Statistics
| Branch: | Revision:

root / qemu-doc.texi @ ef4c3856

History | View | Annotate | Download (98.6 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@end itemize
95

    
96
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97

    
98
@node Installation
99
@chapter Installation
100

    
101
If you want to compile QEMU yourself, see @ref{compilation}.
102

    
103
@menu
104
* install_linux::   Linux
105
* install_windows:: Windows
106
* install_mac::     Macintosh
107
@end menu
108

    
109
@node install_linux
110
@section Linux
111

    
112
If a precompiled package is available for your distribution - you just
113
have to install it. Otherwise, see @ref{compilation}.
114

    
115
@node install_windows
116
@section Windows
117

    
118
Download the experimental binary installer at
119
@url{http://www.free.oszoo.org/@/download.html}.
120

    
121
@node install_mac
122
@section Mac OS X
123

    
124
Download the experimental binary installer at
125
@url{http://www.free.oszoo.org/@/download.html}.
126

    
127
@node QEMU PC System emulator
128
@chapter QEMU PC System emulator
129

    
130
@menu
131
* pcsys_introduction:: Introduction
132
* pcsys_quickstart::   Quick Start
133
* sec_invocation::     Invocation
134
* pcsys_keys::         Keys
135
* pcsys_monitor::      QEMU Monitor
136
* disk_images::        Disk Images
137
* pcsys_network::      Network emulation
138
* direct_linux_boot::  Direct Linux Boot
139
* pcsys_usb::          USB emulation
140
* vnc_security::       VNC security
141
* gdb_usage::          GDB usage
142
* pcsys_os_specific::  Target OS specific information
143
@end menu
144

    
145
@node pcsys_introduction
146
@section Introduction
147

    
148
@c man begin DESCRIPTION
149

    
150
The QEMU PC System emulator simulates the
151
following peripherals:
152

    
153
@itemize @minus
154
@item
155
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156
@item
157
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158
extensions (hardware level, including all non standard modes).
159
@item
160
PS/2 mouse and keyboard
161
@item
162
2 PCI IDE interfaces with hard disk and CD-ROM support
163
@item
164
Floppy disk
165
@item
166
PCI/ISA PCI network adapters
167
@item
168
Serial ports
169
@item
170
Creative SoundBlaster 16 sound card
171
@item
172
ENSONIQ AudioPCI ES1370 sound card
173
@item
174
Intel 82801AA AC97 Audio compatible sound card
175
@item
176
Adlib(OPL2) - Yamaha YM3812 compatible chip
177
@item
178
Gravis Ultrasound GF1 sound card
179
@item
180
CS4231A compatible sound card
181
@item
182
PCI UHCI USB controller and a virtual USB hub.
183
@end itemize
184

    
185
SMP is supported with up to 255 CPUs.
186

    
187
Note that adlib, ac97, gus and cs4231a are only available when QEMU
188
was configured with --audio-card-list option containing the name(s) of
189
required card(s).
190

    
191
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192
VGA BIOS.
193

    
194
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195

    
196
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197
by Tibor "TS" Sch?tz.
198

    
199
CS4231A is the chip used in Windows Sound System and GUSMAX products
200

    
201
@c man end
202

    
203
@node pcsys_quickstart
204
@section Quick Start
205

    
206
Download and uncompress the linux image (@file{linux.img}) and type:
207

    
208
@example
209
qemu linux.img
210
@end example
211

    
212
Linux should boot and give you a prompt.
213

    
214
@node sec_invocation
215
@section Invocation
216

    
217
@example
218
@c man begin SYNOPSIS
219
usage: qemu [options] [@var{disk_image}]
220
@c man end
221
@end example
222

    
223
@c man begin OPTIONS
224
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
225

    
226
General options:
227
@table @option
228
@item -M @var{machine}
229
Select the emulated @var{machine} (@code{-M ?} for list)
230

    
231
@item -fda @var{file}
232
@item -fdb @var{file}
233
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
234
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
235

    
236
@item -hda @var{file}
237
@item -hdb @var{file}
238
@item -hdc @var{file}
239
@item -hdd @var{file}
240
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
241

