Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ eed152bb

History | View | Annotate | Download (49.4 kB)

1 e8af50a3 bellard
#include "exec.h"
2 eed152bb blueswir1
#include "host-utils.h"
3 e8af50a3 bellard
4 83469015 bellard
//#define DEBUG_PCALL
5 e80cfcfc bellard
//#define DEBUG_MMU
6 952a328f blueswir1
//#define DEBUG_MXCC
7 94554550 blueswir1
//#define DEBUG_UNALIGNED
8 6c36d3fa blueswir1
//#define DEBUG_UNASSIGNED
9 e80cfcfc bellard
10 952a328f blueswir1
#ifdef DEBUG_MMU
11 952a328f blueswir1
#define DPRINTF_MMU(fmt, args...) \
12 952a328f blueswir1
do { printf("MMU: " fmt , ##args); } while (0)
13 952a328f blueswir1
#else
14 952a328f blueswir1
#define DPRINTF_MMU(fmt, args...)
15 952a328f blueswir1
#endif
16 952a328f blueswir1
17 952a328f blueswir1
#ifdef DEBUG_MXCC
18 952a328f blueswir1
#define DPRINTF_MXCC(fmt, args...) \
19 952a328f blueswir1
do { printf("MXCC: " fmt , ##args); } while (0)
20 952a328f blueswir1
#else
21 952a328f blueswir1
#define DPRINTF_MXCC(fmt, args...)
22 952a328f blueswir1
#endif
23 952a328f blueswir1
24 9d893301 bellard
void raise_exception(int tt)
25 9d893301 bellard
{
26 9d893301 bellard
    env->exception_index = tt;
27 9d893301 bellard
    cpu_loop_exit();
28 3b46e624 ths
}
29 9d893301 bellard
30 417454b0 blueswir1
void check_ieee_exceptions()
31 417454b0 blueswir1
{
32 417454b0 blueswir1
     T0 = get_float_exception_flags(&env->fp_status);
33 417454b0 blueswir1
     if (T0)
34 417454b0 blueswir1
     {
35 0f8a249a blueswir1
        /* Copy IEEE 754 flags into FSR */
36 0f8a249a blueswir1
        if (T0 & float_flag_invalid)
37 0f8a249a blueswir1
            env->fsr |= FSR_NVC;
38 0f8a249a blueswir1
        if (T0 & float_flag_overflow)
39 0f8a249a blueswir1
            env->fsr |= FSR_OFC;
40 0f8a249a blueswir1
        if (T0 & float_flag_underflow)
41 0f8a249a blueswir1
            env->fsr |= FSR_UFC;
42 0f8a249a blueswir1
        if (T0 & float_flag_divbyzero)
43 0f8a249a blueswir1
            env->fsr |= FSR_DZC;
44 0f8a249a blueswir1
        if (T0 & float_flag_inexact)
45 0f8a249a blueswir1
            env->fsr |= FSR_NXC;
46 0f8a249a blueswir1
47 0f8a249a blueswir1
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
48 0f8a249a blueswir1
        {
49 0f8a249a blueswir1
            /* Unmasked exception, generate a trap */
50 0f8a249a blueswir1
            env->fsr |= FSR_FTT_IEEE_EXCP;
51 0f8a249a blueswir1
            raise_exception(TT_FP_EXCP);
52 0f8a249a blueswir1
        }
53 0f8a249a blueswir1
        else
54 0f8a249a blueswir1
        {
55 0f8a249a blueswir1
            /* Accumulate exceptions */
56 0f8a249a blueswir1
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
57 0f8a249a blueswir1
        }
58 417454b0 blueswir1
     }
59 417454b0 blueswir1
}
60 417454b0 blueswir1
61 a0c4cb4a bellard
#ifdef USE_INT_TO_FLOAT_HELPERS
62 a0c4cb4a bellard
void do_fitos(void)
63 a0c4cb4a bellard
{
64 417454b0 blueswir1
    set_float_exception_flags(0, &env->fp_status);
65 ec230928 ths
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
66 417454b0 blueswir1
    check_ieee_exceptions();
67 a0c4cb4a bellard
}
68 a0c4cb4a bellard
69 a0c4cb4a bellard
void do_fitod(void)
70 a0c4cb4a bellard
{
71 ec230928 ths
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
72 a0c4cb4a bellard
}
73 1e64e78d blueswir1
#ifdef TARGET_SPARC64
74 1e64e78d blueswir1
void do_fxtos(void)
75 1e64e78d blueswir1
{
76 1e64e78d blueswir1
    set_float_exception_flags(0, &env->fp_status);
77 1e64e78d blueswir1
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
78 1e64e78d blueswir1
    check_ieee_exceptions();
79 1e64e78d blueswir1
}
80 1e64e78d blueswir1
81 1e64e78d blueswir1
void do_fxtod(void)
82 1e64e78d blueswir1
{
83 1e64e78d blueswir1
    set_float_exception_flags(0, &env->fp_status);
84 1e64e78d blueswir1
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
85 1e64e78d blueswir1
    check_ieee_exceptions();
86 1e64e78d blueswir1
}
87 1e64e78d blueswir1
#endif
88 a0c4cb4a bellard
#endif
89 a0c4cb4a bellard
90 a0c4cb4a bellard
void do_fabss(void)
91 e8af50a3 bellard
{
92 7a0e1f41 bellard
    FT0 = float32_abs(FT1);
93 e8af50a3 bellard
}
94 e8af50a3 bellard
95 3475187d bellard
#ifdef TARGET_SPARC64
96 3475187d bellard
void do_fabsd(void)
97 3475187d bellard
{
98 3475187d bellard
    DT0 = float64_abs(DT1);
99 3475187d bellard
}
100 3475187d bellard
#endif
101 3475187d bellard
102 a0c4cb4a bellard
void do_fsqrts(void)
103 e8af50a3 bellard
{
104 417454b0 blueswir1
    set_float_exception_flags(0, &env->fp_status);
105 7a0e1f41 bellard
    FT0 = float32_sqrt(FT1, &env->fp_status);
106 417454b0 blueswir1
    check_ieee_exceptions();
107 e8af50a3 bellard
}
108 e8af50a3 bellard
109 a0c4cb4a bellard
void do_fsqrtd(void)
110 e8af50a3 bellard
{
111 417454b0 blueswir1
    set_float_exception_flags(0, &env->fp_status);
112 7a0e1f41 bellard
    DT0 = float64_sqrt(DT1, &env->fp_status);
113 417454b0 blueswir1
    check_ieee_exceptions();
114 e8af50a3 bellard
}
115 e8af50a3 bellard
116 417454b0 blueswir1
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
117 65ce8c2f bellard
    void glue(do_, name) (void)                                         \
118 65ce8c2f bellard
    {                                                                   \
119 65ce8c2f bellard
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
120 65ce8c2f bellard
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
121 65ce8c2f bellard
        case float_relation_unordered:                                  \
122 65ce8c2f bellard
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
123 417454b0 blueswir1
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
124 65ce8c2f bellard
                env->fsr |= T0;                                         \
125 417454b0 blueswir1
                env->fsr |= FSR_NVC;                                    \
126 417454b0 blueswir1
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
127 65ce8c2f bellard
                raise_exception(TT_FP_EXCP);                            \
128 65ce8c2f bellard
            } else {                                                    \
129 65ce8c2f bellard
                env->fsr |= FSR_NVA;                                    \
130 65ce8c2f bellard
            }                                                           \
131 65ce8c2f bellard
            break;                                                      \
132 65ce8c2f bellard
        case float_relation_less:                                       \
133 65ce8c2f bellard
            T0 = FSR_FCC0 << FS;                                        \
134 65ce8c2f bellard
            break;                                                      \
135 65ce8c2f bellard
        case float_relation_greater:                                    \
136 65ce8c2f bellard
            T0 = FSR_FCC1 << FS;                                        \
137 65ce8c2f bellard
            break;                                                      \
138 65ce8c2f bellard
        default:                                                        \
139 65ce8c2f bellard
            T0 = 0;                                                     \
140 65ce8c2f bellard
            break;                                                      \
141 65ce8c2f bellard
        }                                                               \
142 65ce8c2f bellard
        env->fsr |= T0;                                                 \
143 e8af50a3 bellard
    }
144 e8af50a3 bellard
145 417454b0 blueswir1
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
146 417454b0 blueswir1
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
147 417454b0 blueswir1
148 417454b0 blueswir1
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
149 417454b0 blueswir1
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
150 3475187d bellard
151 3475187d bellard
#ifdef TARGET_SPARC64
152 417454b0 blueswir1
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
153 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
154 417454b0 blueswir1
155 417454b0 blueswir1
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
156 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
157 417454b0 blueswir1
158 417454b0 blueswir1
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
159 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
160 417454b0 blueswir1
161 417454b0 blueswir1
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
162 417454b0 blueswir1
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
163 3475187d bellard
164 417454b0 blueswir1
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
165 417454b0 blueswir1
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
166 3475187d bellard
167 417454b0 blueswir1
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
168 417454b0 blueswir1
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
169 3475187d bellard
#endif
170 3475187d bellard
171 3475187d bellard
#ifndef TARGET_SPARC64
172 81ad8ba2 blueswir1
#ifndef CONFIG_USER_ONLY
173 952a328f blueswir1
174 952a328f blueswir1
#ifdef DEBUG_MXCC
175 952a328f blueswir1
static void dump_mxcc(CPUState *env)
176 952a328f blueswir1
{
177 952a328f blueswir1
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
178 952a328f blueswir1
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
179 952a328f blueswir1
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
180 952a328f blueswir1
           "          %016llx %016llx %016llx %016llx\n",
181 952a328f blueswir1
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
182 952a328f blueswir1
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
183 952a328f blueswir1
}
184 952a328f blueswir1
#endif
185 952a328f blueswir1
186 a0c4cb4a bellard
void helper_ld_asi(int asi, int size, int sign)
187 e8af50a3 bellard
{
188 83469015 bellard
    uint32_t ret = 0;
189 e909ec2f blueswir1
    uint64_t tmp;
190 952a328f blueswir1
#ifdef DEBUG_MXCC
191 952a328f blueswir1
    uint32_t last_T0 = T0;
192 952a328f blueswir1
#endif
193 e80cfcfc bellard
194 e80cfcfc bellard
    switch (asi) {
195 6c36d3fa blueswir1
    case 2: /* SuperSparc MXCC registers */
196 952a328f blueswir1
        switch (T0) {
197 952a328f blueswir1
        case 0x01c00a00: /* MXCC control register */
198 952a328f blueswir1
            if (size == 8) {
199 952a328f blueswir1
                ret = env->mxccregs[3];
200 952a328f blueswir1
                T0 = env->mxccregs[3] >> 32;
201 952a328f blueswir1
            } else
202 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
203 952a328f blueswir1
            break;
204 952a328f blueswir1
        case 0x01c00a04: /* MXCC control register */
205 952a328f blueswir1
            if (size == 4)
206 952a328f blueswir1
                ret = env->mxccregs[3];
207 952a328f blueswir1
            else
208 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
209 952a328f blueswir1
            break;
210 952a328f blueswir1
        case 0x01c00f00: /* MBus port address register */
211 952a328f blueswir1
            if (size == 8) {
212 952a328f blueswir1
                ret = env->mxccregs[7];
213 952a328f blueswir1
                T0 = env->mxccregs[7] >> 32;
214 952a328f blueswir1
            } else
215 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
216 952a328f blueswir1
            break;
217 952a328f blueswir1
        default:
218 952a328f blueswir1
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
219 952a328f blueswir1
            break;
220 952a328f blueswir1
        }
221 952a328f blueswir1
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
222 952a328f blueswir1
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
223 952a328f blueswir1
#ifdef DEBUG_MXCC
224 952a328f blueswir1
        dump_mxcc(env);
225 952a328f blueswir1
#endif
226 6c36d3fa blueswir1
        break;
227 e8af50a3 bellard
    case 3: /* MMU probe */
228 0f8a249a blueswir1
        {
229 0f8a249a blueswir1
            int mmulev;
230 0f8a249a blueswir1
231 0f8a249a blueswir1
            mmulev = (T0 >> 8) & 15;
232 0f8a249a blueswir1
            if (mmulev > 4)
233 0f8a249a blueswir1
                ret = 0;
234 0f8a249a blueswir1
            else {
235 0f8a249a blueswir1
