 * *****************************************************************
23
 *
24
 * This driver attempts to emulate an HPET device in software.
25
 */
26

    
27
#include "hw.h"
28
#include "pc.h"
29
#include "console.h"
30
#include "qemu-timer.h"
31
#include "hpet_emul.h"
32
#include "sysbus.h"
33
#include "mc146818rtc.h"
34

    
35
//#define HPET_DEBUG
36
#ifdef HPET_DEBUG
37
#define DPRINTF printf
38
#else
39
#define DPRINTF(...)
40
#endif
41

    
42
#define HPET_MSI_SUPPORT        0
43

    
44
struct HPETState;
45
typedef struct HPETTimer {  /* timers */
46
    uint8_t tn;             /*timer number*/
47
    QEMUTimer *qemu_timer;
48
    struct HPETState *state;
49
    /* Memory-mapped, software visible timer registers */
50
    uint64_t config;        /* configuration/cap */
51
    uint64_t cmp;           /* comparator */
52
    uint64_t fsb;           /* FSB route */
53
    /* Hidden register state */
54
    uint64_t period;        /* Last value written to comparator */
55
    uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
56
                             * mode. Next pop will be actual timer expiration.
57
                             */
58
} HPETTimer;
59

    
60
typedef struct HPETState {
61
    SysBusDevice busdev;
62
    uint64_t hpet_offset;
63
    qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
64
    uint32_t flags;
65
    uint8_t rtc_irq_level;
66
    uint8_t num_timers;
67
    HPETTimer timer[HPET_MAX_TIMERS];
68

    
69
    /* Memory-mapped, software visible registers */
70
    uint64_t capability;        /* capabilities */
71
    uint64_t config;            /* configuration */
72
    uint64_t isr;               /* interrupt status reg */
73
    uint64_t hpet_counter;      /* main counter */
74
    uint8_t  hpet_id;           /* instance id */
75
} HPETState;
76

    
77
static uint32_t hpet_in_legacy_mode(HPETState *s)
78
{
79
    return s->config & HPET_CFG_LEGACY;
80
}
81

    
82
static uint32_t timer_int_route(struct HPETTimer *timer)
83
{
84
    return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
85
}
86

    
87
static uint32_t timer_fsb_route(HPETTimer *t)
88
{
89
    return t->config & HPET_TN_FSB_ENABLE;
90
}
91

    
92
static uint32_t hpet_enabled(HPETState *s)
93
{
94
    return s->config & HPET_CFG_ENABLE;
95
}
96

    
97
static uint32_t timer_is_periodic(HPETTimer *t)
98
{
99
    return t->config & HPET_TN_PERIODIC;
100
}
101

    
102
static uint32_t timer_enabled(HPETTimer *t)
103
{
104
    return t->config & HPET_TN_ENABLE;
105
}
106

    
107
static uint32_t hpet_time_after(uint64_t a, uint64_t b)
108
{
109
    return ((int32_t)(b) - (int32_t)(a) < 0);
110
}
111

    
112
static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
113
{
114
    return ((int64_t)(b) - (int64_t)(a) < 0);
115
}
116

    
117
static uint64_t ticks_to_ns(uint64_t value)
118
{
119
    return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
120
}
121

    
122
static uint64_t ns_to_ticks(uint64_t value)
123
{
124
    return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
125
}
126

    
127
static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
128
{
129
    new &= mask;
130
    new |= old & ~mask;
131
    return new;
132
}
133

    
134
static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
135
{
136
    return (!(old & mask) && (new & mask));
137
}
138

    
139
static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
140
{
141
    return ((old & mask) && !(new & mask));
142
}
143

    
144
static uint64_t hpet_get_ticks(HPETState *s)
145
{
146
    return ns_to_ticks(qemu_get_clock(vm_clock) + s->hpet_offset);
147
}
148

    
149
/*
150
 * calculate diff between comparator value and current ticks
151
 */
152
static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
153
{
154