    
242
@item -cdrom @var{file}
243
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
244
@option{-cdrom} at the same time). You can use the host CD-ROM by
245
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
246

    
247
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
248

    
249
Define a new drive. Valid options are:
250

    
251
@table @code
252
@item file=@var{file}
253
This option defines which disk image (@pxref{disk_images}) to use with
254
this drive. If the filename contains comma, you must double it
255
(for instance, "file=my,,file" to use file "my,file").
256
@item if=@var{interface}
257
This option defines on which type on interface the drive is connected.
258
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
259
@item bus=@var{bus},unit=@var{unit}
260
These options define where is connected the drive by defining the bus number and
261
the unit id.
262
@item index=@var{index}
263
This option defines where is connected the drive by using an index in the list
264
of available connectors of a given interface type.
265
@item media=@var{media}
266
This option defines the type of the media: disk or cdrom.
267
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
268
These options have the same definition as they have in @option{-hdachs}.
269
@item snapshot=@var{snapshot}
270
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
271
@item cache=@var{cache}
272
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
273
@item format=@var{format}
274
Specify which disk @var{format} will be used rather than detecting
275
the format.  Can be used to specifiy format=raw to avoid interpreting
276
an untrusted format header.
277
@end table
278

    
279
By default, writethrough caching is used for all block device.  This means that
280
the host page cache will be used to read and write data but write notification
281
will be sent to the guest only when the data has been reported as written by
282
the storage subsystem.
283

    
284
Writeback caching will report data writes as completed as soon as the data is
285
present in the host page cache.  This is safe as long as you trust your host.
286
If your host crashes or loses power, then the guest may experience data
287
corruption.  When using the @option{-snapshot} option, writeback caching is
288
used by default.
289

    
290
The host page can be avoided entirely with @option{cache=none}.  This will
291
attempt to do disk IO directly to the guests memory.  QEMU may still perform
292
an internal copy of the data.
293

    
294
Some block drivers perform badly with @option{cache=writethrough}, most notably,
295
qcow2.  If performance is more important than correctness,
296
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
297
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
298
used.  For all other disk types, @option{cache=writethrough} is the default.
299

    
300
Instead of @option{-cdrom} you can use:
301
@example
302
qemu -drive file=file,index=2,media=cdrom
303
@end example
304

    
305
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
306
use:
307
@example
308
qemu -drive file=file,index=0,media=disk
309
qemu -drive file=file,index=1,media=disk
310
qemu -drive file=file,index=2,media=disk
311
qemu -drive file=file,index=3,media=disk
312
@end example
313

    
314
You can connect a CDROM to the slave of ide0:
315
@example
316
qemu -drive file=file,if=ide,index=1,media=cdrom
317
@end example
318

    
319
If you don't specify the "file=" argument, you define an empty drive:
320
@example
321
qemu -drive if=ide,index=1,media=cdrom
322
@end example
323

    
324
You can connect a SCSI disk with unit ID 6 on the bus #0:
325
@example
326
qemu -drive file=file,if=scsi,bus=0,unit=6
327
@end example
328

    
329
Instead of @option{-fda}, @option{-fdb}, you can use:
330
@example
331
qemu -drive file=file,index=0,if=floppy
332
qemu -drive file=file,index=1,if=floppy
333
@end example
334

    
335
By default, @var{interface} is "ide" and @var{index} is automatically
336
incremented:
337
@example
338
qemu -drive file=a -drive file=b"
339
@end example
340
is interpreted like:
341
@example
342
qemu -hda a -hdb b
343
@end example
344

    
345
@item -boot [a|c|d|n]
346
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
347
is the default.
348

    
349
@item -snapshot
350
Write to temporary files instead of disk image files. In this case,
351
the raw disk image you use is not written back. You can however force
352
the write back by pressing @key{C-a s} (@pxref{disk_images}).
353

    
354
@item -no-fd-bootchk
355
Disable boot signature checking for floppy disks in Bochs BIOS. It may
356
be needed to boot from old floppy disks.
357

    
358
@item -m @var{megs}
359
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
360
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
361
gigabytes respectively.
362

    
363
@item -cpu @var{model}
364
Select CPU model (-cpu ? for list and additional feature selection)
365