                ret = mmu_probe(env, T0, mmulev);
236 0f8a249a blueswir1
                //bswap32s(&ret);
237 0f8a249a blueswir1
            }
238 952a328f blueswir1
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
239 0f8a249a blueswir1
        }
240 0f8a249a blueswir1
        break;
241 e8af50a3 bellard
    case 4: /* read MMU regs */
242 0f8a249a blueswir1
        {
243 0f8a249a blueswir1
            int reg = (T0 >> 8) & 0xf;
244 3b46e624 ths
245 0f8a249a blueswir1
            ret = env->mmuregs[reg];
246 0f8a249a blueswir1
            if (reg == 3) /* Fault status cleared on read */
247 0f8a249a blueswir1
                env->mmuregs[reg] = 0;
248 952a328f blueswir1
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
249 0f8a249a blueswir1
        }
250 0f8a249a blueswir1
        break;
251 6c36d3fa blueswir1
    case 9: /* Supervisor code access */
252 6c36d3fa blueswir1
        switch(size) {
253 6c36d3fa blueswir1
        case 1:
254 6c36d3fa blueswir1
            ret = ldub_code(T0);
255 6c36d3fa blueswir1
            break;
256 6c36d3fa blueswir1
        case 2:
257 6c36d3fa blueswir1
            ret = lduw_code(T0 & ~1);
258 6c36d3fa blueswir1
            break;
259 6c36d3fa blueswir1
        default:
260 6c36d3fa blueswir1
        case 4:
261 6c36d3fa blueswir1
            ret = ldl_code(T0 & ~3);
262 6c36d3fa blueswir1
            break;
263 6c36d3fa blueswir1
        case 8:
264 e909ec2f blueswir1
            tmp = ldq_code(T0 & ~7);
265 e909ec2f blueswir1
            ret = tmp >> 32;
266 e909ec2f blueswir1
            T0 = tmp & 0xffffffff;
267 6c36d3fa blueswir1
            break;
268 6c36d3fa blueswir1
        }
269 6c36d3fa blueswir1
        break;
270 81ad8ba2 blueswir1
    case 0xa: /* User data access */
271 81ad8ba2 blueswir1
        switch(size) {
272 81ad8ba2 blueswir1
        case 1:
273 81ad8ba2 blueswir1
            ret = ldub_user(T0);
274 81ad8ba2 blueswir1
            break;
275 81ad8ba2 blueswir1
        case 2:
276 81ad8ba2 blueswir1
            ret = lduw_user(T0 & ~1);
277 81ad8ba2 blueswir1
            break;
278 81ad8ba2 blueswir1
        default:
279 81ad8ba2 blueswir1
        case 4:
280 81ad8ba2 blueswir1
            ret = ldl_user(T0 & ~3);
281 81ad8ba2 blueswir1
            break;
282 81ad8ba2 blueswir1
        case 8:
283 e909ec2f blueswir1
            tmp = ldq_user(T0 & ~7);
284 e909ec2f blueswir1
            ret = tmp >> 32;
285 e909ec2f blueswir1
            T0 = tmp & 0xffffffff;
286 81ad8ba2 blueswir1
            break;
287 81ad8ba2 blueswir1
        }
288 81ad8ba2 blueswir1
        break;
289 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
290 81ad8ba2 blueswir1
        switch(size) {
291 81ad8ba2 blueswir1
        case 1:
292 81ad8ba2 blueswir1
            ret = ldub_kernel(T0);
293 81ad8ba2 blueswir1
            break;
294 81ad8ba2 blueswir1
        case 2:
295 81ad8ba2 blueswir1
            ret = lduw_kernel(T0 & ~1);
296 81ad8ba2 blueswir1
            break;
297 81ad8ba2 blueswir1
        default:
298 81ad8ba2 blueswir1
        case 4:
299 81ad8ba2 blueswir1
            ret = ldl_kernel(T0 & ~3);
300 81ad8ba2 blueswir1
            break;
301 81ad8ba2 blueswir1
        case 8:
302 e909ec2f blueswir1
            tmp = ldq_kernel(T0 & ~7);
303 e909ec2f blueswir1
            ret = tmp >> 32;
304 e909ec2f blueswir1
            T0 = tmp & 0xffffffff;
305 81ad8ba2 blueswir1
            break;
306 81ad8ba2 blueswir1
        }
307 81ad8ba2 blueswir1
        break;
308 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
309 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
310 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
311 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
312 6c36d3fa blueswir1
        break;
313 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
314 02aab46a bellard
        switch(size) {
315 02aab46a bellard
        case 1:
316 02aab46a bellard
            ret = ldub_phys(T0);
317 02aab46a bellard
            break;
318 02aab46a bellard
        case 2:
319 02aab46a bellard
            ret = lduw_phys(T0 & ~1);
320 02aab46a bellard
            break;
321 02aab46a bellard
        default:
322 02aab46a bellard
        case 4:
323 02aab46a bellard
            ret = ldl_phys(T0 & ~3);
324 02aab46a bellard
            break;
325 9e61bde5 bellard
        case 8:
326 e909ec2f blueswir1
            tmp = ldq_phys(T0 & ~7);
327 e909ec2f blueswir1
            ret = tmp >> 32;
328 e909ec2f blueswir1
            T0 = tmp & 0xffffffff;
329 0f8a249a blueswir1
            break;
330 02aab46a bellard
        }
331 0f8a249a blueswir1
        break;
332 5dcb6b91 blueswir1
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
333 5dcb6b91 blueswir1
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
334 5dcb6b91 blueswir1
        switch(size) {
335 5dcb6b91 blueswir1
        case 1:
336 5dcb6b91 blueswir1
            ret = ldub_phys((target_phys_addr_t)T0
337 5dcb6b91 blueswir1
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
338 5dcb6b91 blueswir1
            break;
339 5dcb6b91 blueswir1
        case 2:
340 5dcb6b91 blueswir1
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
341 5dcb6b91 blueswir1
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
342 5dcb6b91 blueswir1
            break;
343 5dcb6b91 blueswir1
        default:
344 5dcb6b91 blueswir1
        case 4:
345 5dcb6b91 blueswir1
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
346 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
347 5dcb6b91 blueswir1
            break;
348 5dcb6b91 blueswir1
        case 8:
349 e909ec2f blueswir1
            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
350 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
351 e909ec2f blueswir1
            ret = tmp >> 32;
352 e909ec2f blueswir1
            T0 = tmp & 0xffffffff;
353 0f8a249a blueswir1
            break;
354 5dcb6b91 blueswir1
        }
355 0f8a249a blueswir1
        break;
356 5dcb6b91 blueswir1
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
357 e8af50a3 bellard
    default:
358 6c36d3fa blueswir1
        do_unassigned_access(T0, 0, 0, 1);
359 0f8a249a blueswir1
        ret = 0;
360 0f8a249a blueswir1
        break;
361 e8af50a3 bellard
    }
362 81ad8ba2 blueswir1
    if (sign) {
363 81ad8ba2 blueswir1
        switch(size) {
364 81ad8ba2 blueswir1
        case 1:
365 81ad8ba2 blueswir1
            T1 = (int8_t) ret;
366 e32664fb blueswir1
            break;
367 81ad8ba2 blueswir1
        case 2:
368 81ad8ba2 blueswir1
            T1 = (int16_t) ret;
369 e32664fb blueswir1
            break;
370 81ad8ba2 blueswir1
        default:
371 81ad8ba2 blueswir1
            T1 = ret;
372 81ad8ba2 blueswir1
            break;
373 81ad8ba2 blueswir1
        }
374 81ad8ba2 blueswir1
    }
375 81ad8ba2 blueswir1
    else
376 81ad8ba2 blueswir1
        T1 = ret;
377 e8af50a3 bellard
}
378 e8af50a3 bellard
379 81ad8ba2 blueswir1
void helper_st_asi(int asi, int size)
380 e8af50a3 bellard
{
381 e8af50a3 bellard
    switch(asi) {
382 6c36d3fa blueswir1
    case 2: /* SuperSparc MXCC registers */
383 952a328f blueswir1
        switch (T0) {
384 952a328f blueswir1
        case 0x01c00000: /* MXCC stream data register 0 */
385 952a328f blueswir1
            if (size == 8)
386 952a328f blueswir1
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
387 952a328f blueswir1
            else
388 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
389 952a328f blueswir1
            break;
390 952a328f blueswir1
        case 0x01c00008: /* MXCC stream data register 1 */
391 952a328f blueswir1
            if (size == 8)
392 952a328f blueswir1
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
393 952a328f blueswir1
            else
394 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
395 952a328f blueswir1
            break;
396 952a328f blueswir1
        case 0x01c00010: /* MXCC stream data register 2 */
397 952a328f blueswir1
            if (size == 8)
398 952a328f blueswir1
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
399 952a328f blueswir1
            else
400 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
401 952a328f blueswir1
            break;
402 952a328f blueswir1
        case 0x01c00018: /* MXCC stream data register 3 */
403 952a328f blueswir1
            if (size == 8)
404 952a328f blueswir1
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
405 952a328f blueswir1
            else
406 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
407 952a328f blueswir1
            break;
408 952a328f blueswir1
        case 0x01c00100: /* MXCC stream source */
409 952a328f blueswir1
            if (size == 8)
410 952a328f blueswir1
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
411 952a328f blueswir1
            else
412 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
413 952a328f blueswir1
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
414 952a328f blueswir1
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
415 952a328f blueswir1
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
416 952a328f blueswir1
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
417 952a328f blueswir1
            break;
418 952a328f blueswir1
        case 0x01c00200: /* MXCC stream destination */
419 952a328f blueswir1
            if (size == 8)
420 952a328f blueswir1
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
421 952a328f blueswir1
            else
422 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
423 952a328f blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
424 952a328f blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
425 952a328f blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
426 952a328f blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
427 952a328f blueswir1
            break;
428 952a328f blueswir1
        case 0x01c00a00: /* MXCC control register */
429 952a328f blueswir1
            if (size == 8)
430 952a328f blueswir1
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
431 952a328f blueswir1
            else
432 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
433 952a328f blueswir1
            break;
434 952a328f blueswir1
        case 0x01c00a04: /* MXCC control register */
435 952a328f blueswir1
            if (size == 4)
436 952a328f blueswir1
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000) | T1;
437 952a328f blueswir1
            else
438 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
439 952a328f blueswir1
            break;
440 952a328f blueswir1
        case 0x01c00e00: /* MXCC error register  */
441 952a328f blueswir1
            if (size == 8)
442 952a328f blueswir1
                env->mxccregs[6] = ((uint64_t)T1 << 32) | T2;
443 952a328f blueswir1
            else
444 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
445 952a328f blueswir1
            if (env->mxccregs[6] == 0xffffffffffffffffULL) {
446 952a328f blueswir1
                // this is probably a reset
447 952a328f blueswir1
            }
448 952a328f blueswir1
            break;
449 952a328f blueswir1
        case 0x01c00f00: /* MBus port address register */
450 952a328f blueswir1
            if (size == 8)
451 952a328f blueswir1
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
452 952a328f blueswir1
            else
453 952a328f blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
454 952a328f blueswir1
            break;
455 952a328f blueswir1
        default:
456 952a328f blueswir1
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
457 952a328f blueswir1
            break;
458 952a328f blueswir1
        }
459 952a328f blueswir1
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
460 952a328f blueswir1
#ifdef DEBUG_MXCC
461 952a328f blueswir1
        dump_mxcc(env);
462 952a328f blueswir1
#endif
463 6c36d3fa blueswir1
        break;
464 e8af50a3 bellard
    case 3: /* MMU flush */
465 0f8a249a blueswir1
        {
466 0f8a249a blueswir1
            int mmulev;
467 e80cfcfc bellard
468 0f8a249a blueswir1
            mmulev = (T0 >> 8) & 15;
469 952a328f blueswir1
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
470 0f8a249a blueswir1
            switch (mmulev) {
471 0f8a249a blueswir1
