Statistics
| Branch: | Revision:

root / qemu-doc.texi @ eec85c2a

History | View | Annotate | Download (57.8 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU Linux User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation (Linux host only). In this mode, QEMU can launch
61
Linux processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@end itemize
83

    
84
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85

    
86
@node Installation
87
@chapter Installation
88

    
89
If you want to compile QEMU yourself, see @ref{compilation}.
90

    
91
@menu
92
* install_linux::   Linux
93
* install_windows:: Windows
94
* install_mac::     Macintosh
95
@end menu
96

    
97
@node install_linux
98
@section Linux
99

    
100
If a precompiled package is available for your distribution - you just
101
have to install it. Otherwise, see @ref{compilation}.
102

    
103
@node install_windows
104
@section Windows
105

    
106
Download the experimental binary installer at
107
@url{http://www.free.oszoo.org/@/download.html}.
108

    
109
@node install_mac
110
@section Mac OS X
111

    
112
Download the experimental binary installer at
113
@url{http://www.free.oszoo.org/@/download.html}.
114

    
115
@node QEMU PC System emulator
116
@chapter QEMU PC System emulator
117

    
118
@menu
119
* pcsys_introduction:: Introduction
120
* pcsys_quickstart::   Quick Start
121
* sec_invocation::     Invocation
122
* pcsys_keys::         Keys
123
* pcsys_monitor::      QEMU Monitor
124
* disk_images::        Disk Images
125
* pcsys_network::      Network emulation
126
* direct_linux_boot::  Direct Linux Boot
127
* pcsys_usb::          USB emulation
128
* gdb_usage::          GDB usage
129
* pcsys_os_specific::  Target OS specific information
130
@end menu
131

    
132
@node pcsys_introduction
133
@section Introduction
134

    
135
@c man begin DESCRIPTION
136

    
137
The QEMU PC System emulator simulates the
138
following peripherals:
139

    
140
@itemize @minus
141
@item 
142
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143
@item
144
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145
extensions (hardware level, including all non standard modes).
146
@item
147
PS/2 mouse and keyboard
148
@item 
149
2 PCI IDE interfaces with hard disk and CD-ROM support
150
@item
151
Floppy disk
152
@item 
153
NE2000 PCI network adapters
154
@item
155
Serial ports
156
@item
157
Creative SoundBlaster 16 sound card
158
@item
159
ENSONIQ AudioPCI ES1370 sound card
160
@item
161
Adlib(OPL2) - Yamaha YM3812 compatible chip
162
@item
163
PCI UHCI USB controller and a virtual USB hub.
164
@end itemize
165

    
166
SMP is supported with up to 255 CPUs.
167

    
168
Note that adlib is only available when QEMU was configured with
169
-enable-adlib
170

    
171
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172
VGA BIOS.
173

    
174
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175

    
176
@c man end
177

    
178
@node pcsys_quickstart
179
@section Quick Start
180

    
181
Download and uncompress the linux image (@file{linux.img}) and type:
182

    
183
@example
184
qemu linux.img
185
@end example
186

    
187
Linux should boot and give you a prompt.
188

    
189
@node sec_invocation
190
@section Invocation
191

    
192
@example
193
@c man begin SYNOPSIS
194
usage: qemu [options] [disk_image]
195
@c man end
196
@end example
197

    
198
@c man begin OPTIONS
199
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
200

    
201
General options:
202
@table @option
203
@item -M machine
204
Select the emulated machine (@code{-M ?} for list)
205

    
206
@item -fda file
207
@item -fdb file
208
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210

    
211
@item -hda file
212
@item -hdb file
213
@item -hdc file
214
@item -hdd file
215
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216

    
217
@item -cdrom file
218
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219
@option{-cdrom} at the same time). You can use the host CD-ROM by
220
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221

    
222
@item -boot [a|c|d|n]
223
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
224
is the default.
225

    
226
@item -disk ide,img=file[,hdx=a..dd][,type=disk|cdrom]
227
Use @var{file} as the IDE disk/CD-ROM image. The defaults are: hdx=a,type=disk
228

    
229
@item -disk scsi,img=file[,sdx=a..g][,type=disk|cdrom][,id=n]
230
Use @var{file} as the SCSI disk/CD-ROM image. The defaults are: sdx=a,type=disk,id='auto assign'
231

    
232
@item -snapshot
233
Write to temporary files instead of disk image files. In this case,
234
the raw disk image you use is not written back. You can however force
235
the write back by pressing @key{C-a s} (@pxref{disk_images}).
236

    
237
@item -no-fd-bootchk
238
Disable boot signature checking for floppy disks in Bochs BIOS. It may
239
be needed to boot from old floppy disks.
240

    
241
@item -m megs
242
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
243

    
244
@item -smp n
245
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
246
CPUs are supported.
247

    
248
@item -nographic
249

    
250
Normally, QEMU uses SDL to display the VGA output. With this option,
251
you can totally disable graphical output so that QEMU is a simple
252
command line application. The emulated serial port is redirected on
253
the console. Therefore, you can still use QEMU to debug a Linux kernel
254
with a serial console.
255

    
256
@item -vnc display
257

    
258
Normally, QEMU uses SDL to display the VGA output.  With this option,
259
you can have QEMU listen on VNC display @var{display} and redirect the VGA
260
display over the VNC session.  It is very useful to enable the usb
261
tablet device when using this option (option @option{-usbdevice
262
tablet}). When using the VNC display, you must use the @option{-k}
263
option to set the keyboard layout if you are not using en-us.
264

    
265
@var{display} may be in the form @var{interface:d}, in which case connections
266
will only be allowed from @var{interface} on display @var{d}. Optionally,
267
@var{interface} can be omitted.  @var{display} can also be in the form
268
@var{unix:path} where @var{path} is the location of a unix socket to listen for
269
connections on.
270

    
271

    
272
@item -k language
273

    
274
Use keyboard layout @var{language} (for example @code{fr} for
275
French). This option is only needed where it is not easy to get raw PC
276
keycodes (e.g. on Macs, with some X11 servers or with a VNC
277
display). You don't normally need to use it on PC/Linux or PC/Windows
278
hosts.
279

    
280
The available layouts are:
281
@example
282
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
283
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
284
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
285
@end example
286

    
287
The default is @code{en-us}.
288

    
289
@item -audio-help
290

    
291
Will show the audio subsystem help: list of drivers, tunable
292
parameters.
293

    
294
@item -soundhw card1,card2,... or -soundhw all
295

    
296
Enable audio and selected sound hardware. Use ? to print all
297
available sound hardware.
298

    
299
@example
300
qemu -soundhw sb16,adlib hda
301
qemu -soundhw es1370 hda
302
qemu -soundhw all hda
303
qemu -soundhw ?
304
@end example
305

    
306
@item -localtime
307
Set the real time clock to local time (the default is to UTC
308
time). This option is needed to have correct date in MS-DOS or
309
Windows.
310

    
311
@item -full-screen
312
Start in full screen.
313

    
314
@item -pidfile file
315
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
316
from a script.
317

    
318
@item -daemonize
319
Daemonize the QEMU process after initialization.  QEMU will not detach from
320
standard IO until it is ready to receive connections on any of its devices.
321
This option is a useful way for external programs to launch QEMU without having
322
to cope with initialization race conditions.
323