    
155
    if (t->config & HPET_TN_32BIT) {
156
        uint32_t diff, cmp;
157

    
158
        cmp = (uint32_t)t->cmp;
159
        diff = cmp - (uint32_t)current;
160
        diff = (int32_t)diff > 0 ? diff : (uint32_t)0;
161
        return (uint64_t)diff;
162
    } else {
163
        uint64_t diff, cmp;
164

    
165
        cmp = t->cmp;
166
        diff = cmp - current;
167
        diff = (int64_t)diff > 0 ? diff : (uint64_t)0;
168
        return diff;
169
    }
170
}
171

    
172
static void update_irq(struct HPETTimer *timer, int set)
173
{
174
    uint64_t mask;
175
    HPETState *s;
176
    int route;
177

    
178
    if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
179
        /* if LegacyReplacementRoute bit is set, HPET specification requires
180
         * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
181
         * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
182
         */
183
        route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
184
    } else {
185
        route = timer_int_route(timer);
186
    }
187
    s = timer->state;
188
    mask = 1 << timer->tn;
189
    if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
190
        s->isr &= ~mask;
191
        if (!timer_fsb_route(timer)) {
192
            qemu_irq_lower(s->irqs[route]);
193
        }
194
    } else if (timer_fsb_route(timer)) {
195
        stl_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
196
    } else if (timer->config & HPET_TN_TYPE_LEVEL) {
197
        s->isr |= mask;
198
        qemu_irq_raise(s->irqs[route]);
199
    } else {
200
        s->isr &= ~mask;
201
        qemu_irq_pulse(s->irqs[route]);
202
    }
203
}
204

    
205
static void hpet_pre_save(void *opaque)
206
{
207
    HPETState *s = opaque;
208

    
209
    /* save current counter value */
210
    s->hpet_counter = hpet_get_ticks(s);
211
}
212

    
213
static int hpet_pre_load(void *opaque)
214
{
215
    HPETState *s = opaque;
216

    
217
    /* version 1 only supports 3, later versions will load the actual value */
218
    s->num_timers = HPET_MIN_TIMERS;
219
    return 0;
220
}
221

    
222
static int hpet_post_load(void *opaque, int version_id)
223
{
224
    HPETState *s = opaque;
225

    
226
    /* Recalculate the offset between the main counter and guest time */
227
    s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
228

    
229
    /* Push number of timers into capability returned via HPET_ID */
230
    s->capability &= ~HPET_ID_NUM_TIM_MASK;
231
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
232
    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
233

    
234
    /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
235
    s->flags &= ~(1 << HPET_MSI_SUPPORT);
236
    if (s->timer[0].config & HPET_TN_FSB_CAP) {
237
        s->flags |= 1 << HPET_MSI_SUPPORT;
238
    }
239
    return 0;
240
}
241

    
242
static const VMStateDescription vmstate_hpet_timer = {
243
    .name = "hpet_timer",
244
    .version_id = 1,
245
    .minimum_version_id = 1,
246
    .minimum_version_id_old = 1,
247
    .fields      = (VMStateField []) {
248
        VMSTATE_UINT8(tn, HPETTimer),
249
        VMSTATE_UINT64(config, HPETTimer),
250
        VMSTATE_UINT64(cmp, HPETTimer),
251
        VMSTATE_UINT64(fsb, HPETTimer),
252
        VMSTATE_UINT64(period, HPETTimer),
253
        VMSTATE_UINT8(wrap_flag, HPETTimer),
254
        VMSTATE_TIMER(qemu_timer, HPETTimer),
255
        VMSTATE_END_OF_LIST()
256
    }
257
};
258

    
259
static const VMStateDescription vmstate_hpet = {
260
    .name = "hpet",
261
    .version_id = 2,
262
    .minimum_version_id = 1,
263
    .minimum_version_id_old = 1,
264
    .pre_save = hpet_pre_save,
265
    .pre_load = hpet_pre_load,
266
    .post_load = hpet_post_load,
267
    .fields      = (VMStateField []) {
268
        VMSTATE_UINT64(config, HPETState),
269
        VMSTATE_UINT64(isr, HPETState),
270
        VMSTATE_UINT64(hpet_counter, HPETState),
271
        VMSTATE_UINT8_V(num_timers, HPETState, 2),
272
        VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
273
                                    vmstate_hpet_timer, HPETTimer),
274
        VMSTATE_END_OF_LIST()
275
    }
276
};
277