            case 0: // flush page
472 0f8a249a blueswir1
                tlb_flush_page(env, T0 & 0xfffff000);
473 0f8a249a blueswir1
                break;
474 0f8a249a blueswir1
            case 1: // flush segment (256k)
475 0f8a249a blueswir1
            case 2: // flush region (16M)
476 0f8a249a blueswir1
            case 3: // flush context (4G)
477 0f8a249a blueswir1
            case 4: // flush entire
478 0f8a249a blueswir1
                tlb_flush(env, 1);
479 0f8a249a blueswir1
                break;
480 0f8a249a blueswir1
            default:
481 0f8a249a blueswir1
                break;
482 0f8a249a blueswir1
            }
483 55754d9e bellard
#ifdef DEBUG_MMU
484 0f8a249a blueswir1
            dump_mmu(env);
485 55754d9e bellard
#endif
486 0f8a249a blueswir1
            return;
487 0f8a249a blueswir1
        }
488 e8af50a3 bellard
    case 4: /* write MMU regs */
489 0f8a249a blueswir1
        {
490 0f8a249a blueswir1
            int reg = (T0 >> 8) & 0xf;
491 0f8a249a blueswir1
            uint32_t oldreg;
492 3b46e624 ths
493 0f8a249a blueswir1
            oldreg = env->mmuregs[reg];
494 55754d9e bellard
            switch(reg) {
495 55754d9e bellard
            case 0:
496 40ce0a9a blueswir1
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | MMU_BM);
497 40ce0a9a blueswir1
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | MMU_BM);
498 0f8a249a blueswir1
                // Mappings generated during no-fault mode or MMU
499 0f8a249a blueswir1
                // disabled mode are invalid in normal mode
500 6f7e9aec bellard
                if (oldreg != env->mmuregs[reg])
501 55754d9e bellard
                    tlb_flush(env, 1);
502 55754d9e bellard
                break;
503 55754d9e bellard
            case 2:
504 0f8a249a blueswir1
                env->mmuregs[reg] = T1;
505 55754d9e bellard
                if (oldreg != env->mmuregs[reg]) {
506 55754d9e bellard
                    /* we flush when the MMU context changes because
507 55754d9e bellard
                       QEMU has no MMU context support */
508 55754d9e bellard
                    tlb_flush(env, 1);
509 55754d9e bellard
                }
510 55754d9e bellard
                break;
511 55754d9e bellard
            case 3:
512 55754d9e bellard
            case 4:
513 55754d9e bellard
                break;
514 55754d9e bellard
            default:
515 0f8a249a blueswir1
                env->mmuregs[reg] = T1;
516 55754d9e bellard
                break;
517 55754d9e bellard
            }
518 55754d9e bellard
            if (oldreg != env->mmuregs[reg]) {
519 952a328f blueswir1
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
520 55754d9e bellard
            }
521 952a328f blueswir1
#ifdef DEBUG_MMU
522 0f8a249a blueswir1
            dump_mmu(env);
523 55754d9e bellard
#endif
524 0f8a249a blueswir1
            return;
525 0f8a249a blueswir1
        }
526 81ad8ba2 blueswir1
    case 0xa: /* User data access */
527 81ad8ba2 blueswir1
        switch(size) {
528 81ad8ba2 blueswir1
        case 1:
529 81ad8ba2 blueswir1
            stb_user(T0, T1);
530 81ad8ba2 blueswir1
            break;
531 81ad8ba2 blueswir1
        case 2:
532 81ad8ba2 blueswir1
            stw_user(T0 & ~1, T1);
533 81ad8ba2 blueswir1
            break;
534 81ad8ba2 blueswir1
        default:
535 81ad8ba2 blueswir1
        case 4:
536 81ad8ba2 blueswir1
            stl_user(T0 & ~3, T1);
537 81ad8ba2 blueswir1
            break;
538 81ad8ba2 blueswir1
        case 8:
539 e909ec2f blueswir1
            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
540 81ad8ba2 blueswir1
            break;
541 81ad8ba2 blueswir1
        }
542 81ad8ba2 blueswir1
        break;
543 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
544 81ad8ba2 blueswir1
        switch(size) {
545 81ad8ba2 blueswir1
        case 1:
546 81ad8ba2 blueswir1
            stb_kernel(T0, T1);
547 81ad8ba2 blueswir1
            break;
548 81ad8ba2 blueswir1
        case 2:
549 81ad8ba2 blueswir1
            stw_kernel(T0 & ~1, T1);
550 81ad8ba2 blueswir1
            break;
551 81ad8ba2 blueswir1
        default:
552 81ad8ba2 blueswir1
        case 4:
553 81ad8ba2 blueswir1
            stl_kernel(T0 & ~3, T1);
554 81ad8ba2 blueswir1
            break;
555 81ad8ba2 blueswir1
        case 8:
556 e909ec2f blueswir1
            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
557 81ad8ba2 blueswir1
            break;
558 81ad8ba2 blueswir1
        }
559 81ad8ba2 blueswir1
        break;
560 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
561 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
562 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
563 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
564 6c36d3fa blueswir1
    case 0x10: /* I/D-cache flush page */
565 6c36d3fa blueswir1
    case 0x11: /* I/D-cache flush segment */
566 6c36d3fa blueswir1
    case 0x12: /* I/D-cache flush region */
567 6c36d3fa blueswir1
    case 0x13: /* I/D-cache flush context */
568 6c36d3fa blueswir1
    case 0x14: /* I/D-cache flush user */
569 6c36d3fa blueswir1
        break;
570 e80cfcfc bellard
    case 0x17: /* Block copy, sta access */
571 0f8a249a blueswir1
        {
572 0f8a249a blueswir1
            // value (T1) = src
573 0f8a249a blueswir1
            // address (T0) = dst
574 0f8a249a blueswir1
            // copy 32 bytes
575 6c36d3fa blueswir1
            unsigned int i;
576 6c36d3fa blueswir1
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
577 3b46e624 ths
578 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
579 6c36d3fa blueswir1
                temp = ldl_kernel(src);
580 6c36d3fa blueswir1
                stl_kernel(dst, temp);
581 6c36d3fa blueswir1
            }
582 0f8a249a blueswir1
        }
583 0f8a249a blueswir1
        return;
584 e80cfcfc bellard
    case 0x1f: /* Block fill, stda access */
585 0f8a249a blueswir1
        {
586 0f8a249a blueswir1
            // value (T1, T2)
587 0f8a249a blueswir1
            // address (T0) = dst
588 0f8a249a blueswir1
            // fill 32 bytes
589 6c36d3fa blueswir1
            unsigned int i;
590 6c36d3fa blueswir1
            uint32_t dst = T0 & 7;
591 6c36d3fa blueswir1
            uint64_t val;
592 e80cfcfc bellard
593 6c36d3fa blueswir1
            val = (((uint64_t)T1) << 32) | T2;
594 6c36d3fa blueswir1
595 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 8, dst += 8)
596 6c36d3fa blueswir1
                stq_kernel(dst, val);
597 0f8a249a blueswir1
        }
598 0f8a249a blueswir1
        return;
599 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
600 0f8a249a blueswir1
        {
601 02aab46a bellard
            switch(size) {
602 02aab46a bellard
            case 1:
603 02aab46a bellard
                stb_phys(T0, T1);
604 02aab46a bellard
                break;
605 02aab46a bellard
            case 2:
606 02aab46a bellard
                stw_phys(T0 & ~1, T1);
607 02aab46a bellard
                break;
608 02aab46a bellard
            case 4:
609 02aab46a bellard
            default:
610 02aab46a bellard
                stl_phys(T0 & ~3, T1);
611 02aab46a bellard
                break;
612 9e61bde5 bellard
            case 8:
613 e909ec2f blueswir1
                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
614 9e61bde5 bellard
                break;
615 02aab46a bellard
            }
616 0f8a249a blueswir1
        }
617 0f8a249a blueswir1
        return;
618 5dcb6b91 blueswir1
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
619 5dcb6b91 blueswir1
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
620 0f8a249a blueswir1
        {
621 5dcb6b91 blueswir1
            switch(size) {
622 5dcb6b91 blueswir1
            case 1:
623 5dcb6b91 blueswir1
                stb_phys((target_phys_addr_t)T0
624 5dcb6b91 blueswir1
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
625 5dcb6b91 blueswir1
                break;
626 5dcb6b91 blueswir1
            case 2:
627 5dcb6b91 blueswir1
                stw_phys((target_phys_addr_t)(T0 & ~1)
628 5dcb6b91 blueswir1
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
629 5dcb6b91 blueswir1
                break;
630 5dcb6b91 blueswir1
            case 4:
631 5dcb6b91 blueswir1
            default:
632 5dcb6b91 blueswir1
                stl_phys((target_phys_addr_t)(T0 & ~3)
633 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
634 5dcb6b91 blueswir1
                break;
635 5dcb6b91 blueswir1
            case 8:
636 e909ec2f blueswir1
                stq_phys((target_phys_addr_t)(T0 & ~7)
637 e909ec2f blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32),
638 e909ec2f blueswir1
                         ((uint64_t)T1 << 32) | T2);
639 5dcb6b91 blueswir1
                break;
640 5dcb6b91 blueswir1
            }
641 0f8a249a blueswir1
        }
642 0f8a249a blueswir1
        return;
643 6c36d3fa blueswir1
    case 0x31: /* Ross RT620 I-cache flush */
644 6c36d3fa blueswir1
    case 0x36: /* I-cache flash clear */
645 6c36d3fa blueswir1
    case 0x37: /* D-cache flash clear */
646 6c36d3fa blueswir1
        break;
647 6c36d3fa blueswir1
    case 9: /* Supervisor code access, XXX */
648 5dcb6b91 blueswir1
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
649 e8af50a3 bellard
    default:
650 6c36d3fa blueswir1
        do_unassigned_access(T0, 1, 0, 1);
651 0f8a249a blueswir1
        return;
652 e8af50a3 bellard
    }
653 e8af50a3 bellard
}
654 e8af50a3 bellard
655 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
656 81ad8ba2 blueswir1
#else /* TARGET_SPARC64 */
657 81ad8ba2 blueswir1
658 81ad8ba2 blueswir1
#ifdef CONFIG_USER_ONLY
659 81ad8ba2 blueswir1
void helper_ld_asi(int asi, int size, int sign)
660 81ad8ba2 blueswir1
{
661 81ad8ba2 blueswir1
    uint64_t ret = 0;
662 81ad8ba2 blueswir1
663 81ad8ba2 blueswir1
    if (asi < 0x80)
664 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
665 81ad8ba2 blueswir1
666 81ad8ba2 blueswir1
    switch (asi) {
667 81ad8ba2 blueswir1
    case 0x80: // Primary
668 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault
669 81ad8ba2 blueswir1
    case 0x88: // Primary LE
670 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
671 81ad8ba2 blueswir1
        {
672 81ad8ba2 blueswir1
            switch(size) {
673 81ad8ba2 blueswir1
            case 1:
674 81ad8ba2 blueswir1
                ret = ldub_raw(T0);
675 81ad8ba2 blueswir1
                break;
676 81ad8ba2 blueswir1
            case 2:
677 81ad8ba2 blueswir1
                ret = lduw_raw(T0 & ~1);
678 81ad8ba2 blueswir1
                break;
679 81ad8ba2 blueswir1
            case 4:
680 81ad8ba2 blueswir1
                ret = ldl_raw(T0 & ~3);
681 81ad8ba2 blueswir1
                break;
682 81ad8ba2 blueswir1
            default:
683 81ad8ba2 blueswir1
            case 8:
684 81ad8ba2 blueswir1
                ret = ldq_raw(T0 & ~7);
685 81ad8ba2 blueswir1
                break;
686 81ad8ba2 blueswir1
            }
687 81ad8ba2 blueswir1
        }
688 81ad8ba2 blueswir1
        break;
689 81ad8ba2 blueswir1
    case 0x81: // Secondary
690 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault
691 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
692 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
693 81ad8ba2 blueswir1
        // XXX
694 81ad8ba2 blueswir1
        break;
695 81ad8ba2 blueswir1
    default:
696 81ad8ba2 blueswir1
        break;
697 81ad8ba2 blueswir1
    }
698 81ad8ba2 blueswir1
699 81ad8ba2 blueswir1
    /* Convert from little endian */
700 81ad8ba2 blueswir1
    switch (asi) {
701 81ad8ba2 blueswir1
    case 0x88: // Primary LE
702 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
703 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
704 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
705 81ad8ba2 blueswir1
        switch(size) {
706 81ad8ba2 blueswir1
        case 2:
707 81ad8ba2 blueswir1
            ret = bswap16(ret);
708 e32664fb blueswir1
            break;
709 81ad8ba2 blueswir1
        case 4:
710 81ad8ba2 blueswir1
            ret = bswap32(ret);
711 e32664fb blueswir1
            break;
712 81ad8ba2 blueswir1
        case 8:
713 81ad8ba2 blueswir1
            ret = bswap64(ret);