    
324
@item -win2k-hack
325
Use it when installing Windows 2000 to avoid a disk full bug. After
326
Windows 2000 is installed, you no longer need this option (this option
327
slows down the IDE transfers).
328

    
329
@item -option-rom file
330
Load the contents of file as an option ROM.  This option is useful to load
331
things like EtherBoot.
332

    
333
@end table
334

    
335
USB options:
336
@table @option
337

    
338
@item -usb
339
Enable the USB driver (will be the default soon)
340

    
341
@item -usbdevice devname
342
Add the USB device @var{devname}. @xref{usb_devices}.
343
@end table
344

    
345
Network options:
346

    
347
@table @option
348

    
349
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
350
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
351
= 0 is the default). The NIC is currently an NE2000 on the PC
352
target. Optionally, the MAC address can be changed. If no
353
@option{-net} option is specified, a single NIC is created.
354
Qemu can emulate several different models of network card.  Valid values for
355
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
356
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
357
targets.
358

    
359
@item -net user[,vlan=n][,hostname=name]
360
Use the user mode network stack which requires no administrator
361
priviledge to run.  @option{hostname=name} can be used to specify the client
362
hostname reported by the builtin DHCP server.
363

    
364
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
365
Connect the host TAP network interface @var{name} to VLAN @var{n} and
366
use the network script @var{file} to configure it. The default
367
network script is @file{/etc/qemu-ifup}. If @var{name} is not
368
provided, the OS automatically provides one.  @option{fd=h} can be
369
used to specify the handle of an already opened host TAP interface. Example:
370

    
371
@example
372
qemu linux.img -net nic -net tap
373
@end example
374

    
375
More complicated example (two NICs, each one connected to a TAP device)
376
@example
377
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
378
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
379
@end example
380

    
381

    
382
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
383

    
384
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
385
machine using a TCP socket connection. If @option{listen} is
386
specified, QEMU waits for incoming connections on @var{port}
387
(@var{host} is optional). @option{connect} is used to connect to
388
another QEMU instance using the @option{listen} option. @option{fd=h}
389
specifies an already opened TCP socket.
390

    
391
Example:
392
@example
393
# launch a first QEMU instance
394
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
395
               -net socket,listen=:1234
396
# connect the VLAN 0 of this instance to the VLAN 0
397
# of the first instance
398
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
399
               -net socket,connect=127.0.0.1:1234
400
@end example
401

    
402
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
403

    
404
Create a VLAN @var{n} shared with another QEMU virtual
405
machines using a UDP multicast socket, effectively making a bus for 
406
every QEMU with same multicast address @var{maddr} and @var{port}.
407
NOTES:
408
@enumerate
409
@item 
410
Several QEMU can be running on different hosts and share same bus (assuming 
411
correct multicast setup for these hosts).
412
@item
413
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
414
@url{http://user-mode-linux.sf.net}.
415
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
416
@end enumerate
417

    
418
Example:
419
@example
420
# launch one QEMU instance
421
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
422
               -net socket,mcast=230.0.0.1:1234
423
# launch another QEMU instance on same "bus"
424
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
425
               -net socket,mcast=230.0.0.1:1234
426
# launch yet another QEMU instance on same "bus"
427
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
428
               -net socket,mcast=230.0.0.1:1234
429
@end example
430

    
431
Example (User Mode Linux compat.):
432
@example
433
# launch QEMU instance (note mcast address selected
434
# is UML's default)
435
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
436
               -net socket,mcast=239.192.168.1:1102
437
# launch UML
438
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
439
@end example
440

    
441
@item -net none
442
Indicate that no network devices should be configured. It is used to
443
override the default configuration (@option{-net nic -net user}) which
444
is activated if no @option{-net} options are provided.
445

    
446
@item -tftp prefix
447
When using the user mode network stack, activate a built-in TFTP
448
server. All filenames beginning with @var{prefix} can be downloaded
449
from the host to the guest using a TFTP client. The TFTP client on the
450
guest must be configured in binary mode (use the command @code{bin} of
451
the Unix TFTP client). The host IP address on the guest is as usual
452
10.0.2.2.
453

    
454
@item -smb dir
455
When using the user mode network stack, activate a built-in SMB
456
server so that Windows OSes can access to the host files in @file{dir}
457
transparently.
458

    
459
In the guest Windows OS, the line:
460
@example
461
10.0.2.4 smbserver
462
@end example
463
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
464
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
465

    
466
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
467

    
468
Note that a SAMBA server must be installed on the host OS in
469
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
470
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
471

    
472
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
473

    
474
When using the user mode network stack, redirect incoming TCP or UDP
475
connections to the host port @var{host-port} to the guest
476
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
477
is not specified, its value is 10.0.2.15 (default address given by the
478
built-in DHCP server).
479

    
480
For example, to redirect host X11 connection from screen 1 to guest
481
screen 0, use the following:
482

    
483
@example
484
# on the host
485
qemu -redir tcp:6001::6000 [...]
486
# this host xterm should open in the guest X11 server
487
xterm -display :1
488
@end example
489

    
490
To redirect telnet connections from host port 5555 to telnet port on
491
the guest, use the following:
492

    
493
@example
494
# on the host
495
qemu -redir tcp:5555::23 [...]
496
telnet localhost 5555
497
@end example
498

    
499
Then when you use on the host @code{telnet localhost 5555}, you
500
connect to the guest telnet server.
501

    
502
@end table
503

    
504
Linux boot specific: When using these options, you can use a given
505
Linux kernel without installing it in the disk image. It can be useful
506
for easier testing of various kernels.
507

    
508
@table @option
509

    
510
@item -kernel bzImage 
511
Use @var{bzImage} as kernel image.
512

    
513
@item -append cmdline 
514
Use @var{cmdline} as kernel command line
515

    
516
@item -initrd file
517
Use @var{file} as initial ram disk.
518

    
519
@end table
520

    
521
Debug/Expert options:
522
@table @option
523

    
524
@item -serial dev
525
Redirect the virtual serial port to host character device
526
@var{dev}. The default device is @code{vc} in graphical mode and
527
@code{stdio} in non graphical mode.
528

    
529
This option can be used several times to simulate up to 4 serials
530
ports.
531

    
532
Use @code{-serial none} to disable all serial ports.
533

    
534
Available character devices are:
535
@table @code
536
@item vc
537
Virtual console
538
@item pty
539
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
540
@item none
541
No device is allocated.
542
@item null
543
void device
544
@item /dev/XXX
545
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
546
parameters are set according to the emulated ones.
547
@item /dev/parportN
548
[Linux only, parallel port only] Use host parallel port
549
@var{N}. Currently only SPP parallel port features can be used.
550
@item file:filename
551
Write output to filename. No character can be read.
552
@item stdio
553
[Unix only] standard input/output
554
@item pipe:filename
555
name pipe @var{filename}
556
@item COMn
557
[Windows only] Use host serial port @var{n}
558
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
559
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
560

    
561
If you just want a simple readonly console you can use @code{netcat} or
562
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
563
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
564
will appear in the netconsole session.
565