    
366
@item -smp @var{n}
367
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
368
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
369
to 4.
370

    
371
@item -audio-help
372

    
373
Will show the audio subsystem help: list of drivers, tunable
374
parameters.
375

    
376
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
377

    
378
Enable audio and selected sound hardware. Use ? to print all
379
available sound hardware.
380

    
381
@example
382
qemu -soundhw sb16,adlib disk.img
383
qemu -soundhw es1370 disk.img
384
qemu -soundhw ac97 disk.img
385
qemu -soundhw all disk.img
386
qemu -soundhw ?
387
@end example
388

    
389
Note that Linux's i810_audio OSS kernel (for AC97) module might
390
require manually specifying clocking.
391

    
392
@example
393
modprobe i810_audio clocking=48000
394
@end example
395

    
396
@item -localtime
397
Set the real time clock to local time (the default is to UTC
398
time). This option is needed to have correct date in MS-DOS or
399
Windows.
400

    
401
@item -startdate @var{date}
402
Set the initial date of the real time clock. Valid formats for
403
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
404
@code{2006-06-17}. The default value is @code{now}.
405

    
406
@item -pidfile @var{file}
407
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
408
from a script.
409

    
410
@item -daemonize
411
Daemonize the QEMU process after initialization.  QEMU will not detach from
412
standard IO until it is ready to receive connections on any of its devices.
413
This option is a useful way for external programs to launch QEMU without having
414
to cope with initialization race conditions.
415

    
416
@item -win2k-hack
417
Use it when installing Windows 2000 to avoid a disk full bug. After
418
Windows 2000 is installed, you no longer need this option (this option
419
slows down the IDE transfers).
420

    
421
@item -option-rom @var{file}
422
Load the contents of @var{file} as an option ROM.
423
This option is useful to load things like EtherBoot.
424

    
425
@item -name @var{name}
426
Sets the @var{name} of the guest.
427
This name will be displayed in the SDL window caption.
428
The @var{name} will also be used for the VNC server.
429

    
430
@end table
431

    
432
Display options:
433
@table @option
434

    
435
@item -nographic
436

    
437
Normally, QEMU uses SDL to display the VGA output. With this option,
438
you can totally disable graphical output so that QEMU is a simple
439
command line application. The emulated serial port is redirected on
440
the console. Therefore, you can still use QEMU to debug a Linux kernel
441
with a serial console.
442

    
443
@item -curses
444

    
445
Normally, QEMU uses SDL to display the VGA output.  With this option,
446
QEMU can display the VGA output when in text mode using a 
447
curses/ncurses interface.  Nothing is displayed in graphical mode.
448

    
449
@item -no-frame
450

    
451
Do not use decorations for SDL windows and start them using the whole
452
available screen space. This makes the using QEMU in a dedicated desktop
453
workspace more convenient.
454

    
455
@item -no-quit
456

    
457
Disable SDL window close capability.
458

    
459
@item -full-screen
460
Start in full screen.
461

    
462
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
463

    
464
Normally, QEMU uses SDL to display the VGA output.  With this option,
465
you can have QEMU listen on VNC display @var{display} and redirect the VGA
466
display over the VNC session.  It is very useful to enable the usb
467
tablet device when using this option (option @option{-usbdevice
468
tablet}). When using the VNC display, you must use the @option{-k}
469
parameter to set the keyboard layout if you are not using en-us. Valid
470
syntax for the @var{display} is
471

    
472
@table @code
473

    
474
@item @var{host}:@var{d}
475

    
476
TCP connections will only be allowed from @var{host} on display @var{d}.
477
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
478
be omitted in which case the server will accept connections from any host.
479

    
480
@item @code{unix}:@var{path}
481

    
482
Connections will be allowed over UNIX domain sockets where @var{path} is the
483
location of a unix socket to listen for connections on.
484

    
485
@item none
486

    
487
VNC is initialized but not started. The monitor @code{change} command
488
can be used to later start the VNC server.
489

    
490
@end table
491

    
492
Following the @var{display} value there may be one or more @var{option} flags
493
separated by commas. Valid options are
494