714 e32664fb blueswir1
            break;
715 81ad8ba2 blueswir1
        default:
716 81ad8ba2 blueswir1
            break;
717 81ad8ba2 blueswir1
        }
718 81ad8ba2 blueswir1
    default:
719 81ad8ba2 blueswir1
        break;
720 81ad8ba2 blueswir1
    }
721 81ad8ba2 blueswir1
722 81ad8ba2 blueswir1
    /* Convert to signed number */
723 81ad8ba2 blueswir1
    if (sign) {
724 81ad8ba2 blueswir1
        switch(size) {
725 81ad8ba2 blueswir1
        case 1:
726 81ad8ba2 blueswir1
            ret = (int8_t) ret;
727 e32664fb blueswir1
            break;
728 81ad8ba2 blueswir1
        case 2:
729 81ad8ba2 blueswir1
            ret = (int16_t) ret;
730 e32664fb blueswir1
            break;
731 81ad8ba2 blueswir1
        case 4:
732 81ad8ba2 blueswir1
            ret = (int32_t) ret;
733 e32664fb blueswir1
            break;
734 81ad8ba2 blueswir1
        default:
735 81ad8ba2 blueswir1
            break;
736 81ad8ba2 blueswir1
        }
737 81ad8ba2 blueswir1
    }
738 81ad8ba2 blueswir1
    T1 = ret;
739 81ad8ba2 blueswir1
}
740 81ad8ba2 blueswir1
741 81ad8ba2 blueswir1
void helper_st_asi(int asi, int size)
742 81ad8ba2 blueswir1
{
743 81ad8ba2 blueswir1
    if (asi < 0x80)
744 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
745 81ad8ba2 blueswir1
746 81ad8ba2 blueswir1
    /* Convert to little endian */
747 81ad8ba2 blueswir1
    switch (asi) {
748 81ad8ba2 blueswir1
    case 0x88: // Primary LE
749 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
750 81ad8ba2 blueswir1
        switch(size) {
751 81ad8ba2 blueswir1
        case 2:
752 81ad8ba2 blueswir1
            T0 = bswap16(T0);
753 e32664fb blueswir1
            break;
754 81ad8ba2 blueswir1
        case 4:
755 81ad8ba2 blueswir1
            T0 = bswap32(T0);
756 e32664fb blueswir1
            break;
757 81ad8ba2 blueswir1
        case 8:
758 81ad8ba2 blueswir1
            T0 = bswap64(T0);
759 e32664fb blueswir1
            break;
760 81ad8ba2 blueswir1
        default:
761 81ad8ba2 blueswir1
            break;
762 81ad8ba2 blueswir1
        }
763 81ad8ba2 blueswir1
    default:
764 81ad8ba2 blueswir1
        break;
765 81ad8ba2 blueswir1
    }
766 81ad8ba2 blueswir1
767 81ad8ba2 blueswir1
    switch(asi) {
768 81ad8ba2 blueswir1
    case 0x80: // Primary
769 81ad8ba2 blueswir1
    case 0x88: // Primary LE
770 81ad8ba2 blueswir1
        {
771 81ad8ba2 blueswir1
            switch(size) {
772 81ad8ba2 blueswir1
            case 1:
773 81ad8ba2 blueswir1
                stb_raw(T0, T1);
774 81ad8ba2 blueswir1
                break;
775 81ad8ba2 blueswir1
            case 2:
776 81ad8ba2 blueswir1
                stw_raw(T0 & ~1, T1);
777 81ad8ba2 blueswir1
                break;
778 81ad8ba2 blueswir1
            case 4:
779 81ad8ba2 blueswir1
                stl_raw(T0 & ~3, T1);
780 81ad8ba2 blueswir1
                break;
781 81ad8ba2 blueswir1
            case 8:
782 81ad8ba2 blueswir1
            default:
783 81ad8ba2 blueswir1
                stq_raw(T0 & ~7, T1);
784 81ad8ba2 blueswir1
                break;
785 81ad8ba2 blueswir1
            }
786 81ad8ba2 blueswir1
        }
787 81ad8ba2 blueswir1
        break;
788 81ad8ba2 blueswir1
    case 0x81: // Secondary
789 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
790 81ad8ba2 blueswir1
        // XXX
791 81ad8ba2 blueswir1
        return;
792 81ad8ba2 blueswir1
793 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault, RO
794 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault, RO
795 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE, RO
796 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE, RO
797 81ad8ba2 blueswir1
    default:
798 81ad8ba2 blueswir1
        do_unassigned_access(T0, 1, 0, 1);
799 81ad8ba2 blueswir1
        return;
800 81ad8ba2 blueswir1
    }
801 81ad8ba2 blueswir1
}
802 81ad8ba2 blueswir1
803 81ad8ba2 blueswir1
#else /* CONFIG_USER_ONLY */
804 3475187d bellard
805 3475187d bellard
void helper_ld_asi(int asi, int size, int sign)
806 3475187d bellard
{
807 83469015 bellard
    uint64_t ret = 0;
808 3475187d bellard
809 6f27aba6 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
810 20b749f6 blueswir1
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
811 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
812 3475187d bellard
813 3475187d bellard
    switch (asi) {
814 81ad8ba2 blueswir1
    case 0x10: // As if user primary
815 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
816 81ad8ba2 blueswir1
    case 0x80: // Primary
817 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault
818 81ad8ba2 blueswir1
    case 0x88: // Primary LE
819 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
820 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
821 6f27aba6 blueswir1
            if (env->hpstate & HS_PRIV) {
822 6f27aba6 blueswir1
                switch(size) {
823 6f27aba6 blueswir1
                case 1:
824 6f27aba6 blueswir1
                    ret = ldub_hypv(T0);
825 6f27aba6 blueswir1
                    break;
826 6f27aba6 blueswir1
                case 2:
827 6f27aba6 blueswir1
                    ret = lduw_hypv(T0 & ~1);
828 6f27aba6 blueswir1
                    break;
829 6f27aba6 blueswir1
                case 4:
830 6f27aba6 blueswir1
                    ret = ldl_hypv(T0 & ~3);
831 6f27aba6 blueswir1
                    break;
832 6f27aba6 blueswir1
                default:
833 6f27aba6 blueswir1
                case 8:
834 6f27aba6 blueswir1
                    ret = ldq_hypv(T0 & ~7);
835 6f27aba6 blueswir1
                    break;
836 6f27aba6 blueswir1
                }
837 6f27aba6 blueswir1
            } else {
838 6f27aba6 blueswir1
                switch(size) {
839 6f27aba6 blueswir1
                case 1:
840 6f27aba6 blueswir1
                    ret = ldub_kernel(T0);
841 6f27aba6 blueswir1
                    break;
842 6f27aba6 blueswir1
                case 2:
843 6f27aba6 blueswir1
                    ret = lduw_kernel(T0 & ~1);
844 6f27aba6 blueswir1
                    break;
845 6f27aba6 blueswir1
                case 4:
846 6f27aba6 blueswir1
                    ret = ldl_kernel(T0 & ~3);
847 6f27aba6 blueswir1
                    break;
848 6f27aba6 blueswir1
                default:
849 6f27aba6 blueswir1
                case 8:
850 6f27aba6 blueswir1
                    ret = ldq_kernel(T0 & ~7);
851 6f27aba6 blueswir1
                    break;
852 6f27aba6 blueswir1
                }
853 81ad8ba2 blueswir1
            }
854 81ad8ba2 blueswir1
        } else {
855 81ad8ba2 blueswir1
            switch(size) {
856 81ad8ba2 blueswir1
            case 1:
857 81ad8ba2 blueswir1
                ret = ldub_user(T0);
858 81ad8ba2 blueswir1
                break;
859 81ad8ba2 blueswir1
            case 2:
860 81ad8ba2 blueswir1
                ret = lduw_user(T0 & ~1);
861 81ad8ba2 blueswir1
                break;
862 81ad8ba2 blueswir1
            case 4:
863 81ad8ba2 blueswir1
                ret = ldl_user(T0 & ~3);
864 81ad8ba2 blueswir1
                break;
865 81ad8ba2 blueswir1
            default:
866 81ad8ba2 blueswir1
            case 8:
867 81ad8ba2 blueswir1
                ret = ldq_user(T0 & ~7);
868 81ad8ba2 blueswir1
                break;
869 81ad8ba2 blueswir1
            }
870 81ad8ba2 blueswir1
        }
871 81ad8ba2 blueswir1
        break;
872 3475187d bellard
    case 0x14: // Bypass
873 3475187d bellard
    case 0x15: // Bypass, non-cacheable
874 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
875 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
876 0f8a249a blueswir1
        {
877 02aab46a bellard
            switch(size) {
878 02aab46a bellard
            case 1:
879 02aab46a bellard
                ret = ldub_phys(T0);
880 02aab46a bellard
                break;
881 02aab46a bellard
            case 2:
882 02aab46a bellard
                ret = lduw_phys(T0 & ~1);
883 02aab46a bellard
                break;
884 02aab46a bellard
            case 4:
885 02aab46a bellard
                ret = ldl_phys(T0 & ~3);
886 02aab46a bellard
                break;
887 02aab46a bellard
            default:
888 02aab46a bellard
            case 8:
889 02aab46a bellard
                ret = ldq_phys(T0 & ~7);
890 02aab46a bellard
                break;
891 02aab46a bellard
            }
892 0f8a249a blueswir1
            break;
893 0f8a249a blueswir1
        }
894 83469015 bellard
    case 0x04: // Nucleus
895 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
896 83469015 bellard
    case 0x11: // As if user secondary
897 83469015 bellard
    case 0x19: // As if user secondary LE
898 83469015 bellard
    case 0x24: // Nucleus quad LDD 128 bit atomic
899 83469015 bellard
    case 0x2c: // Nucleus quad LDD 128 bit atomic
900 83469015 bellard
    case 0x4a: // UPA config
901 81ad8ba2 blueswir1
    case 0x81: // Secondary
902 83469015 bellard
    case 0x83: // Secondary no-fault
903 83469015 bellard
    case 0x89: // Secondary LE
904 83469015 bellard
    case 0x8b: // Secondary no-fault LE
905 0f8a249a blueswir1
        // XXX
906 0f8a249a blueswir1
        break;
907 3475187d bellard
    case 0x45: // LSU
908 0f8a249a blueswir1
        ret = env->lsu;
909 0f8a249a blueswir1
        break;
910 3475187d bellard
    case 0x50: // I-MMU regs
911 0f8a249a blueswir1
        {
912 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
913 3475187d bellard
914 0f8a249a blueswir1
            ret = env->immuregs[reg];
915 0f8a249a blueswir1
            break;
916 0f8a249a blueswir1
        }
917 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer
918 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer
919 3475187d bellard
    case 0x55: // I-MMU data access
920 0f8a249a blueswir1
        // XXX
921 0f8a249a blueswir1
        break;
922 83469015 bellard
    case 0x56: // I-MMU tag read
923 0f8a249a blueswir1
        {
924 0f8a249a blueswir1
            unsigned int i;
925 0f8a249a blueswir1
926 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
927 0f8a249a blueswir1
                // Valid, ctx match, vaddr match
928 0f8a249a blueswir1
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
929 0f8a249a blueswir1
                    env->itlb_tag[i] == T0) {
930 0f8a249a blueswir1
                    ret = env->itlb_tag[i];
931 0f8a249a blueswir1
                    break;
932 0f8a249a blueswir1
                }
933 0f8a249a blueswir1
            }
934 0f8a249a blueswir1
            break;
935 0f8a249a blueswir1
        }
936 3475187d bellard
    case 0x58: // D-MMU regs
937 0f8a249a blueswir1
        {
938 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
939 3475187d bellard
940 0f8a249a blueswir1
            ret = env->dmmuregs[reg];
941 0f8a249a blueswir1
            break;
942 0f8a249a blueswir1
        }
943 83469015 bellard
    case 0x5e: // D-MMU tag read
944 0f8a249a blueswir1
        {
945 0f8a249a blueswir1
            unsigned int i;
946 0f8a249a blueswir1
947 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
948 0f8a249a blueswir1
                // Valid, ctx match, vaddr match
949 0f8a249a blueswir1
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
950 0f8a249a blueswir1
                    env->dtlb_tag[i] == T0) {
951 0f8a249a blueswir1
                    ret = env->dtlb_tag[i];
952 0f8a249a blueswir1
                    break;
953 0f8a249a blueswir1
                }
954 0f8a249a blueswir1
            }
955 0f8a249a blueswir1
            break;
956 0f8a249a blueswir1
        }
957 3475187d bellard
    case 0x59: // D-MMU 8k TSB pointer
958 3475187d bellard
    case 0x5a: // D-MMU 64k TSB pointer
959 3475187d bellard
    case 0x5b: // D-MMU data pointer
960 3475187d bellard
    case 0x5d: // D-MMU data access
961 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
962 83469015 bellard
    case 0x49: // Interrupt data receive
963 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
964 0f8a249a blueswir1
        // XXX
965 0f8a249a blueswir1
        break;
966 3475187d bellard
    case 0x54: // I-MMU data in, WO
967 3475187d bellard
    case 0x57: // I-MMU demap, WO
968 3475187d bellard
    case 0x5c: // D-MMU data in, WO
969 3475187d bellard
    case 0x5f: // D-MMU demap, WO