    
278
/*
279
 * timer expiration callback
280
 */
281
static void hpet_timer(void *opaque)
282
{
283
    HPETTimer *t = opaque;
284
    uint64_t diff;
285

    
286
    uint64_t period = t->period;
287
    uint64_t cur_tick = hpet_get_ticks(t->state);
288

    
289
    if (timer_is_periodic(t) && period != 0) {
290
        if (t->config & HPET_TN_32BIT) {
291
            while (hpet_time_after(cur_tick, t->cmp)) {
292
                t->cmp = (uint32_t)(t->cmp + t->period);
293
            }
294
        } else {
295
            while (hpet_time_after64(cur_tick, t->cmp)) {
296
                t->cmp += period;
297
            }
298
        }
299
        diff = hpet_calculate_diff(t, cur_tick);
300
        qemu_mod_timer(t->qemu_timer,
301
                       qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
302
    } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
303
        if (t->wrap_flag) {
304
            diff = hpet_calculate_diff(t, cur_tick);
305
            qemu_mod_timer(t->qemu_timer, qemu_get_clock(vm_clock) +
306
                           (int64_t)ticks_to_ns(diff));
307
            t->wrap_flag = 0;
308
        }
309
    }
310
    update_irq(t, 1);
311
}
312

    
313
static void hpet_set_timer(HPETTimer *t)
314
{
315
    uint64_t diff;
316
    uint32_t wrap_diff;  /* how many ticks until we wrap? */
317
    uint64_t cur_tick = hpet_get_ticks(t->state);
318

    
319
    /* whenever new timer is being set up, make sure wrap_flag is 0 */
320
    t->wrap_flag = 0;
321
    diff = hpet_calculate_diff(t, cur_tick);
322

    
323
    /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
324
     * counter wraps in addition to an interrupt with comparator match.
325
     */
326
    if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
327
        wrap_diff = 0xffffffff - (uint32_t)cur_tick;
328
        if (wrap_diff < (uint32_t)diff) {
329
            diff = wrap_diff;
330
            t->wrap_flag = 1;
331
        }
332
    }
333
    qemu_mod_timer(t->qemu_timer,
334
                   qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
335
}
336

    
337
static void hpet_del_timer(HPETTimer *t)
338
{
339
    qemu_del_timer(t->qemu_timer);
340
    update_irq(t, 0);
341
}
342

    
343
#ifdef HPET_DEBUG
344
static uint32_t hpet_ram_readb(void *opaque, target_phys_addr_t addr)
345
{
346
    printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
347
    return 0;
348
}
349

    
350
static uint32_t hpet_ram_readw(void *opaque, target_phys_addr_t addr)
351
{
352
    printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
353
    return 0;
354
}
355
#endif
356

    
357
static uint32_t hpet_ram_readl(void *opaque, target_phys_addr_t addr)
358
{
359
    HPETState *s = opaque;
360
    uint64_t cur_tick, index;
361

    
362
    DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
363
    index = addr;
364
    /*address range of all TN regs*/
365
    if (index >= 0x100 && index <= 0x3ff) {
366
        uint8_t timer_id = (addr - 0x100) / 0x20;
367
        HPETTimer *timer = &s->timer[timer_id];
368

    
369
        if (timer_id > s->num_timers) {
370
            DPRINTF("qemu: timer id out of range\n");
371
            return 0;
372
        }
373