    
566
If you plan to send characters back via netconsole or you want to stop
567
and start qemu a lot of times, you should have qemu use the same
568
source port each time by using something like @code{-serial
569
udp::4555@@:4556} to qemu. Another approach is to use a patched
570
version of netcat which can listen to a TCP port and send and receive
571
characters via udp.  If you have a patched version of netcat which
572
activates telnet remote echo and single char transfer, then you can
573
use the following options to step up a netcat redirector to allow
574
telnet on port 5555 to access the qemu port.
575
@table @code
576
@item Qemu Options:
577
-serial udp::4555@@:4556
578
@item netcat options:
579
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
580
@item telnet options:
581
localhost 5555
582
@end table
583

    
584

    
585
@item tcp:[host]:port[,server][,nowait]
586
The TCP Net Console has two modes of operation.  It can send the serial
587
I/O to a location or wait for a connection from a location.  By default
588
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
589
the @var{server} option QEMU will wait for a client socket application
590
to connect to the port before continuing, unless the @code{nowait}
591
option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
592
one TCP connection at a time is accepted. You can use @code{telnet} to
593
connect to the corresponding character device.
594
@table @code
595
@item Example to send tcp console to 192.168.0.2 port 4444
596
-serial tcp:192.168.0.2:4444
597
@item Example to listen and wait on port 4444 for connection
598
-serial tcp::4444,server
599
@item Example to not wait and listen on ip 192.168.0.100 port 4444
600
-serial tcp:192.168.0.100:4444,server,nowait
601
@end table
602

    
603
@item telnet:host:port[,server][,nowait]
604
The telnet protocol is used instead of raw tcp sockets.  The options
605
work the same as if you had specified @code{-serial tcp}.  The
606
difference is that the port acts like a telnet server or client using
607
telnet option negotiation.  This will also allow you to send the
608
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
609
sequence.  Typically in unix telnet you do it with Control-] and then
610
type "send break" followed by pressing the enter key.
611

    
612
@item unix:path[,server][,nowait]
613
A unix domain socket is used instead of a tcp socket.  The option works the
614
same as if you had specified @code{-serial tcp} except the unix domain socket
615
@var{path} is used for connections.
616

    
617
@end table
618

    
619
@item -parallel dev
620
Redirect the virtual parallel port to host device @var{dev} (same
621
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
622
be used to use hardware devices connected on the corresponding host
623
parallel port.
624

    
625
This option can be used several times to simulate up to 3 parallel
626
ports.
627

    
628
Use @code{-parallel none} to disable all parallel ports.
629

    
630
@item -monitor dev
631
Redirect the monitor to host device @var{dev} (same devices as the
632
serial port).
633
The default device is @code{vc} in graphical mode and @code{stdio} in
634
non graphical mode.
635

    
636
@item -s
637
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
638
@item -p port
639
Change gdb connection port.
640
@item -S
641
Do not start CPU at startup (you must type 'c' in the monitor).
642
@item -d             
643
Output log in /tmp/qemu.log
644
@item -hdachs c,h,s,[,t]
645
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
646
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
647
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
648
all thoses parameters. This option is useful for old MS-DOS disk
649
images.
650

    
651
@item -L path
652
Set the directory for the BIOS, VGA BIOS and keymaps.
653

    
654
@item -std-vga
655
Simulate a standard VGA card with Bochs VBE extensions (default is
656
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
657
VBE extensions (e.g. Windows XP) and if you want to use high
658
resolution modes (>= 1280x1024x16) then you should use this option.
659

    
660
@item -no-acpi
661
Disable ACPI (Advanced Configuration and Power Interface) support. Use
662
it if your guest OS complains about ACPI problems (PC target machine
663
only).
664

    
665
@item -no-reboot
666
Exit instead of rebooting.
667

    
668
@item -loadvm file
669
Start right away with a saved state (@code{loadvm} in monitor)
670
@end table
671

    
672
@c man end
673

    
674
@node pcsys_keys
675
@section Keys
676

    
677
@c man begin OPTIONS
678

    
679
During the graphical emulation, you can use the following keys:
680
@table @key
681
@item Ctrl-Alt-f
682
Toggle full screen
683

    
684
@item Ctrl-Alt-n
685
Switch to virtual console 'n'. Standard console mappings are:
686
@table @emph
687
@item 1
688
Target system display
689
@item 2
690
Monitor
691
@item 3
692
Serial port
693
@end table
694

    
695
@item Ctrl-Alt
696
Toggle mouse and keyboard grab.
697
@end table
698

    
699
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
700
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
701

    
702
During emulation, if you are using the @option{-nographic} option, use
703
@key{Ctrl-a h} to get terminal commands:
704

    
705
@table @key
706
@item Ctrl-a h
707
Print this help
708
@item Ctrl-a x    
709
Exit emulator
710
@item Ctrl-a s    
711
Save disk data back to file (if -snapshot)
712
@item Ctrl-a b
713
Send break (magic sysrq in Linux)
714
@item Ctrl-a c
715
Switch between console and monitor
716
@item Ctrl-a Ctrl-a
717
Send Ctrl-a
718
@end table
719
@c man end
720

    
721
@ignore
722

    
723
@c man begin SEEALSO
724
The HTML documentation of QEMU for more precise information and Linux
725
user mode emulator invocation.
726
@c man end
727

    
728
@c man begin AUTHOR
729
Fabrice Bellard
730
@c man end
731

    
732
@end ignore
733

    
734
@node pcsys_monitor
735
@section QEMU Monitor
736

    
737
The QEMU monitor is used to give complex commands to the QEMU
738
emulator. You can use it to:
739

    
740
@itemize @minus
741

    
742
@item
743
Remove or insert removable medias images
744
(such as CD-ROM or floppies)
745

    
746
@item 
747
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
748
from a disk file.
749

    
750
@item Inspect the VM state without an external debugger.
751

    
752
@end itemize
753

    
754
@subsection Commands
755

    
756
The following commands are available:
757

    
758
@table @option
759

    
760
@item help or ? [cmd]
761
Show the help for all commands or just for command @var{cmd}.
762

    
763
@item commit  
764
Commit changes to the disk images (if -snapshot is used)
765

    
766
@item info subcommand 
767
show various information about the system state
768

    
769
@table @option
770
@item info network
771
show the various VLANs and the associated devices
772
@item info block
773
show the block devices
774
@item info registers
775
show the cpu registers
776
@item info history
777
show the command line history
778
@item info pci
779
show emulated PCI device
780
@item info usb
781
show USB devices plugged on the virtual USB hub
782
@item info usbhost
783
show all USB host devices
784
@item info capture
785
show information about active capturing
786
@item info snapshots
787
show list of VM snapshots
788
@item info mice
789
show which guest mouse is receiving events
790
@end table
791

    
792
@item q or quit
793
Quit the emulator.
794

    
795
@item eject [-f] device
796
Eject a removable media (use -f to force it).
797

    
798
@item change device filename
799
Change a removable media.
800

    
801
@item screendump filename
802
Save screen into PPM image @var{filename}.
803

    
804
@item mouse_move dx dy [dz]
805
Move the active mouse to the specified coordinates @var{dx} @var{dy}
806
with optional scroll axis @var{dz}.
807

    
808
@item mouse_button val
809
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
810

    
811
@item mouse_set index
812
Set which mouse device receives events at given @var{index}, index
813
can be obtained with
814
@example
815
info mice
816
@end example
817

    
818
@item wavcapture filename [frequency [bits [channels]]]
819
Capture audio into @var{filename}. Using sample rate @var{frequency}
820
bits per sample @var{bits} and number of channels @var{channels}.
821