    
495
@table @code
496

    
497
@item reverse
498

    
499
Connect to a listening VNC client via a ``reverse'' connection. The
500
client is specified by the @var{display}. For reverse network
501
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
502
is a TCP port number, not a display number.
503

    
504
@item password
505

    
506
Require that password based authentication is used for client connections.
507
The password must be set separately using the @code{change} command in the
508
@ref{pcsys_monitor}
509

    
510
@item tls
511

    
512
Require that client use TLS when communicating with the VNC server. This
513
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
514
attack. It is recommended that this option be combined with either the
515
@var{x509} or @var{x509verify} options.
516

    
517
@item x509=@var{/path/to/certificate/dir}
518

    
519
Valid if @option{tls} is specified. Require that x509 credentials are used
520
for negotiating the TLS session. The server will send its x509 certificate
521
to the client. It is recommended that a password be set on the VNC server
522
to provide authentication of the client when this is used. The path following
523
this option specifies where the x509 certificates are to be loaded from.
524
See the @ref{vnc_security} section for details on generating certificates.
525

    
526
@item x509verify=@var{/path/to/certificate/dir}
527

    
528
Valid if @option{tls} is specified. Require that x509 credentials are used
529
for negotiating the TLS session. The server will send its x509 certificate
530
to the client, and request that the client send its own x509 certificate.
531
The server will validate the client's certificate against the CA certificate,
532
and reject clients when validation fails. If the certificate authority is
533
trusted, this is a sufficient authentication mechanism. You may still wish
534
to set a password on the VNC server as a second authentication layer. The
535
path following this option specifies where the x509 certificates are to
536
be loaded from. See the @ref{vnc_security} section for details on generating
537
certificates.
538

    
539
@end table
540

    
541
@item -k @var{language}
542

    
543
Use keyboard layout @var{language} (for example @code{fr} for
544
French). This option is only needed where it is not easy to get raw PC
545
keycodes (e.g. on Macs, with some X11 servers or with a VNC
546
display). You don't normally need to use it on PC/Linux or PC/Windows
547
hosts.
548

    
549
The available layouts are:
550
@example
551
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
552
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
553
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
554
@end example
555

    
556
The default is @code{en-us}.
557

    
558
@end table
559

    
560
USB options:
561
@table @option
562

    
563
@item -usb
564
Enable the USB driver (will be the default soon)
565

    
566
@item -usbdevice @var{devname}
567
Add the USB device @var{devname}. @xref{usb_devices}.
568

    
569
@table @code
570

    
571
@item mouse
572
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
573

    
574
@item tablet
575
Pointer device that uses absolute coordinates (like a touchscreen). This
576
means qemu is able to report the mouse position without having to grab the
577
mouse. Also overrides the PS/2 mouse emulation when activated.
578

    
579
@item disk:[format=@var{format}]:file
580
Mass storage device based on file. The optional @var{format} argument
581
will be used rather than detecting the format. Can be used to specifiy
582
format=raw to avoid interpreting an untrusted format header.
583

    
584
@item host:bus.addr
585
Pass through the host device identified by bus.addr (Linux only).
586

    
587
@item host:vendor_id:product_id
588
Pass through the host device identified by vendor_id:product_id (Linux only).
589

    
590
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
591
Serial converter to host character device @var{dev}, see @code{-serial} for the
592
available devices.
593

    
594
@item braille
595
Braille device.  This will use BrlAPI to display the braille output on a real
596
or fake device.
597

    
598
@item net:options
599
Network adapter that supports CDC ethernet and RNDIS protocols.
600

    
601
@end table
602

    
603
@end table
604

    
605
Network options:
606

    
607
@table @option
608

    
609
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
610
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
611
= 0 is the default). The NIC is an ne2k_pci by default on the PC
612
target. Optionally, the MAC address can be changed. If no
613
@option{-net} option is specified, a single NIC is created.
614
Qemu can emulate several different models of network card.
615
Valid values for @var{type} are
616
@code{i82551}, @code{i82557b}, @code{i82559er},
617
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
618
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
619
Not all devices are supported on all targets.  Use -net nic,model=?
620
for a list of available devices for your target.
621