    
374
        switch ((addr - 0x100) % 0x20) {
375
        case HPET_TN_CFG:
376
            return timer->config;
377
        case HPET_TN_CFG + 4: // Interrupt capabilities
378
            return timer->config >> 32;
379
        case HPET_TN_CMP: // comparator register
380
            return timer->cmp;
381
        case HPET_TN_CMP + 4:
382
            return timer->cmp >> 32;
383
        case HPET_TN_ROUTE:
384
            return timer->fsb;
385
        case HPET_TN_ROUTE + 4:
386
            return timer->fsb >> 32;
387
        default:
388
            DPRINTF("qemu: invalid hpet_ram_readl\n");
389
            break;
390
        }
391
    } else {
392
        switch (index) {
393
        case HPET_ID:
394
            return s->capability;
395
        case HPET_PERIOD:
396
            return s->capability >> 32;
397
        case HPET_CFG:
398
            return s->config;
399
        case HPET_CFG + 4:
400
            DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl \n");
401
            return 0;
402
        case HPET_COUNTER:
403
            if (hpet_enabled(s)) {
404
                cur_tick = hpet_get_ticks(s);
405
            } else {
406
                cur_tick = s->hpet_counter;
407
            }
408
            DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
409
            return cur_tick;
410
        case HPET_COUNTER + 4:
411
            if (hpet_enabled(s)) {
412
                cur_tick = hpet_get_ticks(s);
413
            } else {
414
                cur_tick = s->hpet_counter;
415
            }
416
            DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
417
            return cur_tick >> 32;
418
        case HPET_STATUS:
419
            return s->isr;
420
        default:
421
            DPRINTF("qemu: invalid hpet_ram_readl\n");
422
            break;
423
        }
424
    }
425
    return 0;
426
}
427

    
428
#ifdef HPET_DEBUG
429
static void hpet_ram_writeb(void *opaque, target_phys_addr_t addr,
430
                            uint32_t value)
431
{
432
    printf("qemu: invalid hpet_write b at %" PRIx64 " = %#x\n",
433
           addr, value);
434
}
435

    
436
static void hpet_ram_writew(void *opaque, target_phys_addr_t addr,
437
                            uint32_t value)
438
{
439
    printf("qemu: invalid hpet_write w at %" PRIx64 " = %#x\n",
440
           addr, value);
441
}
442
#endif
443

    
444
static void hpet_ram_writel(void *opaque, target_phys_addr_t addr,
445
                            uint32_t value)
446
{
447
    int i;
448
    HPETState *s = opaque;
449
    uint64_t old_val, new_val, val, index;
450

    
451
    DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
452
    index = addr;
453
    old_val = hpet_ram_readl(opaque, addr);
454
    new_val = value;
455

    
456
    /*address range of all TN regs*/
457
    if (index >= 0x100 && index <= 0x3ff) {
458
        uint8_t timer_id = (addr - 0x100) / 0x20;
459
        HPETTimer *timer = &s->timer[timer_id];
460