    
822
Defaults:
823
@itemize @minus
824
@item Sample rate = 44100 Hz - CD quality
825
@item Bits = 16
826
@item Number of channels = 2 - Stereo
827
@end itemize
828

    
829
@item stopcapture index
830
Stop capture with a given @var{index}, index can be obtained with
831
@example
832
info capture
833
@end example
834

    
835
@item log item1[,...]
836
Activate logging of the specified items to @file{/tmp/qemu.log}.
837

    
838
@item savevm [tag|id]
839
Create a snapshot of the whole virtual machine. If @var{tag} is
840
provided, it is used as human readable identifier. If there is already
841
a snapshot with the same tag or ID, it is replaced. More info at
842
@ref{vm_snapshots}.
843

    
844
@item loadvm tag|id
845
Set the whole virtual machine to the snapshot identified by the tag
846
@var{tag} or the unique snapshot ID @var{id}.
847

    
848
@item delvm tag|id
849
Delete the snapshot identified by @var{tag} or @var{id}.
850

    
851
@item stop
852
Stop emulation.
853

    
854
@item c or cont
855
Resume emulation.
856

    
857
@item gdbserver [port]
858
Start gdbserver session (default port=1234)
859

    
860
@item x/fmt addr
861
Virtual memory dump starting at @var{addr}.
862

    
863
@item xp /fmt addr
864
Physical memory dump starting at @var{addr}.
865

    
866
@var{fmt} is a format which tells the command how to format the
867
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
868

    
869
@table @var
870
@item count 
871
is the number of items to be dumped.
872

    
873
@item format
874
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
875
c (char) or i (asm instruction).
876

    
877
@item size
878
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
879
@code{h} or @code{w} can be specified with the @code{i} format to
880
respectively select 16 or 32 bit code instruction size.
881

    
882
@end table
883

    
884
Examples: 
885
@itemize
886
@item
887
Dump 10 instructions at the current instruction pointer:
888
@example 
889
(qemu) x/10i $eip
890
0x90107063:  ret
891
0x90107064:  sti
892
0x90107065:  lea    0x0(%esi,1),%esi
893
0x90107069:  lea    0x0(%edi,1),%edi
894
0x90107070:  ret
895
0x90107071:  jmp    0x90107080
896
0x90107073:  nop
897
0x90107074:  nop
898
0x90107075:  nop
899
0x90107076:  nop
900
@end example
901

    
902
@item
903
Dump 80 16 bit values at the start of the video memory.
904
@smallexample 
905
(qemu) xp/80hx 0xb8000
906
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
907
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
908
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
909
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
910
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
911
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
912
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
913
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
914
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
915
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
916
@end smallexample
917
@end itemize
918

    
919
@item p or print/fmt expr
920

    
921
Print expression value. Only the @var{format} part of @var{fmt} is
922
used.
923

    
924
@item sendkey keys
925

    
926
Send @var{keys} to the emulator. Use @code{-} to press several keys
927
simultaneously. Example:
928
@example
929
sendkey ctrl-alt-f1
930
@end example
931

    
932
This command is useful to send keys that your graphical user interface
933
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
934

    
935
@item system_reset
936

    
937
Reset the system.
938

    
939
@item usb_add devname
940

    
941
Add the USB device @var{devname}.  For details of available devices see
942
@ref{usb_devices}
943

    
944
@item usb_del devname
945

    
946
Remove the USB device @var{devname} from the QEMU virtual USB
947
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
948
command @code{info usb} to see the devices you can remove.
949

    
950
@end table
951

    
952
@subsection Integer expressions
953

    
954
The monitor understands integers expressions for every integer
955
argument. You can use register names to get the value of specifics
956
CPU registers by prefixing them with @emph{$}.
957

    
958
@node disk_images
959
@section Disk Images
960

    
961
Since version 0.6.1, QEMU supports many disk image formats, including
962
growable disk images (their size increase as non empty sectors are
963
written), compressed and encrypted disk images. Version 0.8.3 added
964
the new qcow2 disk image format which is essential to support VM
965
snapshots.
966

    
967
@menu
968
* disk_images_quickstart::    Quick start for disk image creation
969
* disk_images_snapshot_mode:: Snapshot mode
970
* vm_snapshots::              VM snapshots
971
* qemu_img_invocation::       qemu-img Invocation
972
* host_drives::               Using host drives
973
* disk_images_fat_images::    Virtual FAT disk images
974
@end menu
975

    
976
@node disk_images_quickstart
977
@subsection Quick start for disk image creation
978

    
979
You can create a disk image with the command:
980
@example
981
qemu-img create myimage.img mysize
982
@end example
983
where @var{myimage.img} is the disk image filename and @var{mysize} is its
984
size in kilobytes. You can add an @code{M} suffix to give the size in
985
megabytes and a @code{G} suffix for gigabytes.
986

    
987
See @ref{qemu_img_invocation} for more information.
988

    
989
@node disk_images_snapshot_mode
990
@subsection Snapshot mode
991

    
992
If you use the option @option{-snapshot}, all disk images are
993
considered as read only. When sectors in written, they are written in
994
a temporary file created in @file{/tmp}. You can however force the
995
write back to the raw disk images by using the @code{commit} monitor
996
command (or @key{C-a s} in the serial console).
997

    
998
@node vm_snapshots
999
@subsection VM snapshots
1000

    
1001
VM snapshots are snapshots of the complete virtual machine including
1002
CPU state, RAM, device state and the content of all the writable
1003
disks. In order to use VM snapshots, you must have at least one non
1004
removable and writable block device using the @code{qcow2} disk image
1005
format. Normally this device is the first virtual hard drive.
1006

    
1007
Use the monitor command @code{savevm} to create a new VM snapshot or
1008
replace an existing one. A human readable name can be assigned to each
1009
snapshot in addition to its numerical ID.
1010

    
1011
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1012
a VM snapshot. @code{info snapshots} lists the available snapshots
1013
with their associated information:
1014

    
1015
@example
1016
(qemu) info snapshots
1017
Snapshot devices: hda
1018
Snapshot list (from hda):
1019
ID        TAG                 VM SIZE                DATE       VM CLOCK
1020
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1021
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1022
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1023
@end example
1024

    
1025
A VM snapshot is made of a VM state info (its size is shown in
1026
@code{info snapshots}) and a snapshot of every writable disk image.
1027
The VM state info is stored in the first @code{qcow2} non removable
1028
and writable block device. The disk image snapshots are stored in
1029
every disk image. The size of a snapshot in a disk image is difficult
1030
to evaluate and is not shown by @code{info snapshots} because the
1031
associated disk sectors are shared among all the snapshots to save
1032
disk space (otherwise each snapshot would need a full copy of all the
1033
disk images).
1034

    
1035
When using the (unrelated) @code{-snapshot} option
1036
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1037
but they are deleted as soon as you exit QEMU.
1038

    
1039
VM snapshots currently have the following known limitations:
1040
@itemize
1041
@item 
1042
They cannot cope with removable devices if they are removed or
1043
inserted after a snapshot is done.
1044
@item 
1045
A few device drivers still have incomplete snapshot support so their
1046
state is not saved or restored properly (in particular USB).
1047
@end itemize
1048