970 83469015 bellard
    case 0x77: // Interrupt vector, WO
971 3475187d bellard
    default:
972 6c36d3fa blueswir1
        do_unassigned_access(T0, 0, 0, 1);
973 0f8a249a blueswir1
        ret = 0;
974 0f8a249a blueswir1
        break;
975 3475187d bellard
    }
976 81ad8ba2 blueswir1
977 81ad8ba2 blueswir1
    /* Convert from little endian */
978 81ad8ba2 blueswir1
    switch (asi) {
979 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
980 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
981 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
982 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
983 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
984 81ad8ba2 blueswir1
    case 0x88: // Primary LE
985 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
986 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
987 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
988 81ad8ba2 blueswir1
        switch(size) {
989 81ad8ba2 blueswir1
        case 2:
990 81ad8ba2 blueswir1
            ret = bswap16(ret);
991 e32664fb blueswir1
            break;
992 81ad8ba2 blueswir1
        case 4:
993 81ad8ba2 blueswir1
            ret = bswap32(ret);
994 e32664fb blueswir1
            break;
995 81ad8ba2 blueswir1
        case 8:
996 81ad8ba2 blueswir1
            ret = bswap64(ret);
997 e32664fb blueswir1
            break;
998 81ad8ba2 blueswir1
        default:
999 81ad8ba2 blueswir1
            break;
1000 81ad8ba2 blueswir1
        }
1001 81ad8ba2 blueswir1
    default:
1002 81ad8ba2 blueswir1
        break;
1003 81ad8ba2 blueswir1
    }
1004 81ad8ba2 blueswir1
1005 81ad8ba2 blueswir1
    /* Convert to signed number */
1006 81ad8ba2 blueswir1
    if (sign) {
1007 81ad8ba2 blueswir1
        switch(size) {
1008 81ad8ba2 blueswir1
        case 1:
1009 81ad8ba2 blueswir1
            ret = (int8_t) ret;
1010 e32664fb blueswir1
            break;
1011 81ad8ba2 blueswir1
        case 2:
1012 81ad8ba2 blueswir1
            ret = (int16_t) ret;
1013 e32664fb blueswir1
            break;
1014 81ad8ba2 blueswir1
        case 4:
1015 81ad8ba2 blueswir1
            ret = (int32_t) ret;
1016 e32664fb blueswir1
            break;
1017 81ad8ba2 blueswir1
        default:
1018 81ad8ba2 blueswir1
            break;
1019 81ad8ba2 blueswir1
        }
1020 81ad8ba2 blueswir1
    }
1021 3475187d bellard
    T1 = ret;
1022 3475187d bellard
}
1023 3475187d bellard
1024 81ad8ba2 blueswir1
void helper_st_asi(int asi, int size)
1025 3475187d bellard
{
1026 6f27aba6 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1027 20b749f6 blueswir1
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1028 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
1029 3475187d bellard
1030 81ad8ba2 blueswir1
    /* Convert to little endian */
1031 81ad8ba2 blueswir1
    switch (asi) {
1032 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
1033 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
1034 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
1035 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
1036 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
1037 81ad8ba2 blueswir1
    case 0x88: // Primary LE
1038 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
1039 81ad8ba2 blueswir1
        switch(size) {
1040 81ad8ba2 blueswir1
        case 2:
1041 81ad8ba2 blueswir1
            T0 = bswap16(T0);
1042 e32664fb blueswir1
            break;
1043 81ad8ba2 blueswir1
        case 4:
1044 81ad8ba2 blueswir1
            T0 = bswap32(T0);
1045 e32664fb blueswir1
            break;
1046 81ad8ba2 blueswir1
        case 8:
1047 81ad8ba2 blueswir1
            T0 = bswap64(T0);
1048 e32664fb blueswir1
            break;
1049 81ad8ba2 blueswir1
        default:
1050 81ad8ba2 blueswir1
            break;
1051 81ad8ba2 blueswir1
        }
1052 81ad8ba2 blueswir1
    default:
1053 81ad8ba2 blueswir1
        break;
1054 81ad8ba2 blueswir1
    }
1055 81ad8ba2 blueswir1
1056 3475187d bellard
    switch(asi) {
1057 81ad8ba2 blueswir1
    case 0x10: // As if user primary
1058 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
1059 81ad8ba2 blueswir1
    case 0x80: // Primary
1060 81ad8ba2 blueswir1
    case 0x88: // Primary LE
1061 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1062 6f27aba6 blueswir1
            if (env->hpstate & HS_PRIV) {
1063 6f27aba6 blueswir1
                switch(size) {
1064 6f27aba6 blueswir1
                case 1:
1065 6f27aba6 blueswir1
                    stb_hypv(T0, T1);
1066 6f27aba6 blueswir1
                    break;
1067 6f27aba6 blueswir1
                case 2:
1068 6f27aba6 blueswir1
                    stw_hypv(T0 & ~1, T1);
1069 6f27aba6 blueswir1
                    break;
1070 6f27aba6 blueswir1
                case 4:
1071 6f27aba6 blueswir1
                    stl_hypv(T0 & ~3, T1);
1072 6f27aba6 blueswir1
                    break;
1073 6f27aba6 blueswir1
                case 8:
1074 6f27aba6 blueswir1
                default:
1075 6f27aba6 blueswir1
                    stq_hypv(T0 & ~7, T1);
1076 6f27aba6 blueswir1
                    break;
1077 6f27aba6 blueswir1
                }
1078 6f27aba6 blueswir1
            } else {
1079 6f27aba6 blueswir1
                switch(size) {
1080 6f27aba6 blueswir1
                case 1:
1081 6f27aba6 blueswir1
                    stb_kernel(T0, T1);
1082 6f27aba6 blueswir1
                    break;
1083 6f27aba6 blueswir1
                case 2:
1084 6f27aba6 blueswir1
                    stw_kernel(T0 & ~1, T1);
1085 6f27aba6 blueswir1
                    break;
1086 6f27aba6 blueswir1
                case 4:
1087 6f27aba6 blueswir1
                    stl_kernel(T0 & ~3, T1);
1088 6f27aba6 blueswir1
                    break;
1089 6f27aba6 blueswir1
                case 8:
1090 6f27aba6 blueswir1
                default:
1091 6f27aba6 blueswir1
                    stq_kernel(T0 & ~7, T1);
1092 6f27aba6 blueswir1
                    break;
1093 6f27aba6 blueswir1
                }
1094 81ad8ba2 blueswir1
            }
1095 81ad8ba2 blueswir1
        } else {
1096 81ad8ba2 blueswir1
            switch(size) {
1097 81ad8ba2 blueswir1
            case 1:
1098 81ad8ba2 blueswir1
                stb_user(T0, T1);
1099 81ad8ba2 blueswir1
                break;
1100 81ad8ba2 blueswir1
            case 2:
1101 81ad8ba2 blueswir1
                stw_user(T0 & ~1, T1);
1102 81ad8ba2 blueswir1
                break;
1103 81ad8ba2 blueswir1
            case 4:
1104 81ad8ba2 blueswir1
                stl_user(T0 & ~3, T1);
1105 81ad8ba2 blueswir1
                break;
1106 81ad8ba2 blueswir1
            case 8:
1107 81ad8ba2 blueswir1
            default:
1108 81ad8ba2 blueswir1
                stq_user(T0 & ~7, T1);
1109 81ad8ba2 blueswir1
                break;
1110 81ad8ba2 blueswir1
            }
1111 81ad8ba2 blueswir1
        }
1112 81ad8ba2 blueswir1
        break;
1113 3475187d bellard
    case 0x14: // Bypass
1114 3475187d bellard
    case 0x15: // Bypass, non-cacheable
1115 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
1116 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
1117 0f8a249a blueswir1
        {
1118 02aab46a bellard
            switch(size) {
1119 02aab46a bellard
            case 1:
1120 02aab46a bellard
                stb_phys(T0, T1);
1121 02aab46a bellard
                break;
1122 02aab46a bellard
            case 2:
1123 02aab46a bellard
                stw_phys(T0 & ~1, T1);
1124 02aab46a bellard
                break;
1125 02aab46a bellard
            case 4:
1126 02aab46a bellard
                stl_phys(T0 & ~3, T1);
1127 02aab46a bellard
                break;
1128 02aab46a bellard
            case 8:
1129 02aab46a bellard
            default:
1130 02aab46a bellard
                stq_phys(T0 & ~7, T1);
1131 02aab46a bellard
                break;
1132 02aab46a bellard
            }
1133 0f8a249a blueswir1
        }
1134 0f8a249a blueswir1
        return;
1135 83469015 bellard
    case 0x04: // Nucleus
1136 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
1137 83469015 bellard
    case 0x11: // As if user secondary
1138 83469015 bellard
    case 0x19: // As if user secondary LE
1139 83469015 bellard
    case 0x24: // Nucleus quad LDD 128 bit atomic
1140 83469015 bellard
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1141 83469015 bellard
    case 0x4a: // UPA config
1142 51996525 blueswir1
    case 0x81: // Secondary
1143 83469015 bellard
    case 0x89: // Secondary LE
1144 0f8a249a blueswir1
        // XXX
1145 0f8a249a blueswir1
        return;
1146 3475187d bellard
    case 0x45: // LSU
1147 0f8a249a blueswir1
        {
1148 0f8a249a blueswir1
            uint64_t oldreg;
1149 0f8a249a blueswir1
1150 0f8a249a blueswir1
            oldreg = env->lsu;
1151 0f8a249a blueswir1
            env->lsu = T1 & (DMMU_E | IMMU_E);
1152 0f8a249a blueswir1
            // Mappings generated during D/I MMU disabled mode are
1153 0f8a249a blueswir1
            // invalid in normal mode
1154 0f8a249a blueswir1
            if (oldreg != env->lsu) {
1155 952a328f blueswir1
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1156 83469015 bellard
#ifdef DEBUG_MMU
1157 0f8a249a blueswir1
                dump_mmu(env);
1158 83469015 bellard
#endif
1159 0f8a249a blueswir1
                tlb_flush(env, 1);
1160 0f8a249a blueswir1
            }
1161 0f8a249a blueswir1
            return;
1162 0f8a249a blueswir1
        }
1163 3475187d bellard
    case 0x50: // I-MMU regs
1164 0f8a249a blueswir1
        {
1165 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
1166 0f8a249a blueswir1
            uint64_t oldreg;
1167 3b46e624 ths
1168 0f8a249a blueswir1
            oldreg = env->immuregs[reg];
1169 3475187d bellard
            switch(reg) {
1170 3475187d bellard
            case 0: // RO
1171 3475187d bellard
            case 4:
1172 3475187d bellard
                return;
1173 3475187d bellard
            case 1: // Not in I-MMU
1174 3475187d bellard
            case 2:
1175 3475187d bellard
            case 7:
1176 3475187d bellard
            case 8:
1177 3475187d bellard
                return;
1178 3475187d bellard
            case 3: // SFSR
1179 0f8a249a blueswir1
                if ((T1 & 1) == 0)
1180 0f8a249a blueswir1
                    T1 = 0; // Clear SFSR
1181 3475187d bellard
                break;
1182 3475187d bellard
            case 5: // TSB access
1183 3475187d bellard
            case 6: // Tag access
1184 3475187d bellard
            default:
1185 3475187d bellard
                break;
1186 3475187d bellard
            }
1187 0f8a249a blueswir1
            env->immuregs[reg] = T1;
1188 3475187d bellard
            if (oldreg != env->immuregs[reg]) {
1189 952a328f blueswir1
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1190 3475187d bellard
            }
1191 952a328f blueswir1
#ifdef DEBUG_MMU
1192 0f8a249a blueswir1
            dump_mmu(env);
1193 3475187d bellard
#endif
1194 0f8a249a blueswir1
            return;
1195 0f8a249a blueswir1
        }
1196 3475187d bellard
    case 0x54: // I-MMU data in
1197 0f8a249a blueswir1
        {
1198 0f8a249a blueswir1
            unsigned int i;
1199 0f8a249a blueswir1
1200 0f8a249a blueswir1
            // Try finding an invalid entry
1201 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1202 0f8a249a blueswir1
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1203 0f8a249a blueswir1
                    env->itlb_tag[i] = env->immuregs[6];
1204 0f8a249a blueswir1
                    env->itlb_tte[i] = T1;
1205 0f8a249a blueswir1
                    return;
1206 0f8a249a blueswir1
                }
1207 0f8a249a blueswir1
            }
1208 0f8a249a blueswir1
            // Try finding an unlocked entry
1209 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1210 0f8a249a blueswir1
                if ((env->itlb_tte[i] & 0x40) == 0) {
1211 0f8a249a blueswir1
                    env->itlb_tag[i] = env->immuregs[6];
1212 0f8a249a blueswir1
                    env->itlb_tte[i] = T1;
1213 0f8a249a blueswir1
                    return;
1214 0f8a249a blueswir1
                }
1215 0f8a249a blueswir1
            }
1216 0f8a249a blueswir1
            // error state?