    
622
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
623
Use the user mode network stack which requires no administrator
624
privilege to run.  @option{hostname=name} can be used to specify the client
625
hostname reported by the builtin DHCP server.
626

    
627
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
628
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
629
the network script @var{file} to configure it and the network script 
630
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
631
automatically provides one. @option{fd}=@var{h} can be used to specify
632
the handle of an already opened host TAP interface. The default network 
633
configure script is @file{/etc/qemu-ifup} and the default network 
634
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
635
or @option{downscript=no} to disable script execution. Example:
636

    
637
@example
638
qemu linux.img -net nic -net tap
639
@end example
640

    
641
More complicated example (two NICs, each one connected to a TAP device)
642
@example
643
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
644
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
645
@end example
646

    
647

    
648
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
649

    
650
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
651
machine using a TCP socket connection. If @option{listen} is
652
specified, QEMU waits for incoming connections on @var{port}
653
(@var{host} is optional). @option{connect} is used to connect to
654
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
655
specifies an already opened TCP socket.
656

    
657
Example:
658
@example
659
# launch a first QEMU instance
660
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
661
               -net socket,listen=:1234
662
# connect the VLAN 0 of this instance to the VLAN 0
663
# of the first instance
664
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
665
               -net socket,connect=127.0.0.1:1234
666
@end example
667

    
668
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
669

    
670
Create a VLAN @var{n} shared with another QEMU virtual
671
machines using a UDP multicast socket, effectively making a bus for
672
every QEMU with same multicast address @var{maddr} and @var{port}.
673
NOTES:
674
@enumerate
675
@item
676
Several QEMU can be running on different hosts and share same bus (assuming
677
correct multicast setup for these hosts).
678
@item
679
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
680
@url{http://user-mode-linux.sf.net}.
681
@item
682
Use @option{fd=h} to specify an already opened UDP multicast socket.
683
@end enumerate
684

    
685
Example:
686
@example
687
# launch one QEMU instance
688
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
689
               -net socket,mcast=230.0.0.1:1234
690
# launch another QEMU instance on same "bus"
691
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
692
               -net socket,mcast=230.0.0.1:1234
693
# launch yet another QEMU instance on same "bus"
694
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
695
               -net socket,mcast=230.0.0.1:1234
696
@end example
697

    
698
Example (User Mode Linux compat.):
699
@example
700
# launch QEMU instance (note mcast address selected
701
# is UML's default)
702
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
703
               -net socket,mcast=239.192.168.1:1102
704
# launch UML
705
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
706
@end example
707

    
708
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
709
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
710
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
711
and MODE @var{octalmode} to change default ownership and permissions for
712
communication port. This option is available only if QEMU has been compiled
713
with vde support enabled.
714

    
715
Example:
716
@example
717
# launch vde switch
718
vde_switch -F -sock /tmp/myswitch
719
# launch QEMU instance
720
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
721
@end example
722

    
723
@item -net none
724
Indicate that no network devices should be configured. It is used to
725
override the default configuration (@option{-net nic -net user}) which
726
is activated if no @option{-net} options are provided.
727

    
728
@item -tftp @var{dir}
729
When using the user mode network stack, activate a built-in TFTP
730
server. The files in @var{dir} will be exposed as the root of a TFTP server.
731
The TFTP client on the guest must be configured in binary mode (use the command
732
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
733
usual 10.0.2.2.
734

    
735
@item -bootp @var{file}
736
When using the user mode network stack, broadcast @var{file} as the BOOTP
737
filename.  In conjunction with @option{-tftp}, this can be used to network boot
738
a guest from a local directory.
739

    
740
Example (using pxelinux):
741
@example
742
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
743
@end example
744

    
745
@item -smb @var{dir}
746
When using the user mode network stack, activate a built-in SMB
747
server so that Windows OSes can access to the host files in @file{@var{dir}}
748
transparently.
749

    
750
In the guest Windows OS, the line:
751
@example
752
10.0.2.4 smbserver
753
@end example
754
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
755
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
756

    
757
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
758

    
759
Note that a SAMBA server must be installed on the host OS in
760
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
761
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
762

    
763
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
764

    
765
When using the user mode network stack, redirect incoming TCP or UDP
766
connections to the host port @var{host-port} to the guest
767
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
768
is not specified, its value is 10.0.2.15 (default address given by the
769
built-in DHCP server).
770