    
1049
@node qemu_img_invocation
1050
@subsection @code{qemu-img} Invocation
1051

    
1052
@include qemu-img.texi
1053

    
1054
@node host_drives
1055
@subsection Using host drives
1056

    
1057
In addition to disk image files, QEMU can directly access host
1058
devices. We describe here the usage for QEMU version >= 0.8.3.
1059

    
1060
@subsubsection Linux
1061

    
1062
On Linux, you can directly use the host device filename instead of a
1063
disk image filename provided you have enough proviledge to access
1064
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1065
@file{/dev/fd0} for the floppy.
1066

    
1067
@table @code
1068
@item CD
1069
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1070
specific code to detect CDROM insertion or removal. CDROM ejection by
1071
the guest OS is supported. Currently only data CDs are supported.
1072
@item Floppy
1073
You can specify a floppy device even if no floppy is loaded. Floppy
1074
removal is currently not detected accurately (if you change floppy
1075
without doing floppy access while the floppy is not loaded, the guest
1076
OS will think that the same floppy is loaded).
1077
@item Hard disks
1078
Hard disks can be used. Normally you must specify the whole disk
1079
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1080
see it as a partitioned disk. WARNING: unless you know what you do, it
1081
is better to only make READ-ONLY accesses to the hard disk otherwise
1082
you may corrupt your host data (use the @option{-snapshot} command
1083
line option or modify the device permissions accordingly).
1084
@end table
1085

    
1086
@subsubsection Windows
1087

    
1088
On Windows you can use any host drives as QEMU drive. The prefered
1089
syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1090
@file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1091
to the first CDROM drive.
1092

    
1093
Currently there is no specific code to handle removable medias, so it
1094
is better to use the @code{change} or @code{eject} monitor commands to
1095
change or eject media.
1096

    
1097
@subsubsection Mac OS X
1098

    
1099
@file{/dev/cdrom} is an alias to the first CDROM. 
1100

    
1101
Currently there is no specific code to handle removable medias, so it
1102
is better to use the @code{change} or @code{eject} monitor commands to
1103
change or eject media.
1104

    
1105
@node disk_images_fat_images
1106
@subsection Virtual FAT disk images
1107

    
1108
QEMU can automatically create a virtual FAT disk image from a
1109
directory tree. In order to use it, just type:
1110

    
1111
@example 
1112
qemu linux.img -hdb fat:/my_directory
1113
@end example
1114

    
1115
Then you access access to all the files in the @file{/my_directory}
1116
directory without having to copy them in a disk image or to export
1117
them via SAMBA or NFS. The default access is @emph{read-only}.
1118

    
1119
Floppies can be emulated with the @code{:floppy:} option:
1120

    
1121
@example 
1122
qemu linux.img -fda fat:floppy:/my_directory
1123
@end example
1124

    
1125
A read/write support is available for testing (beta stage) with the
1126
@code{:rw:} option:
1127

    
1128
@example 
1129
qemu linux.img -fda fat:floppy:rw:/my_directory
1130
@end example
1131

    
1132
What you should @emph{never} do:
1133
@itemize
1134
@item use non-ASCII filenames ;
1135
@item use "-snapshot" together with ":rw:" ;
1136
@item expect it to work when loadvm'ing ;
1137
@item write to the FAT directory on the host system while accessing it with the guest system.
1138
@end itemize
1139

    
1140
@node pcsys_network
1141
@section Network emulation
1142

    
1143
QEMU can simulate several networks cards (NE2000 boards on the PC
1144
target) and can connect them to an arbitrary number of Virtual Local
1145
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1146
VLAN. VLAN can be connected between separate instances of QEMU to
1147
simulate large networks. For simpler usage, a non priviledged user mode
1148
network stack can replace the TAP device to have a basic network
1149
connection.
1150

    
1151
@subsection VLANs
1152

    
1153
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1154
connection between several network devices. These devices can be for
1155
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1156
(TAP devices).
1157

    
1158
@subsection Using TAP network interfaces
1159

    
1160
This is the standard way to connect QEMU to a real network. QEMU adds
1161
a virtual network device on your host (called @code{tapN}), and you
1162
can then configure it as if it was a real ethernet card.
1163

    
1164
@subsubsection Linux host
1165

    
1166
As an example, you can download the @file{linux-test-xxx.tar.gz}
1167
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1168
configure properly @code{sudo} so that the command @code{ifconfig}
1169
contained in @file{qemu-ifup} can be executed as root. You must verify
1170
that your host kernel supports the TAP network interfaces: the
1171
device @file{/dev/net/tun} must be present.
1172

    
1173
See @ref{sec_invocation} to have examples of command lines using the
1174
TAP network interfaces.
1175

    
1176
@subsubsection Windows host
1177

    
1178
There is a virtual ethernet driver for Windows 2000/XP systems, called
1179
TAP-Win32. But it is not included in standard QEMU for Windows,
1180
so you will need to get it separately. It is part of OpenVPN package,
1181
so download OpenVPN from : @url{http://openvpn.net/}.
1182

    
1183
@subsection Using the user mode network stack
1184

    
1185
By using the option @option{-net user} (default configuration if no
1186
@option{-net} option is specified), QEMU uses a completely user mode
1187
network stack (you don't need root priviledge to use the virtual
1188
network). The virtual network configuration is the following:
1189

    
1190
@example
1191

    
1192
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1193
                           |          (10.0.2.2)
1194
                           |
1195
                           ---->  DNS server (10.0.2.3)
1196
                           |     
1197
                           ---->  SMB server (10.0.2.4)
1198
@end example
1199

    
1200
The QEMU VM behaves as if it was behind a firewall which blocks all
1201
incoming connections. You can use a DHCP client to automatically
1202
configure the network in the QEMU VM. The DHCP server assign addresses
1203
to the hosts starting from 10.0.2.15.
1204

    
1205
In order to check that the user mode network is working, you can ping
1206
the address 10.0.2.2 and verify that you got an address in the range
1207
10.0.2.x from the QEMU virtual DHCP server.
1208

    
1209
Note that @code{ping} is not supported reliably to the internet as it
1210
would require root priviledges. It means you can only ping the local
1211
router (10.0.2.2).
1212

    
1213
When using the built-in TFTP server, the router is also the TFTP
1214
server.
1215

    
1216
When using the @option{-redir} option, TCP or UDP connections can be
1217
redirected from the host to the guest. It allows for example to
1218
redirect X11, telnet or SSH connections.
1219

    
1220
@subsection Connecting VLANs between QEMU instances
1221

    
1222
Using the @option{-net socket} option, it is possible to make VLANs
1223
that span several QEMU instances. See @ref{sec_invocation} to have a
1224
basic example.
1225

    
1226
@node direct_linux_boot
1227
@section Direct Linux Boot
1228

    
1229
This section explains how to launch a Linux kernel inside QEMU without
1230
having to make a full bootable image. It is very useful for fast Linux
1231
kernel testing.
1232

    
1233
The syntax is:
1234
@example
1235
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1236
@end example
1237

    
1238
Use @option{-kernel} to provide the Linux kernel image and
1239
@option{-append} to give the kernel command line arguments. The
1240
@option{-initrd} option can be used to provide an INITRD image.
1241

    
1242
When using the direct Linux boot, a disk image for the first hard disk
1243
@file{hda} is required because its boot sector is used to launch the
1244
Linux kernel.
1245