1217 0f8a249a blueswir1
            return;
1218 0f8a249a blueswir1
        }
1219 3475187d bellard
    case 0x55: // I-MMU data access
1220 0f8a249a blueswir1
        {
1221 0f8a249a blueswir1
            unsigned int i = (T0 >> 3) & 0x3f;
1222 3475187d bellard
1223 0f8a249a blueswir1
            env->itlb_tag[i] = env->immuregs[6];
1224 0f8a249a blueswir1
            env->itlb_tte[i] = T1;
1225 0f8a249a blueswir1
            return;
1226 0f8a249a blueswir1
        }
1227 3475187d bellard
    case 0x57: // I-MMU demap
1228 0f8a249a blueswir1
        // XXX
1229 0f8a249a blueswir1
        return;
1230 3475187d bellard
    case 0x58: // D-MMU regs
1231 0f8a249a blueswir1
        {
1232 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
1233 0f8a249a blueswir1
            uint64_t oldreg;
1234 3b46e624 ths
1235 0f8a249a blueswir1
            oldreg = env->dmmuregs[reg];
1236 3475187d bellard
            switch(reg) {
1237 3475187d bellard
            case 0: // RO
1238 3475187d bellard
            case 4:
1239 3475187d bellard
                return;
1240 3475187d bellard
            case 3: // SFSR
1241 0f8a249a blueswir1
                if ((T1 & 1) == 0) {
1242 0f8a249a blueswir1
                    T1 = 0; // Clear SFSR, Fault address
1243 0f8a249a blueswir1
                    env->dmmuregs[4] = 0;
1244 0f8a249a blueswir1
                }
1245 0f8a249a blueswir1
                env->dmmuregs[reg] = T1;
1246 3475187d bellard
                break;
1247 3475187d bellard
            case 1: // Primary context
1248 3475187d bellard
            case 2: // Secondary context
1249 3475187d bellard
            case 5: // TSB access
1250 3475187d bellard
            case 6: // Tag access
1251 3475187d bellard
            case 7: // Virtual Watchpoint
1252 3475187d bellard
            case 8: // Physical Watchpoint
1253 3475187d bellard
            default:
1254 3475187d bellard
                break;
1255 3475187d bellard
            }
1256 0f8a249a blueswir1
            env->dmmuregs[reg] = T1;
1257 3475187d bellard
            if (oldreg != env->dmmuregs[reg]) {
1258 952a328f blueswir1
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1259 3475187d bellard
            }
1260 952a328f blueswir1
#ifdef DEBUG_MMU
1261 0f8a249a blueswir1
            dump_mmu(env);
1262 3475187d bellard
#endif
1263 0f8a249a blueswir1
            return;
1264 0f8a249a blueswir1
        }
1265 3475187d bellard
    case 0x5c: // D-MMU data in
1266 0f8a249a blueswir1
        {
1267 0f8a249a blueswir1
            unsigned int i;
1268 0f8a249a blueswir1
1269 0f8a249a blueswir1
            // Try finding an invalid entry
1270 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1271 0f8a249a blueswir1
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1272 0f8a249a blueswir1
                    env->dtlb_tag[i] = env->dmmuregs[6];
1273 0f8a249a blueswir1
                    env->dtlb_tte[i] = T1;
1274 0f8a249a blueswir1
                    return;
1275 0f8a249a blueswir1
                }
1276 0f8a249a blueswir1
            }
1277 0f8a249a blueswir1
            // Try finding an unlocked entry
1278 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1279 0f8a249a blueswir1
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1280 0f8a249a blueswir1
                    env->dtlb_tag[i] = env->dmmuregs[6];
1281 0f8a249a blueswir1
                    env->dtlb_tte[i] = T1;
1282 0f8a249a blueswir1
                    return;
1283 0f8a249a blueswir1
                }
1284 0f8a249a blueswir1
            }
1285 0f8a249a blueswir1
            // error state?
1286 0f8a249a blueswir1
            return;
1287 0f8a249a blueswir1
        }
1288 3475187d bellard
    case 0x5d: // D-MMU data access
1289 0f8a249a blueswir1
        {
1290 0f8a249a blueswir1
            unsigned int i = (T0 >> 3) & 0x3f;
1291 3475187d bellard
1292 0f8a249a blueswir1
            env->dtlb_tag[i] = env->dmmuregs[6];
1293 0f8a249a blueswir1
            env->dtlb_tte[i] = T1;
1294 0f8a249a blueswir1
            return;
1295 0f8a249a blueswir1
        }
1296 3475187d bellard
    case 0x5f: // D-MMU demap
1297 83469015 bellard
    case 0x49: // Interrupt data receive
1298 0f8a249a blueswir1
        // XXX
1299 0f8a249a blueswir1
        return;
1300 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer, RO
1301 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer, RO
1302 3475187d bellard
    case 0x56: // I-MMU tag read, RO
1303 3475187d bellard
    case 0x59: // D-MMU 8k TSB pointer, RO
1304 3475187d bellard
    case 0x5a: // D-MMU 64k TSB pointer, RO
1305 3475187d bellard
    case 0x5b: // D-MMU data pointer, RO
1306 3475187d bellard
    case 0x5e: // D-MMU tag read, RO
1307 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
1308 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
1309 83469015 bellard
    case 0x82: // Primary no-fault, RO
1310 83469015 bellard
    case 0x83: // Secondary no-fault, RO
1311 83469015 bellard
    case 0x8a: // Primary no-fault LE, RO
1312 83469015 bellard
    case 0x8b: // Secondary no-fault LE, RO
1313 3475187d bellard
    default:
1314 6c36d3fa blueswir1
        do_unassigned_access(T0, 1, 0, 1);
1315 0f8a249a blueswir1
        return;
1316 3475187d bellard
    }
1317 3475187d bellard
}
1318 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
1319 3391c818 blueswir1
1320 3391c818 blueswir1
void helper_ldf_asi(int asi, int size, int rd)
1321 3391c818 blueswir1
{
1322 3391c818 blueswir1
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1323 3391c818 blueswir1
    unsigned int i;
1324 3391c818 blueswir1
1325 3391c818 blueswir1
    switch (asi) {
1326 3391c818 blueswir1
    case 0xf0: // Block load primary
1327 3391c818 blueswir1
    case 0xf1: // Block load secondary
1328 3391c818 blueswir1
    case 0xf8: // Block load primary LE
1329 3391c818 blueswir1
    case 0xf9: // Block load secondary LE
1330 51996525 blueswir1
        if (rd & 7) {
1331 51996525 blueswir1
            raise_exception(TT_ILL_INSN);
1332 51996525 blueswir1
            return;
1333 51996525 blueswir1
        }
1334 51996525 blueswir1
        if (T0 & 0x3f) {
1335 51996525 blueswir1
            raise_exception(TT_UNALIGNED);
1336 51996525 blueswir1
            return;
1337 51996525 blueswir1
        }
1338 51996525 blueswir1
        for (i = 0; i < 16; i++) {
1339 51996525 blueswir1
            helper_ld_asi(asi & 0x8f, 4, 0);
1340 51996525 blueswir1
            *(uint32_t *)&env->fpr[rd++] = T1;
1341 51996525 blueswir1
            T0 += 4;
1342 3391c818 blueswir1
        }
1343 3391c818 blueswir1
        T0 = tmp_T0;
1344 3391c818 blueswir1
        T1 = tmp_T1;
1345 3391c818 blueswir1
1346 3391c818 blueswir1
        return;
1347 3391c818 blueswir1
    default:
1348 3391c818 blueswir1
        break;
1349 3391c818 blueswir1
    }
1350 3391c818 blueswir1
1351 3391c818 blueswir1
    helper_ld_asi(asi, size, 0);
1352 3391c818 blueswir1
    switch(size) {
1353 3391c818 blueswir1
    default:
1354 3391c818 blueswir1
    case 4:
1355 3391c818 blueswir1
        *((uint32_t *)&FT0) = T1;
1356 3391c818 blueswir1
        break;
1357 3391c818 blueswir1
    case 8:
1358 3391c818 blueswir1
        *((int64_t *)&DT0) = T1;
1359 3391c818 blueswir1
        break;
1360 3391c818 blueswir1
    }
1361 3391c818 blueswir1
    T1 = tmp_T1;
1362 3391c818 blueswir1
}
1363 3391c818 blueswir1
1364 3391c818 blueswir1
void helper_stf_asi(int asi, int size, int rd)
1365 3391c818 blueswir1
{
1366 3391c818 blueswir1
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1367 3391c818 blueswir1
    unsigned int i;
1368 3391c818 blueswir1
1369 3391c818 blueswir1
    switch (asi) {
1370 3391c818 blueswir1
    case 0xf0: // Block store primary
1371 3391c818 blueswir1
    case 0xf1: // Block store secondary
1372 3391c818 blueswir1
    case 0xf8: // Block store primary LE
1373 3391c818 blueswir1
    case 0xf9: // Block store secondary LE
1374 51996525 blueswir1
        if (rd & 7) {
1375 51996525 blueswir1
            raise_exception(TT_ILL_INSN);
1376 51996525 blueswir1
            return;
1377 51996525 blueswir1
        }
1378 51996525 blueswir1
        if (T0 & 0x3f) {
1379 51996525 blueswir1
            raise_exception(TT_UNALIGNED);
1380 51996525 blueswir1
            return;
1381 51996525 blueswir1
        }
1382 51996525 blueswir1
        for (i = 0; i < 16; i++) {
1383 51996525 blueswir1
            T1 = *(uint32_t *)&env->fpr[rd++];
1384 51996525 blueswir1
            helper_st_asi(asi & 0x8f, 4);
1385 51996525 blueswir1
            T0 += 4;
1386 3391c818 blueswir1
        }
1387 3391c818 blueswir1
        T0 = tmp_T0;
1388 3391c818 blueswir1
        T1 = tmp_T1;
1389 3391c818 blueswir1
1390 3391c818 blueswir1
        return;
1391 3391c818 blueswir1
    default:
1392 3391c818 blueswir1
        break;
1393 3391c818 blueswir1
    }
1394 3391c818 blueswir1
1395 3391c818 blueswir1
    switch(size) {
1396 3391c818 blueswir1
    default:
1397 3391c818 blueswir1
    case 4:
1398 3391c818 blueswir1
        T1 = *((uint32_t *)&FT0);
1399 3391c818 blueswir1
        break;
1400 3391c818 blueswir1
    case 8:
1401 3391c818 blueswir1
        T1 = *((int64_t *)&DT0);
1402 3391c818 blueswir1
        break;
1403 3391c818 blueswir1
    }
1404 3391c818 blueswir1
    helper_st_asi(asi, size);
1405 3391c818 blueswir1
    T1 = tmp_T1;
1406 3391c818 blueswir1
}
1407 3391c818 blueswir1
1408 81ad8ba2 blueswir1
#endif /* TARGET_SPARC64 */
1409 3475187d bellard
1410 3475187d bellard
#ifndef TARGET_SPARC64
1411 a0c4cb4a bellard