    
771
For example, to redirect host X11 connection from screen 1 to guest
772
screen 0, use the following:
773

    
774
@example
775
# on the host
776
qemu -redir tcp:6001::6000 [...]
777
# this host xterm should open in the guest X11 server
778
xterm -display :1
779
@end example
780

    
781
To redirect telnet connections from host port 5555 to telnet port on
782
the guest, use the following:
783

    
784
@example
785
# on the host
786
qemu -redir tcp:5555::23 [...]
787
telnet localhost 5555
788
@end example
789

    
790
Then when you use on the host @code{telnet localhost 5555}, you
791
connect to the guest telnet server.
792

    
793
@end table
794

    
795
Bluetooth(R) options:
796
@table @option
797

    
798
@item -bt hci[...]
799
Defines the function of the corresponding Bluetooth HCI.  -bt options
800
are matched with the HCIs present in the chosen machine type.  For
801
example when emulating a machine with only one HCI built into it, only
802
the first @code{-bt hci[...]} option is valid and defines the HCI's
803
logic.  The Transport Layer is decided by the machine type.  Currently
804
the machines @code{n800} and @code{n810} have one HCI and all other
805
machines have none.
806

    
807
@anchor{bt-hcis}
808
The following three types are recognized:
809

    
810
@table @code
811
@item -bt hci,null
812
(default) The corresponding Bluetooth HCI assumes no internal logic
813
and will not respond to any HCI commands or emit events.
814

    
815
@item -bt hci,host[:@var{id}]
816
(@code{bluez} only) The corresponding HCI passes commands / events
817
to / from the physical HCI identified by the name @var{id} (default:
818
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
819
capable systems like Linux.
820

    
821
@item -bt hci[,vlan=@var{n}]
822
Add a virtual, standard HCI that will participate in the Bluetooth
823
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
824
VLANs, devices inside a bluetooth network @var{n} can only communicate
825
with other devices in the same network (scatternet).
826
@end table
827

    
828
@item -bt vhci[,vlan=@var{n}]
829
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
830
to the host bluetooth stack instead of to the emulated target.  This
831
allows the host and target machines to participate in a common scatternet
832
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
833
be used as following:
834

    
835
@example
836
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
837
@end example
838

    
839
@item -bt device:@var{dev}[,vlan=@var{n}]
840
Emulate a bluetooth device @var{dev} and place it in network @var{n}
841
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
842
currently:
843

    
844
@table @code
845
@item keyboard
846
Virtual wireless keyboard implementing the HIDP bluetooth profile.
847
@end table
848

    
849
@end table
850

    
851
Linux boot specific: When using these options, you can use a given
852
Linux kernel without installing it in the disk image. It can be useful
853
for easier testing of various kernels.
854

    
855
@table @option
856

    
857
@item -kernel @var{bzImage}
858
Use @var{bzImage} as kernel image.
859

    
860
@item -append @var{cmdline}
861
Use @var{cmdline} as kernel command line
862

    
863
@item -initrd @var{file}
864
Use @var{file} as initial ram disk.
865

    
866
@end table
867

    
868
Debug/Expert options:
869
@table @option
870

    
871
@item -serial @var{dev}
872
Redirect the virtual serial port to host character device
873
@var{dev}. The default device is @code{vc} in graphical mode and
874
@code{stdio} in non graphical mode.
875

    
876
This option can be used several times to simulate up to 4 serials
877
ports.
878

    
879
Use @code{-serial none} to disable all serial ports.
880

    
881
Available character devices are:
882
@table @code
883
@item vc[:WxH]
884
Virtual console. Optionally, a width and height can be given in pixel with
885
@example
886
vc:800x600
887
@end example
888
It is also possible to specify width or height in characters:
889
@example
890
vc:80Cx24C
891
@end example
892
@item pty
893
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
894
@item none
895
No device is allocated.
896
@item null
897
void device
898
@item /dev/XXX
899
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
900
parameters are set according to the emulated ones.
901
@item /dev/parport@var{N}
902
[Linux only, parallel port only] Use host parallel port
903
@var{N}. Currently SPP and EPP parallel port features can be used.
904
@item file:@var{filename}
905
Write output to @var{filename}. No character can be read.
906
@item stdio
907
[Unix only] standard input/output
908
@item pipe:@var{filename}
909
name pipe @var{filename}
910
@item COM@var{n}
911
[Windows only] Use host serial port @var{n}
912
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
913
This implements UDP Net Console.
914
When @var{remote_host} or @var{src_ip} are not specified
915
they default to @code{0.0.0.0}.
916
When not using a specified @var{src_port} a random port is automatically chosen.
917