    
1246
If you do not need graphical output, you can disable it and redirect
1247
the virtual serial port and the QEMU monitor to the console with the
1248
@option{-nographic} option. The typical command line is:
1249
@example
1250
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1251
     -append "root=/dev/hda console=ttyS0" -nographic
1252
@end example
1253

    
1254
Use @key{Ctrl-a c} to switch between the serial console and the
1255
monitor (@pxref{pcsys_keys}).
1256

    
1257
@node pcsys_usb
1258
@section USB emulation
1259

    
1260
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1261
virtual USB devices or real host USB devices (experimental, works only
1262
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1263
as necessary to connect multiple USB devices.
1264

    
1265
@menu
1266
* usb_devices::
1267
* host_usb_devices::
1268
@end menu
1269
@node usb_devices
1270
@subsection Connecting USB devices
1271

    
1272
USB devices can be connected with the @option{-usbdevice} commandline option
1273
or the @code{usb_add} monitor command.  Available devices are:
1274

    
1275
@table @var
1276
@item @code{mouse}
1277
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1278
@item @code{tablet}
1279
Pointer device that uses absolute coordinates (like a touchscreen).
1280
This means qemu is able to report the mouse position without having
1281
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1282
@item @code{disk:file}
1283
Mass storage device based on @var{file} (@pxref{disk_images})
1284
@item @code{host:bus.addr}
1285
Pass through the host device identified by @var{bus.addr}
1286
(Linux only)
1287
@item @code{host:vendor_id:product_id}
1288
Pass through the host device identified by @var{vendor_id:product_id}
1289
(Linux only)
1290
@end table
1291

    
1292
@node host_usb_devices
1293
@subsection Using host USB devices on a Linux host
1294

    
1295
WARNING: this is an experimental feature. QEMU will slow down when
1296
using it. USB devices requiring real time streaming (i.e. USB Video
1297
Cameras) are not supported yet.
1298

    
1299
@enumerate
1300
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1301
is actually using the USB device. A simple way to do that is simply to
1302
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1303
to @file{mydriver.o.disabled}.
1304

    
1305
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1306
@example
1307
ls /proc/bus/usb
1308
001  devices  drivers
1309
@end example
1310

    
1311
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1312
@example
1313
chown -R myuid /proc/bus/usb
1314
@end example
1315

    
1316
@item Launch QEMU and do in the monitor:
1317
@example 
1318
info usbhost
1319
  Device 1.2, speed 480 Mb/s
1320
    Class 00: USB device 1234:5678, USB DISK
1321
@end example
1322
You should see the list of the devices you can use (Never try to use
1323
hubs, it won't work).
1324

    
1325
@item Add the device in QEMU by using:
1326
@example 
1327
usb_add host:1234:5678
1328
@end example
1329

    
1330
Normally the guest OS should report that a new USB device is
1331
plugged. You can use the option @option{-usbdevice} to do the same.
1332

    
1333
@item Now you can try to use the host USB device in QEMU.
1334

    
1335
@end enumerate
1336

    
1337
When relaunching QEMU, you may have to unplug and plug again the USB
1338
device to make it work again (this is a bug).
1339

    
1340
@node gdb_usage
1341
@section GDB usage
1342

    
1343
QEMU has a primitive support to work with gdb, so that you can do
1344
'Ctrl-C' while the virtual machine is running and inspect its state.
1345

    
1346
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1347
gdb connection:
1348
@example
1349
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1350
       -append "root=/dev/hda"
1351
Connected to host network interface: tun0
1352
Waiting gdb connection on port 1234
1353
@end example
1354

    
1355
Then launch gdb on the 'vmlinux' executable:
1356
@example
1357
> gdb vmlinux
1358
@end example
1359

    
1360
In gdb, connect to QEMU:
1361
@example
1362
(gdb) target remote localhost:1234
1363
@end example
1364

    
1365
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1366
@example
1367
(gdb) c
1368
@end example
1369

    
1370
Here are some useful tips in order to use gdb on system code:
1371

    
1372
@enumerate
1373
@item
1374
Use @code{info reg} to display all the CPU registers.
1375
@item
1376
Use @code{x/10i $eip} to display the code at the PC position.
1377
@item
1378
Use @code{set architecture i8086} to dump 16 bit code. Then use
1379
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1380
@end enumerate
1381

    
1382
@node pcsys_os_specific
1383
@section Target OS specific information
1384

    
1385
@subsection Linux
1386

    
1387
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1388
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1389
color depth in the guest and the host OS.
1390

    
1391
When using a 2.6 guest Linux kernel, you should add the option
1392
@code{clock=pit} on the kernel command line because the 2.6 Linux
1393
kernels make very strict real time clock checks by default that QEMU
1394
cannot simulate exactly.
1395

    
1396
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1397
not activated because QEMU is slower with this patch. The QEMU
1398
Accelerator Module is also much slower in this case. Earlier Fedora
1399
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1400
patch by default. Newer kernels don't have it.
1401

    
1402
@subsection Windows
1403

    
1404
If you have a slow host, using Windows 95 is better as it gives the
1405
best speed. Windows 2000 is also a good choice.
1406

    
1407
@subsubsection SVGA graphic modes support
1408

    
1409
QEMU emulates a Cirrus Logic GD5446 Video
1410
card. All Windows versions starting from Windows 95 should recognize
1411
and use this graphic card. For optimal performances, use 16 bit color
1412
depth in the guest and the host OS.
1413

    
1414
If you are using Windows XP as guest OS and if you want to use high
1415
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1416
1280x1024x16), then you should use the VESA VBE virtual graphic card
1417
(option @option{-std-vga}).
1418

    
1419
@subsubsection CPU usage reduction
1420

    
1421
Windows 9x does not correctly use the CPU HLT
1422
instruction. The result is that it takes host CPU cycles even when
1423
idle. You can install the utility from
1424
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1425
problem. Note that no such tool is needed for NT, 2000 or XP.
1426

    
1427
@subsubsection Windows 2000 disk full problem
1428

    
1429
Windows 2000 has a bug which gives a disk full problem during its
1430
installation. When installing it, use the @option{-win2k-hack} QEMU
1431
option to enable a specific workaround. After Windows 2000 is
1432
installed, you no longer need this option (this option slows down the
1433
IDE transfers).
1434

    
1435
@subsubsection Windows 2000 shutdown
1436

    
1437
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1438
can. It comes from the fact that Windows 2000 does not automatically
1439
use the APM driver provided by the BIOS.
1440

    
1441
In order to correct that, do the following (thanks to Struan
1442
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1443
Add/Troubleshoot a device => Add a new device & Next => No, select the
1444
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1445
(again) a few times. Now the driver is installed and Windows 2000 now
1446
correctly instructs QEMU to shutdown at the appropriate moment. 
1447

    
1448
@subsubsection Share a directory between Unix and Windows
1449

    
1450
See @ref{sec_invocation} about the help of the option @option{-smb}.
1451

    
1452
@subsubsection Windows XP security problem
1453

    
1454
Some releases of Windows XP install correctly but give a security
1455
error when booting:
1456
@example
1457
A problem is preventing Windows from accurately checking the
1458
license for this computer. Error code: 0x800703e6.
1459
@end example
1460