    
461
        DPRINTF("qemu: hpet_ram_writel timer_id = %#x \n", timer_id);
462
        if (timer_id > s->num_timers) {
463
            DPRINTF("qemu: timer id out of range\n");
464
            return;
465
        }
466
        switch ((addr - 0x100) % 0x20) {
467
        case HPET_TN_CFG:
468
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
469
            if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
470
                update_irq(timer, 0);
471
            }
472
            val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
473
            timer->config = (timer->config & 0xffffffff00000000ULL) | val;
474
            if (new_val & HPET_TN_32BIT) {
475
                timer->cmp = (uint32_t)timer->cmp;
476
                timer->period = (uint32_t)timer->period;
477
            }
478
            if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
479
                hpet_set_timer(timer);
480
            } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
481
                hpet_del_timer(timer);
482
            }
483
            break;
484
        case HPET_TN_CFG + 4: // Interrupt capabilities
485
            DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
486
            break;
487
        case HPET_TN_CMP: // comparator register
488
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP \n");
489
            if (timer->config & HPET_TN_32BIT) {
490
                new_val = (uint32_t)new_val;
491
            }
492
            if (!timer_is_periodic(timer)
493
                || (timer->config & HPET_TN_SETVAL)) {
494
                timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
495
            }
496
            if (timer_is_periodic(timer)) {
497
                /*
498
                 * FIXME: Clamp period to reasonable min value?
499
                 * Clamp period to reasonable max value
500
                 */
501
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
502
                timer->period =
503
                    (timer->period & 0xffffffff00000000ULL) | new_val;
504
            }
505
            timer->config &= ~HPET_TN_SETVAL;
506
            if (hpet_enabled(s)) {
507
                hpet_set_timer(timer);
508
            }
509
            break;
510
        case HPET_TN_CMP + 4: // comparator register high order
511
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
512
            if (!timer_is_periodic(timer)
513
                || (timer->config & HPET_TN_SETVAL)) {
514
                timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
515
            } else {
516
                /*
517
                 * FIXME: Clamp period to reasonable min value?
518
                 * Clamp period to reasonable max value
519
                 */
520
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
521
                timer->period =
522
                    (timer->period & 0xffffffffULL) | new_val << 32;
523
                }
524
                timer->config &= ~HPET_TN_SETVAL;
525
                if (hpet_enabled(s)) {
526
                    hpet_set_timer(timer);
527
                }
528
                break;
529
        case HPET_TN_ROUTE:
530
            timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
531
            break;
532
        case HPET_TN_ROUTE + 4:
533
            timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
534
            break;
535
        default:
536
            DPRINTF("qemu: invalid hpet_ram_writel\n");
537
            break;
538
        }
539
        return;
540
    } else {
541
        switch (index) {
542
        case HPET_ID:
543
            return;
544
        case HPET_CFG:
545
            val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
546
            s->config = (s->config & 0xffffffff00000000ULL) | val;
547
            if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
548
                /* Enable main counter and interrupt generation. */
549
                s->hpet_offset =
550
                    ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
551
                for (i = 0; i < s->num_timers; i++) {
552
                    if ((&s->timer[i])->cmp != ~0ULL) {
553
                        hpet_set_timer(&s->timer[i]);
554
                    }
555
                }
556
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
557
                /* Halt main counter and disable interrupt generation. */
558
                s->hpet_counter = hpet_get_ticks(s);
559
                for (i = 0; i < s->num_timers; i++) {
560
                    hpet_del_timer(&s->timer[i]);
561
                }
562
            }
563
            /* i8254 and RTC are disabled when HPET is in legacy mode */
564
            if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
565
                hpet_pit_disable();
566
                qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
567
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
568
                hpet_pit_enable();
569
                qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
570
            }
571
            break;
572
        case HPET_CFG + 4:
573
            DPRINTF("qemu: invalid HPET_CFG+4 write \n");
574
            break;
575
        case HPET_STATUS:
576
            val = new_val & s->isr;
577
            for (i = 0; i < s->num_timers; i++) {
578
                if (val & (1 << i)) {
579
                    update_irq(&s->timer[i], 0);
580
                }
581
            }
582
            break;
583
        case HPET_COUNTER:
584
            if (hpet_enabled(s)) {
585
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
586
            }
587
            s->hpet_counter =
588
                (s->hpet_counter & 0xffffffff00000000ULL) | value;
589
            DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
590
                    value, s->hpet_counter);
591
            break;
592
        case HPET_COUNTER + 4:
593
            if (hpet_enabled(s)) {
594
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
595
            }
596
            s->hpet_counter =
597
                (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
598
            DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
599
                    value, s->hpet_counter);
600
            break;
601
        default:
602
            DPRINTF("qemu: invalid hpet_ram_writel\n");
603
            break;
604
        }
605
    }
606
}
607

    
608
static CPUReadMemoryFunc * const hpet_ram_read[] = {
609
#ifdef HPET_DEBUG
610
    hpet_ram_readb,
611
    hpet_ram_readw,
612
#else
613
    NULL,
614
    NULL,
615
#endif
616
    hpet_ram_readl,
617
};
618

    
619
static CPUWriteMemoryFunc * const hpet_ram_write[] = {
620
#ifdef HPET_DEBUG
621
    hpet_ram_writeb,
622
    hpet_ram_writew,
623
#else
624
    NULL,
625
    NULL,
626
#endif
627
    hpet_ram_writel,
628
};
629

    
630
static void hpet_reset(DeviceState *d)
631
{
632
    HPETState *s = FROM_SYSBUS(HPETState, sysbus_from_qdev(d));
633
    int i;
634
    static int count = 0;
635