void helper_rett()
1412 e8af50a3 bellard
{
1413 af7bf89b bellard
    unsigned int cwp;
1414 af7bf89b bellard
1415 d4218d99 blueswir1
    if (env->psret == 1)
1416 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
1417 d4218d99 blueswir1
1418 e8af50a3 bellard
    env->psret = 1;
1419 5fafdf24 ths
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1420 e8af50a3 bellard
    if (env->wim & (1 << cwp)) {
1421 e8af50a3 bellard
        raise_exception(TT_WIN_UNF);
1422 e8af50a3 bellard
    }
1423 e8af50a3 bellard
    set_cwp(cwp);
1424 e8af50a3 bellard
    env->psrs = env->psrps;
1425 e8af50a3 bellard
}
1426 3475187d bellard
#endif
1427 e8af50a3 bellard
1428 8d5f07fa bellard
void helper_ldfsr(void)
1429 e8af50a3 bellard
{
1430 7a0e1f41 bellard
    int rnd_mode;
1431 e8af50a3 bellard
    switch (env->fsr & FSR_RD_MASK) {
1432 e8af50a3 bellard
    case FSR_RD_NEAREST:
1433 7a0e1f41 bellard
        rnd_mode = float_round_nearest_even;
1434 0f8a249a blueswir1
        break;
1435 ed910241 bellard
    default:
1436 e8af50a3 bellard
    case FSR_RD_ZERO:
1437 7a0e1f41 bellard
        rnd_mode = float_round_to_zero;
1438 0f8a249a blueswir1
        break;
1439 e8af50a3 bellard
    case FSR_RD_POS:
1440 7a0e1f41 bellard
        rnd_mode = float_round_up;
1441 0f8a249a blueswir1
        break;
1442 e8af50a3 bellard
    case FSR_RD_NEG:
1443 7a0e1f41 bellard
        rnd_mode = float_round_down;
1444 0f8a249a blueswir1
        break;
1445 e8af50a3 bellard
    }
1446 7a0e1f41 bellard
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1447 e8af50a3 bellard
}
1448 e80cfcfc bellard
1449 e80cfcfc bellard
void helper_debug()
1450 e80cfcfc bellard
{
1451 e80cfcfc bellard
    env->exception_index = EXCP_DEBUG;
1452 e80cfcfc bellard
    cpu_loop_exit();
1453 e80cfcfc bellard
}
1454 af7bf89b bellard
1455 3475187d bellard
#ifndef TARGET_SPARC64
1456 af7bf89b bellard
void do_wrpsr()
1457 af7bf89b bellard
{
1458 d4218d99 blueswir1
    if ((T0 & PSR_CWP) >= NWINDOWS)
1459 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
1460 d4218d99 blueswir1
    else
1461 d4218d99 blueswir1
        PUT_PSR(env, T0);
1462 af7bf89b bellard
}
1463 af7bf89b bellard
1464 af7bf89b bellard
void do_rdpsr()
1465 af7bf89b bellard
{
1466 af7bf89b bellard
    T0 = GET_PSR(env);
1467 af7bf89b bellard
}
1468 3475187d bellard
1469 3475187d bellard
#else
1470 3475187d bellard
1471 3475187d bellard
void do_popc()
1472 3475187d bellard
{
1473 eed152bb blueswir1
    T0 = ctpop64(T1);
1474 3475187d bellard
}
1475 83469015 bellard
1476 83469015 bellard
static inline uint64_t *get_gregset(uint64_t pstate)
1477 83469015 bellard
{
1478 83469015 bellard
    switch (pstate) {
1479 83469015 bellard
    default:
1480 83469015 bellard
    case 0:
1481 0f8a249a blueswir1
        return env->bgregs;
1482 83469015 bellard
    case PS_AG:
1483 0f8a249a blueswir1
        return env->agregs;
1484 83469015 bellard
    case PS_MG:
1485 0f8a249a blueswir1
        return env->mgregs;
1486 83469015 bellard
    case PS_IG:
1487 0f8a249a blueswir1
        return env->igregs;
1488 83469015 bellard
    }
1489 83469015 bellard
}
1490 83469015 bellard
1491 8f1f22f6 blueswir1
static inline void change_pstate(uint64_t new_pstate)
1492 83469015 bellard
{
1493 8f1f22f6 blueswir1
    uint64_t pstate_regs, new_pstate_regs;
1494 83469015 bellard
    uint64_t *src, *dst;
1495 83469015 bellard
1496 83469015 bellard
    pstate_regs = env->pstate & 0xc01;
1497 83469015 bellard
    new_pstate_regs = new_pstate & 0xc01;
1498 83469015 bellard
    if (new_pstate_regs != pstate_regs) {
1499 0f8a249a blueswir1
        // Switch global register bank
1500 0f8a249a blueswir1
        src = get_gregset(new_pstate_regs);
1501 0f8a249a blueswir1
        dst = get_gregset(pstate_regs);
1502 0f8a249a blueswir1
        memcpy32(dst, env->gregs);
1503 0f8a249a blueswir1
        memcpy32(env->gregs, src);
1504 83469015 bellard
    }
1505 83469015 bellard
    env->pstate = new_pstate;
1506 83469015 bellard
}
1507 83469015 bellard
1508 8f1f22f6 blueswir1
void do_wrpstate(void)
1509 8f1f22f6 blueswir1
{
1510 8f1f22f6 blueswir1
    change_pstate(T0 & 0xf3f);
1511 8f1f22f6 blueswir1
}
1512 8f1f22f6 blueswir1
1513 83469015 bellard
void do_done(void)
1514 83469015 bellard
{
1515 83469015 bellard
    env->tl--;
1516 83469015 bellard
    env->pc = env->tnpc[env->tl];
1517 83469015 bellard
    env->npc = env->tnpc[env->tl] + 4;
1518 83469015 bellard
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1519 83469015 bellard
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1520 8f1f22f6 blueswir1
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1521 17d996e1 blueswir1
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1522 83469015 bellard
}
1523 83469015 bellard
1524 83469015 bellard
void do_retry(void)
1525 83469015 bellard
{
1526 83469015 bellard
    env->tl--;
1527 83469015 bellard
    env->pc = env->tpc[env->tl];
1528 83469015 bellard
    env->npc = env->tnpc[env->tl];
1529 83469015 bellard
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1530 83469015 bellard
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1531 8f1f22f6 blueswir1
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1532 17d996e1 blueswir1
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1533 83469015 bellard
}
1534 3475187d bellard
#endif
1535 ee5bbe38 bellard
1536 ee5bbe38 bellard
void set_cwp(int new_cwp)
1537 ee5bbe38 bellard
{
1538 ee5bbe38 bellard
    /* put the modified wrap registers at their proper location */
1539 ee5bbe38 bellard
    if (env->cwp == (NWINDOWS - 1))
1540 ee5bbe38 bellard
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1541 ee5bbe38 bellard
    env->cwp = new_cwp;
1542 ee5bbe38 bellard
    /* put the wrap registers at their temporary location */
1543 ee5bbe38 bellard
    if (new_cwp == (NWINDOWS - 1))
1544 ee5bbe38 bellard
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1545 ee5bbe38 bellard
    env->regwptr = env->regbase + (new_cwp * 16);
1546 ee5bbe38 bellard
    REGWPTR = env->regwptr;
1547 ee5bbe38 bellard
}
1548 ee5bbe38 bellard
1549 ee5bbe38 bellard
void cpu_set_cwp(CPUState *env1, int new_cwp)
1550 ee5bbe38 bellard
{
1551 ee5bbe38 bellard
    CPUState *saved_env;
1552 ee5bbe38 bellard
#ifdef reg_REGWPTR
1553 ee5bbe38 bellard
    target_ulong *saved_regwptr;
1554 ee5bbe38 bellard
#endif
1555 ee5bbe38 bellard
1556 ee5bbe38 bellard
    saved_env = env;
1557 ee5bbe38 bellard
#ifdef reg_REGWPTR
1558 ee5bbe38 bellard
    saved_regwptr = REGWPTR;
1559 ee5bbe38 bellard
#endif
1560 ee5bbe38 bellard
    env = env1;
1561 ee5bbe38 bellard
    set_cwp(new_cwp);
1562 ee5bbe38 bellard
    env = saved_env;
1563 ee5bbe38 bellard
#ifdef reg_REGWPTR
1564 ee5bbe38 bellard
    REGWPTR = saved_regwptr;
1565 ee5bbe38 bellard
#endif
1566 ee5bbe38 bellard
}
1567 ee5bbe38 bellard
1568 ee5bbe38 bellard
#ifdef TARGET_SPARC64
1569 ee5bbe38 bellard
void do_interrupt(int intno)
1570 ee5bbe38 bellard
{
1571 ee5bbe38 bellard
#ifdef DEBUG_PCALL
1572 ee5bbe38 bellard
    if (loglevel & CPU_LOG_INT) {
1573 0f8a249a blueswir1
        static int count;
1574 0f8a249a blueswir1
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1575 ee5bbe38 bellard
                count, intno,
1576 ee5bbe38 bellard
                env->pc,
1577 ee5bbe38 bellard
                env->npc, env->regwptr[6]);
1578 0f8a249a blueswir1
        cpu_dump_state(env, logfile, fprintf, 0);
1579 ee5bbe38 bellard
#if 0
1580 0f8a249a blueswir1
        {
1581 0f8a249a blueswir1
            int i;
1582 0f8a249a blueswir1
            uint8_t *ptr;
1583 0f8a249a blueswir1

1584 0f8a249a blueswir1
            fprintf(logfile, "       code=");
1585 0f8a249a blueswir1
            ptr = (uint8_t *)env->pc;
1586 0f8a249a blueswir1
            for(i = 0; i < 16; i++) {
1587 0f8a249a blueswir1
                fprintf(logfile, " %02x", ldub(ptr + i));
1588 0f8a249a blueswir1
            }
1589 0f8a249a blueswir1
            fprintf(logfile, "\n");
1590 0f8a249a blueswir1
        }
1591 ee5bbe38 bellard
#endif
1592 0f8a249a blueswir1
        count++;
1593 ee5bbe38 bellard
    }
1594 ee5bbe38 bellard
#endif
1595 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
1596 83469015 bellard
    if (env->tl == MAXTL) {
1597 c68ea704 bellard
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1598 0f8a249a blueswir1
        return;
1599 ee5bbe38 bellard
    }
1600 ee5bbe38 bellard
#endif
1601 ee5bbe38 bellard
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1602 0f8a249a blueswir1
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1603 ee5bbe38 bellard
    env->tpc[env->tl] = env->pc;
1604 ee5bbe38 bellard
    env->tnpc[env->tl] = env->npc;
1605 ee5bbe38 bellard
    env->tt[env->tl] = intno;
1606 8f1f22f6 blueswir1
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1607 8f1f22f6 blueswir1
1608 8f1f22f6 blueswir1
    if (intno == TT_CLRWIN)
1609 8f1f22f6 blueswir1
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1610 8f1f22f6 blueswir1
    else if ((intno & 0x1c0) == TT_SPILL)
1611 8f1f22f6 blueswir1
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1612 8f1f22f6 blueswir1
    else if ((intno & 0x1c0) == TT_FILL)
1613 8f1f22f6 blueswir1
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1614 83469015 bellard
    env->tbr &= ~0x7fffULL;
1615 83469015 bellard
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1616 83469015 bellard
    if (env->tl < MAXTL - 1) {
1617 0f8a249a blueswir1
        env->tl++;
1618 83469015 bellard
    } else {
1619 0f8a249a blueswir1