    
918
If you just want a simple readonly console you can use @code{netcat} or
919
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
920
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
921
will appear in the netconsole session.
922

    
923
If you plan to send characters back via netconsole or you want to stop
924
and start qemu a lot of times, you should have qemu use the same
925
source port each time by using something like @code{-serial
926
udp::4555@@:4556} to qemu. Another approach is to use a patched
927
version of netcat which can listen to a TCP port and send and receive
928
characters via udp.  If you have a patched version of netcat which
929
activates telnet remote echo and single char transfer, then you can
930
use the following options to step up a netcat redirector to allow
931
telnet on port 5555 to access the qemu port.
932
@table @code
933
@item Qemu Options:
934
-serial udp::4555@@:4556
935
@item netcat options:
936
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
937
@item telnet options:
938
localhost 5555
939
@end table
940

    
941

    
942
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
943
The TCP Net Console has two modes of operation.  It can send the serial
944
I/O to a location or wait for a connection from a location.  By default
945
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
946
the @var{server} option QEMU will wait for a client socket application
947
to connect to the port before continuing, unless the @code{nowait}
948
option was specified.  The @code{nodelay} option disables the Nagle buffering
949
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
950
one TCP connection at a time is accepted. You can use @code{telnet} to
951
connect to the corresponding character device.
952
@table @code
953
@item Example to send tcp console to 192.168.0.2 port 4444
954
-serial tcp:192.168.0.2:4444
955
@item Example to listen and wait on port 4444 for connection
956
-serial tcp::4444,server
957
@item Example to not wait and listen on ip 192.168.0.100 port 4444
958
-serial tcp:192.168.0.100:4444,server,nowait
959
@end table
960

    
961
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
962
The telnet protocol is used instead of raw tcp sockets.  The options
963
work the same as if you had specified @code{-serial tcp}.  The
964
difference is that the port acts like a telnet server or client using
965
telnet option negotiation.  This will also allow you to send the
966
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
967
sequence.  Typically in unix telnet you do it with Control-] and then
968
type "send break" followed by pressing the enter key.
969

    
970
@item unix:@var{path}[,server][,nowait]
971
A unix domain socket is used instead of a tcp socket.  The option works the
972
same as if you had specified @code{-serial tcp} except the unix domain socket
973
@var{path} is used for connections.
974

    
975
@item mon:@var{dev_string}
976
This is a special option to allow the monitor to be multiplexed onto
977
another serial port.  The monitor is accessed with key sequence of
978
@key{Control-a} and then pressing @key{c}. See monitor access
979
@ref{pcsys_keys} in the -nographic section for more keys.
980
@var{dev_string} should be any one of the serial devices specified
981
above.  An example to multiplex the monitor onto a telnet server
982
listening on port 4444 would be:
983
@table @code
984
@item -serial mon:telnet::4444,server,nowait
985
@end table
986

    
987
@item braille
988
Braille device.  This will use BrlAPI to display the braille output on a real
989
or fake device.
990

    
991
@end table
992

    
993
@item -parallel @var{dev}
994
Redirect the virtual parallel port to host device @var{dev} (same
995
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
996
be used to use hardware devices connected on the corresponding host
997
parallel port.
998

    
999
This option can be used several times to simulate up to 3 parallel
1000
ports.
1001

    
1002
Use @code{-parallel none} to disable all parallel ports.
1003

    
1004
@item -monitor @var{dev}
1005
Redirect the monitor to host device @var{dev} (same devices as the
1006
serial port).
1007
The default device is @code{vc} in graphical mode and @code{stdio} in
1008
non graphical mode.
1009