    
1461
The workaround is to install a service pack for XP after a boot in safe
1462
mode. Then reboot, and the problem should go away. Since there is no
1463
network while in safe mode, its recommended to download the full
1464
installation of SP1 or SP2 and transfer that via an ISO or using the
1465
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1466

    
1467
@subsection MS-DOS and FreeDOS
1468

    
1469
@subsubsection CPU usage reduction
1470

    
1471
DOS does not correctly use the CPU HLT instruction. The result is that
1472
it takes host CPU cycles even when idle. You can install the utility
1473
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1474
problem.
1475

    
1476
@node QEMU System emulator for non PC targets
1477
@chapter QEMU System emulator for non PC targets
1478

    
1479
QEMU is a generic emulator and it emulates many non PC
1480
machines. Most of the options are similar to the PC emulator. The
1481
differences are mentionned in the following sections.
1482

    
1483
@menu
1484
* QEMU PowerPC System emulator::
1485
* Sparc32 System emulator invocation::
1486
* Sparc64 System emulator invocation::
1487
* MIPS System emulator invocation::
1488
* ARM System emulator invocation::
1489
@end menu
1490

    
1491
@node QEMU PowerPC System emulator
1492
@section QEMU PowerPC System emulator
1493

    
1494
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1495
or PowerMac PowerPC system.
1496

    
1497
QEMU emulates the following PowerMac peripherals:
1498

    
1499
@itemize @minus
1500
@item 
1501
UniNorth PCI Bridge 
1502
@item
1503
PCI VGA compatible card with VESA Bochs Extensions
1504
@item 
1505
2 PMAC IDE interfaces with hard disk and CD-ROM support
1506
@item 
1507
NE2000 PCI adapters
1508
@item
1509
Non Volatile RAM
1510
@item
1511
VIA-CUDA with ADB keyboard and mouse.
1512
@end itemize
1513

    
1514
QEMU emulates the following PREP peripherals:
1515

    
1516
@itemize @minus
1517
@item 
1518
PCI Bridge
1519
@item
1520
PCI VGA compatible card with VESA Bochs Extensions
1521
@item 
1522
2 IDE interfaces with hard disk and CD-ROM support
1523
@item
1524
Floppy disk
1525
@item 
1526
NE2000 network adapters
1527
@item
1528
Serial port
1529
@item
1530
PREP Non Volatile RAM
1531
@item
1532
PC compatible keyboard and mouse.
1533
@end itemize
1534

    
1535
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1536
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1537

    
1538
@c man begin OPTIONS
1539

    
1540
The following options are specific to the PowerPC emulation:
1541

    
1542
@table @option
1543

    
1544
@item -g WxH[xDEPTH]  
1545

    
1546
Set the initial VGA graphic mode. The default is 800x600x15.
1547

    
1548
@end table
1549

    
1550
@c man end 
1551

    
1552

    
1553
More information is available at
1554
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1555

    
1556
@node Sparc32 System emulator invocation
1557
@section Sparc32 System emulator invocation
1558

    
1559
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1560
(sun4m architecture). The emulation is somewhat complete.
1561

    
1562
QEMU emulates the following sun4m peripherals:
1563

    
1564
@itemize @minus
1565
@item
1566
IOMMU
1567
@item
1568
TCX Frame buffer
1569
@item 
1570
Lance (Am7990) Ethernet
1571
@item
1572
Non Volatile RAM M48T08
1573
@item
1574
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1575
and power/reset logic
1576
@item
1577
ESP SCSI controller with hard disk and CD-ROM support
1578
@item
1579
Floppy drive
1580
@end itemize
1581

    
1582
The number of peripherals is fixed in the architecture.
1583

    
1584
Since version 0.8.2, QEMU uses OpenBIOS
1585
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1586
firmware implementation. The goal is to implement a 100% IEEE
1587
1275-1994 (referred to as Open Firmware) compliant firmware.
1588

    
1589
A sample Linux 2.6 series kernel and ram disk image are available on
1590
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1591
Solaris kernels don't work.
1592

    
1593
@c man begin OPTIONS
1594

    
1595
The following options are specific to the Sparc emulation:
1596

    
1597
@table @option
1598

    
1599
@item -g WxH
1600

    
1601
Set the initial TCX graphic mode. The default is 1024x768.
1602

    
1603
@end table
1604

    
1605
@c man end 
1606

    
1607
@node Sparc64 System emulator invocation
1608
@section Sparc64 System emulator invocation
1609

    
1610
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1611
The emulator is not usable for anything yet.
1612

    
1613
QEMU emulates the following sun4u peripherals:
1614

    
1615
@itemize @minus
1616
@item
1617
UltraSparc IIi APB PCI Bridge 
1618
@item
1619
PCI VGA compatible card with VESA Bochs Extensions
1620
@item
1621
Non Volatile RAM M48T59
1622
@item
1623
PC-compatible serial ports
1624
@end itemize
1625

    
1626
@node MIPS System emulator invocation
1627
@section MIPS System emulator invocation
1628

    
1629
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1630
The emulator is able to boot a Linux kernel and to run a Linux Debian
1631
installation from NFS. The following devices are emulated:
1632

    
1633
@itemize @minus
1634
@item 
1635
MIPS R4K CPU
1636
@item
1637
PC style serial port
1638
@item
1639
NE2000 network card
1640
@end itemize
1641

    
1642
More information is available in the QEMU mailing-list archive.
1643

    
1644
@node ARM System emulator invocation
1645
@section ARM System emulator invocation
1646

    
1647
Use the executable @file{qemu-system-arm} to simulate a ARM
1648
machine. The ARM Integrator/CP board is emulated with the following
1649
devices:
1650

    
1651
@itemize @minus
1652
@item
1653
ARM926E or ARM1026E CPU
1654
@item
1655
Two PL011 UARTs
1656
@item 
1657
SMC 91c111 Ethernet adapter
1658
@item
1659
PL110 LCD controller
1660
@item
1661
PL050 KMI with PS/2 keyboard and mouse.
1662
@end itemize
1663

    
1664
The ARM Versatile baseboard is emulated with the following devices:
1665

    
1666
@itemize @minus
1667
@item
1668
ARM926E CPU
1669
@item
1670
PL190 Vectored Interrupt Controller
1671
@item
1672
Four PL011 UARTs
1673
@item 
1674
SMC 91c111 Ethernet adapter
1675
@item
1676
PL110 LCD controller
1677
@item
1678
PL050 KMI with PS/2 keyboard and mouse.
1679
@item
1680
PCI host bridge.  Note the emulated PCI bridge only provides access to
1681
PCI memory space.  It does not provide access to PCI IO space.
1682
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1683
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1684
mapped control registers.
1685
@item
1686
PCI OHCI USB controller.
1687
@item
1688
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1689
@end itemize
1690

    
1691
A Linux 2.6 test image is available on the QEMU web site. More
1692
information is available in the QEMU mailing-list archive.
1693

    
1694
@node QEMU Linux User space emulator 
1695
@chapter QEMU Linux User space emulator 
1696

    
1697
@menu
1698
* Quick Start::
1699
* Wine launch::
1700
* Command line options::
1701
* Other binaries::
1702
@end menu
1703

    
1704
@node Quick Start
1705
@section Quick Start
1706

    
1707
In order to launch a Linux process, QEMU needs the process executable
1708
itself and all the target (x86) dynamic libraries used by it. 
1709