        env->pstate |= PS_RED;
1620 0f8a249a blueswir1
        if (env->tl != MAXTL)
1621 0f8a249a blueswir1
            env->tl++;
1622 83469015 bellard
    }
1623 ee5bbe38 bellard
    env->pc = env->tbr;
1624 ee5bbe38 bellard
    env->npc = env->pc + 4;
1625 ee5bbe38 bellard
    env->exception_index = 0;
1626 ee5bbe38 bellard
}
1627 ee5bbe38 bellard
#else
1628 ee5bbe38 bellard
void do_interrupt(int intno)
1629 ee5bbe38 bellard
{
1630 ee5bbe38 bellard
    int cwp;
1631 ee5bbe38 bellard
1632 ee5bbe38 bellard
#ifdef DEBUG_PCALL
1633 ee5bbe38 bellard
    if (loglevel & CPU_LOG_INT) {
1634 0f8a249a blueswir1
        static int count;
1635 0f8a249a blueswir1
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1636 ee5bbe38 bellard
                count, intno,
1637 ee5bbe38 bellard
                env->pc,
1638 ee5bbe38 bellard
                env->npc, env->regwptr[6]);
1639 0f8a249a blueswir1
        cpu_dump_state(env, logfile, fprintf, 0);
1640 ee5bbe38 bellard
#if 0
1641 0f8a249a blueswir1
        {
1642 0f8a249a blueswir1
            int i;
1643 0f8a249a blueswir1
            uint8_t *ptr;
1644 0f8a249a blueswir1

1645 0f8a249a blueswir1
            fprintf(logfile, "       code=");
1646 0f8a249a blueswir1
            ptr = (uint8_t *)env->pc;
1647 0f8a249a blueswir1
            for(i = 0; i < 16; i++) {
1648 0f8a249a blueswir1
                fprintf(logfile, " %02x", ldub(ptr + i));
1649 0f8a249a blueswir1
            }
1650 0f8a249a blueswir1
            fprintf(logfile, "\n");
1651 0f8a249a blueswir1
        }
1652 ee5bbe38 bellard
#endif
1653 0f8a249a blueswir1
        count++;
1654 ee5bbe38 bellard
    }
1655 ee5bbe38 bellard
#endif
1656 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
1657 ee5bbe38 bellard
    if (env->psret == 0) {
1658 c68ea704 bellard
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1659 0f8a249a blueswir1
        return;
1660 ee5bbe38 bellard
    }
1661 ee5bbe38 bellard
#endif
1662 ee5bbe38 bellard
    env->psret = 0;
1663 5fafdf24 ths
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1664 ee5bbe38 bellard
    set_cwp(cwp);
1665 ee5bbe38 bellard
    env->regwptr[9] = env->pc;
1666 ee5bbe38 bellard
    env->regwptr[10] = env->npc;
1667 ee5bbe38 bellard
    env->psrps = env->psrs;
1668 ee5bbe38 bellard
    env->psrs = 1;
1669 ee5bbe38 bellard
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1670 ee5bbe38 bellard
    env->pc = env->tbr;
1671 ee5bbe38 bellard
    env->npc = env->pc + 4;
1672 ee5bbe38 bellard
    env->exception_index = 0;
1673 ee5bbe38 bellard
}
1674 ee5bbe38 bellard
#endif
1675 ee5bbe38 bellard
1676 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
1677 ee5bbe38 bellard
1678 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1679 d2889a3e blueswir1
                                void *retaddr);
1680 d2889a3e blueswir1
1681 ee5bbe38 bellard
#define MMUSUFFIX _mmu
1682 d2889a3e blueswir1
#define ALIGNED_ONLY
1683 ee5bbe38 bellard
#define GETPC() (__builtin_return_address(0))
1684 ee5bbe38 bellard
1685 ee5bbe38 bellard
#define SHIFT 0
1686 ee5bbe38 bellard
#include "softmmu_template.h"
1687 ee5bbe38 bellard
1688 ee5bbe38 bellard
#define SHIFT 1
1689 ee5bbe38 bellard
#include "softmmu_template.h"
1690 ee5bbe38 bellard
1691 ee5bbe38 bellard
#define SHIFT 2
1692 ee5bbe38 bellard
#include "softmmu_template.h"
1693 ee5bbe38 bellard
1694 ee5bbe38 bellard
#define SHIFT 3
1695 ee5bbe38 bellard
#include "softmmu_template.h"
1696 ee5bbe38 bellard
1697 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1698 d2889a3e blueswir1
                                void *retaddr)
1699 d2889a3e blueswir1
{
1700 94554550 blueswir1
#ifdef DEBUG_UNALIGNED
1701 94554550 blueswir1
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1702 94554550 blueswir1
#endif
1703 94554550 blueswir1
    raise_exception(TT_UNALIGNED);
1704 d2889a3e blueswir1
}
1705 ee5bbe38 bellard
1706 ee5bbe38 bellard
/* try to fill the TLB and return an exception if error. If retaddr is
1707 ee5bbe38 bellard
   NULL, it means that the function was called in C code (i.e. not
1708 ee5bbe38 bellard
   from generated code or from helper.c) */
1709 ee5bbe38 bellard
/* XXX: fix it to restore all registers */
1710 6ebbf390 j_mayer
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1711 ee5bbe38 bellard
{
1712 ee5bbe38 bellard
    TranslationBlock *tb;
1713 ee5bbe38 bellard
    int ret;
1714 ee5bbe38 bellard
    unsigned long pc;
1715 ee5bbe38 bellard
    CPUState *saved_env;
1716 ee5bbe38 bellard
1717 ee5bbe38 bellard
    /* XXX: hack to restore env in all cases, even if not called from
1718 ee5bbe38 bellard
       generated code */
1719 ee5bbe38 bellard
    saved_env = env;
1720 ee5bbe38 bellard
    env = cpu_single_env;
1721 ee5bbe38 bellard
1722 6ebbf390 j_mayer
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1723 ee5bbe38 bellard
    if (ret) {
1724 ee5bbe38 bellard
        if (retaddr) {
1725 ee5bbe38 bellard
            /* now we have a real cpu fault */
1726 ee5bbe38 bellard
            pc = (unsigned long)retaddr;
1727 ee5bbe38 bellard
            tb = tb_find_pc(pc);
1728 ee5bbe38 bellard
            if (tb) {
1729 ee5bbe38 bellard
                /* the PC is inside the translated code. It means that we have
1730 ee5bbe38 bellard
                   a virtual CPU fault */
1731 ee5bbe38 bellard
                cpu_restore_state(tb, env, pc, (void *)T2);
1732 ee5bbe38 bellard
            }
1733 ee5bbe38 bellard
        }
1734 ee5bbe38 bellard
        cpu_loop_exit();
1735 ee5bbe38 bellard
    }
1736 ee5bbe38 bellard
    env = saved_env;
1737 ee5bbe38 bellard
}
1738 ee5bbe38 bellard
1739 ee5bbe38 bellard
#endif
1740 6c36d3fa blueswir1
1741 6c36d3fa blueswir1
#ifndef TARGET_SPARC64
1742 5dcb6b91 blueswir1
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1743 6c36d3fa blueswir1
                          int is_asi)
1744 6c36d3fa blueswir1
{
1745 6c36d3fa blueswir1
    CPUState *saved_env;
1746 6c36d3fa blueswir1
1747 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
1748 6c36d3fa blueswir1
       generated code */
1749 6c36d3fa blueswir1
    saved_env = env;
1750 6c36d3fa blueswir1
    env = cpu_single_env;
1751 6c36d3fa blueswir1
    if (env->mmuregs[3]) /* Fault status register */
1752 0f8a249a blueswir1
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1753 6c36d3fa blueswir1
    if (is_asi)
1754 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 16;
1755 6c36d3fa blueswir1
    if (env->psrs)
1756 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 5;
1757 6c36d3fa blueswir1
    if (is_exec)
1758 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 6;
1759 6c36d3fa blueswir1
    if (is_write)
1760 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 7;
1761 6c36d3fa blueswir1
    env->mmuregs[3] |= (5 << 2) | 2;
1762 6c36d3fa blueswir1
    env->mmuregs[4] = addr; /* Fault address register */
1763 6c36d3fa blueswir1
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1764 6c36d3fa blueswir1
#ifdef DEBUG_UNASSIGNED
1765 5dcb6b91 blueswir1
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1766 6c36d3fa blueswir1
               "\n", addr, env->pc);
1767 6c36d3fa blueswir1
#endif
1768 1b2e93c1 blueswir1
        if (is_exec)
1769 1b2e93c1 blueswir1
            raise_exception(TT_CODE_ACCESS);
1770 1b2e93c1 blueswir1
        else
1771 1b2e93c1 blueswir1
            raise_exception(TT_DATA_ACCESS);
1772 6c36d3fa blueswir1
    }
1773 6c36d3fa blueswir1
    env = saved_env;
1774 6c36d3fa blueswir1
}
1775 6c36d3fa blueswir1
#else
1776 5dcb6b91 blueswir1
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1777 6c36d3fa blueswir1
                          int is_asi)
1778 6c36d3fa blueswir1
{
1779 6c36d3fa blueswir1
#ifdef DEBUG_UNASSIGNED
1780 6c36d3fa blueswir1
    CPUState *saved_env;
1781 6c36d3fa blueswir1
1782 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
1783 6c36d3fa blueswir1
       generated code */
1784 6c36d3fa blueswir1
    saved_env = env;
1785 6c36d3fa blueswir1
    env = cpu_single_env;
1786 5dcb6b91 blueswir1
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1787 6c36d3fa blueswir1
           addr, env->pc);
1788 6c36d3fa blueswir1
    env = saved_env;
1789 6c36d3fa blueswir1
#endif
1790 1b2e93c1 blueswir1
    if (is_exec)
1791 1b2e93c1 blueswir1
        raise_exception(TT_CODE_ACCESS);
1792 1b2e93c1 blueswir1
    else
1793 1b2e93c1 blueswir1
        raise_exception(TT_DATA_ACCESS);
1794 6c36d3fa blueswir1
}
1795 6c36d3fa blueswir1
#endif
1796 20c9f095 blueswir1
1797 20c9f095 blueswir1
#ifdef TARGET_SPARC64
1798 20c9f095 blueswir1
void do_tick_set_count(void *opaque, uint64_t count)
1799 20c9f095 blueswir1
{
1800 d8bdf5fa blueswir1
#if !defined(CONFIG_USER_ONLY)
1801 20c9f095 blueswir1
    ptimer_set_count(opaque, -count);
1802 d8bdf5fa blueswir1
#endif
1803 20c9f095 blueswir1
}
1804 20c9f095 blueswir1
1805 20c9f095 blueswir1
uint64_t do_tick_get_count(void *opaque)
1806 20c9f095 blueswir1
{
1807 d8bdf5fa blueswir1
#if !defined(CONFIG_USER_ONLY)
1808 20c9f095 blueswir1
    return -ptimer_get_count(opaque);
1809 d8bdf5fa blueswir1
#else
1810 d8bdf5fa blueswir1
    return 0;
1811 d8bdf5fa blueswir1
#endif
1812 20c9f095 blueswir1
}
1813 20c9f095 blueswir1
1814 20c9f095 blueswir1
void do_tick_set_limit(void *opaque, uint64_t limit)
1815 20c9f095 blueswir1
{
1816 d8bdf5fa blueswir1
#if !defined(CONFIG_USER_ONLY)
1817 20c9f095 blueswir1
    ptimer_set_limit(opaque, -limit, 0);
1818 d8bdf5fa blueswir1
#endif
1819 20c9f095 blueswir1
}
1820 20c9f095 blueswir1
#endif