    
636
    for (i = 0; i < s->num_timers; i++) {
637
        HPETTimer *timer = &s->timer[i];
638

    
639
        hpet_del_timer(timer);
640
        timer->cmp = ~0ULL;
641
        timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
642
        if (s->flags & (1 << HPET_MSI_SUPPORT)) {
643
            timer->config |= HPET_TN_FSB_CAP;
644
        }
645
        /* advertise availability of ioapic inti2 */
646
        timer->config |=  0x00000004ULL << 32;
647
        timer->period = 0ULL;
648
        timer->wrap_flag = 0;
649
    }
650

    
651
    s->hpet_counter = 0ULL;
652
    s->hpet_offset = 0ULL;
653
    s->config = 0ULL;
654
    if (count > 0) {
655
        /* we don't enable pit when hpet_reset is first called (by hpet_init)
656
         * because hpet is taking over for pit here. On subsequent invocations,
657
         * hpet_reset is called due to system reset. At this point control must
658
         * be returned to pit until SW reenables hpet.
659
         */
660
        hpet_pit_enable();
661
    }
662
    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
663
    hpet_cfg.hpet[s->hpet_id].address = sysbus_from_qdev(d)->mmio[0].addr;
664
    count = 1;
665
}
666

    
667
static void hpet_handle_rtc_irq(void *opaque, int n, int level)
668
{
669
    HPETState *s = FROM_SYSBUS(HPETState, opaque);
670

    
671
    s->rtc_irq_level = level;
672
    if (!hpet_in_legacy_mode(s)) {
673
        qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
674
    }
675
}
676

    
677
static int hpet_init(SysBusDevice *dev)
678
{
679
    HPETState *s = FROM_SYSBUS(HPETState, dev);
680
    int i, iomemtype;
681
    HPETTimer *timer;
682

    
683
    if (hpet_cfg.count == UINT8_MAX) {
684
        /* first instance */
685
        hpet_cfg.count = 0;
686
    }
687

    
688
    if (hpet_cfg.count == 8) {
689
        fprintf(stderr, "Only 8 instances of HPET is allowed\n");
690
        return -1;
691
    }
692

    
693
    s->hpet_id = hpet_cfg.count++;
694

    
695
    for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
696
        sysbus_init_irq(dev, &s->irqs[i]);
697
    }
698

    
699
    if (s->num_timers < HPET_MIN_TIMERS) {
700
        s->num_timers = HPET_MIN_TIMERS;
701
    } else if (s->num_timers > HPET_MAX_TIMERS) {
702
        s->num_timers = HPET_MAX_TIMERS;
703
    }
704
    for (i = 0; i < HPET_MAX_TIMERS; i++) {
705
        timer = &s->timer[i];
706
        timer->qemu_timer = qemu_new_timer(vm_clock, hpet_timer, timer);
707
        timer->tn = i;
708
        timer->state = s;
709
    }
710

    
711
    /* 64-bit main counter; LegacyReplacementRoute. */
712
    s->capability = 0x8086a001ULL;
713
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
714
    s->capability |= ((HPET_CLK_PERIOD) << 32);
715

    
716
    qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1);
717

    
718
    /* HPET Area */
719
    iomemtype = cpu_register_io_memory(hpet_ram_read,
720
                                       hpet_ram_write, s,
721
                                       DEVICE_NATIVE_ENDIAN);
722
    sysbus_init_mmio(dev, 0x400, iomemtype);
723
    return 0;
724
}
725

    
726
static SysBusDeviceInfo hpet_device_info = {
727
    .qdev.name    = "hpet",
728
    .qdev.size    = sizeof(HPETState),
729
    .qdev.no_user = 1,
730
    .qdev.vmsd    = &vmstate_hpet,
731
    .qdev.reset   = hpet_reset,
732
    .init         = hpet_init,
733
    .qdev.props = (Property[]) {
734
        DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
735
        DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
736
        DEFINE_PROP_END_OF_LIST(),
737
    },
738
};
739

    
740
static void hpet_register_device(void)
741
{
742
    sysbus_register_withprop(&hpet_device_info);
743
}
744

    
745
device_init(hpet_register_device)