    
1710
@itemize
1711

    
1712
@item On x86, you can just try to launch any process by using the native
1713
libraries:
1714

    
1715
@example 
1716
qemu-i386 -L / /bin/ls
1717
@end example
1718

    
1719
@code{-L /} tells that the x86 dynamic linker must be searched with a
1720
@file{/} prefix.
1721

    
1722
@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1723

    
1724
@example 
1725
qemu-i386 -L / qemu-i386 -L / /bin/ls
1726
@end example
1727

    
1728
@item On non x86 CPUs, you need first to download at least an x86 glibc
1729
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1730
@code{LD_LIBRARY_PATH} is not set:
1731

    
1732
@example
1733
unset LD_LIBRARY_PATH 
1734
@end example
1735

    
1736
Then you can launch the precompiled @file{ls} x86 executable:
1737

    
1738
@example
1739
qemu-i386 tests/i386/ls
1740
@end example
1741
You can look at @file{qemu-binfmt-conf.sh} so that
1742
QEMU is automatically launched by the Linux kernel when you try to
1743
launch x86 executables. It requires the @code{binfmt_misc} module in the
1744
Linux kernel.
1745

    
1746
@item The x86 version of QEMU is also included. You can try weird things such as:
1747
@example
1748
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1749
          /usr/local/qemu-i386/bin/ls-i386
1750
@end example
1751

    
1752
@end itemize
1753

    
1754
@node Wine launch
1755
@section Wine launch
1756

    
1757
@itemize
1758

    
1759
@item Ensure that you have a working QEMU with the x86 glibc
1760
distribution (see previous section). In order to verify it, you must be
1761
able to do:
1762

    
1763
@example
1764
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1765
@end example
1766

    
1767
@item Download the binary x86 Wine install
1768
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1769

    
1770
@item Configure Wine on your account. Look at the provided script
1771
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1772
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1773

    
1774
@item Then you can try the example @file{putty.exe}:
1775

    
1776
@example
1777
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1778
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1779
@end example
1780

    
1781
@end itemize
1782

    
1783
@node Command line options
1784
@section Command line options
1785

    
1786
@example
1787
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1788
@end example
1789

    
1790
@table @option
1791
@item -h
1792
Print the help
1793
@item -L path   
1794
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1795
@item -s size
1796
Set the x86 stack size in bytes (default=524288)
1797
@end table
1798

    
1799
Debug options:
1800

    
1801
@table @option
1802
@item -d
1803
Activate log (logfile=/tmp/qemu.log)
1804
@item -p pagesize
1805
Act as if the host page size was 'pagesize' bytes
1806
@end table
1807

    
1808
@node Other binaries
1809
@section Other binaries
1810

    
1811
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1812
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1813
configurations), and arm-uclinux bFLT format binaries.
1814

    
1815
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
1816
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1817
coldfire uClinux bFLT format binaries.
1818

    
1819
The binary format is detected automatically.
1820

    
1821
@node compilation
1822
@chapter Compilation from the sources
1823

    
1824
@menu
1825
* Linux/Unix::
1826
* Windows::
1827
* Cross compilation for Windows with Linux::
1828
* Mac OS X::
1829
@end menu
1830

    
1831
@node Linux/Unix
1832
@section Linux/Unix
1833

    
1834
@subsection Compilation
1835

    
1836
First you must decompress the sources:
1837
@example
1838
cd /tmp
1839
tar zxvf qemu-x.y.z.tar.gz
1840
cd qemu-x.y.z
1841
@end example
1842

    
1843
Then you configure QEMU and build it (usually no options are needed):
1844
@example
1845
./configure
1846
make
1847
@end example
1848

    
1849
Then type as root user:
1850
@example
1851
make install
1852
@end example
1853
to install QEMU in @file{/usr/local}.
1854

    
1855
@subsection Tested tool versions
1856

    
1857
In order to compile QEMU successfully, it is very important that you
1858
have the right tools. The most important one is gcc. I cannot guaranty
1859
that QEMU works if you do not use a tested gcc version. Look at
1860
'configure' and 'Makefile' if you want to make a different gcc
1861
version work.
1862

    
1863
@example
1864
host      gcc      binutils      glibc    linux       distribution
1865
----------------------------------------------------------------------
1866
x86       3.2      2.13.2        2.1.3    2.4.18
1867
          2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1868
          3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1869

    
1870
PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1871
          3.2
1872

    
1873
Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1874

    
1875
Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1876

    
1877
ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1878

    
1879
[1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1880
    for gcc version >= 3.3.
1881
[2] Linux >= 2.4.20 is necessary for precise exception support
1882
    (untested).
1883
[3] 2.4.9-ac10-rmk2-np1-cerf2
1884

    
1885
[4] gcc 2.95.x generates invalid code when using too many register
1886
variables. You must use gcc 3.x on PowerPC.
1887
@end example
1888

    
1889
@node Windows
1890
@section Windows
1891

    
1892
@itemize
1893
@item Install the current versions of MSYS and MinGW from
1894
@url{http://www.mingw.org/}. You can find detailed installation
1895
instructions in the download section and the FAQ.
1896

    
1897
@item Download 
1898
the MinGW development library of SDL 1.2.x
1899
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1900
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
1901
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1902
directory. Edit the @file{sdl-config} script so that it gives the
1903
correct SDL directory when invoked.
1904

    
1905
@item Extract the current version of QEMU.
1906
 
1907
@item Start the MSYS shell (file @file{msys.bat}).
1908

    
1909
@item Change to the QEMU directory. Launch @file{./configure} and 
1910
@file{make}.  If you have problems using SDL, verify that
1911
@file{sdl-config} can be launched from the MSYS command line.
1912

    
1913
@item You can install QEMU in @file{Program Files/Qemu} by typing 
1914
@file{make install}. Don't forget to copy @file{SDL.dll} in
1915
@file{Program Files/Qemu}.
1916

    
1917
@end itemize
1918

    
1919
@node Cross compilation for Windows with Linux
1920
@section Cross compilation for Windows with Linux
1921

    
1922
@itemize
1923
@item
1924
Install the MinGW cross compilation tools available at
1925
@url{http://www.mingw.org/}.
1926

    
1927
@item 
1928
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1929
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1930
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1931
the QEMU configuration script.
1932

    
1933
@item 
1934
Configure QEMU for Windows cross compilation:
1935
@example
1936
./configure --enable-mingw32
1937
@end example
1938
If necessary, you can change the cross-prefix according to the prefix
1939
choosen for the MinGW tools with --cross-prefix. You can also use
1940
--prefix to set the Win32 install path.
1941

    
1942
@item You can install QEMU in the installation directory by typing 
1943
@file{make install}. Don't forget to copy @file{SDL.dll} in the
1944
installation directory. 
1945

    
1946
@end itemize
1947

    
1948
Note: Currently, Wine does not seem able to launch
1949
QEMU for Win32.
1950

    
1951
@node Mac OS X
1952
@section Mac OS X
1953

    
1954
The Mac OS X patches are not fully merged in QEMU, so you should look
1955
at the QEMU mailing list archive to have all the necessary
1956
information.
1957

    
1958
@node Index
1959
@chapter Index
1960
@printindex cp
1961

    
1962
@bye