    
1010
@item -echr numeric_ascii_value
1011
Change the escape character used for switching to the monitor when using
1012
monitor and serial sharing.  The default is @code{0x01} when using the
1013
@code{-nographic} option.  @code{0x01} is equal to pressing
1014
@code{Control-a}.  You can select a different character from the ascii
1015
control keys where 1 through 26 map to Control-a through Control-z.  For
1016
instance you could use the either of the following to change the escape
1017
character to Control-t.
1018
@table @code
1019
@item -echr 0x14
1020
@item -echr 20
1021
@end table
1022

    
1023
@item -s
1024
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1025
@item -p @var{port}
1026
Change gdb connection port.  @var{port} can be either a decimal number
1027
to specify a TCP port, or a host device (same devices as the serial port).
1028
@item -S
1029
Do not start CPU at startup (you must type 'c' in the monitor).
1030
@item -d
1031
Output log in /tmp/qemu.log
1032
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1033
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1034
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1035
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1036
all those parameters. This option is useful for old MS-DOS disk
1037
images.
1038

    
1039
@item -L path
1040
Set the directory for the BIOS, VGA BIOS and keymaps.
1041

    
1042
@item -vga @var{type}
1043
Select type of VGA card to emulate. Valid values for @var{type} are
1044
@table @code
1045
@item cirrus
1046
Cirrus Logic GD5446 Video card. All Windows versions starting from
1047
Windows 95 should recognize and use this graphic card. For optimal
1048
performances, use 16 bit color depth in the guest and the host OS.
1049
(This one is the default)
1050
@item std
1051
Standard VGA card with Bochs VBE extensions.  If your guest OS
1052
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1053
to use high resolution modes (>= 1280x1024x16) then you should use
1054
this option.
1055
@item vmware
1056
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1057
recent XFree86/XOrg server or Windows guest with a driver for this
1058
card.
1059
@end table
1060

    
1061
@item -no-acpi
1062
Disable ACPI (Advanced Configuration and Power Interface) support. Use
1063
it if your guest OS complains about ACPI problems (PC target machine
1064
only).
1065

    
1066
@item -no-reboot
1067
Exit instead of rebooting.
1068

    
1069
@item -no-shutdown
1070
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1071
This allows for instance switching to monitor to commit changes to the
1072
disk image.
1073

    
1074
@item -loadvm file
1075
Start right away with a saved state (@code{loadvm} in monitor)
1076

    
1077
@item -semihosting
1078
Enable semihosting syscall emulation (ARM and M68K target machines only).
1079

    
1080
On ARM this implements the "Angel" interface.
1081
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1082

    
1083
Note that this allows guest direct access to the host filesystem,
1084
so should only be used with trusted guest OS.
1085

    
1086
@item -icount [N|auto]
1087
Enable virtual instruction counter.  The virtual cpu will execute one
1088
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1089
then the virtual cpu speed will be automatically adjusted to keep virtual
1090
time within a few seconds of real time.
1091

    
1092
Note that while this option can give deterministic behavior, it does not
1093
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1094
order cores with complex cache hierarchies.  The number of instructions
1095
executed often has little or no correlation with actual performance.
1096
@end table
1097

    
1098
@c man end
1099

    
1100
@node pcsys_keys
1101
@section Keys
1102

    
1103
@c man begin OPTIONS
1104

    
1105
During the graphical emulation, you can use the following keys:
1106
@table @key
1107
@item Ctrl-Alt-f
1108
Toggle full screen
1109

    
1110
@item Ctrl-Alt-n
1111
Switch to virtual console 'n'. Standard console mappings are:
1112
@table @emph
1113
@item 1
1114
Target system display
1115
@item 2
1116
Monitor
1117
@item 3
1118
Serial port
1119
@end table
1120

    
1121
@item Ctrl-Alt
1122
Toggle mouse and keyboard grab.
1123
@end table
1124

    
1125
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1126
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1127

    
1128
During emulation, if you are using the @option{-nographic} option, use
1129
@key{Ctrl-a h} to get terminal commands:
1130

    
1131
@table @key
1132
@item Ctrl-a h
1133
Print this help
1134
@item Ctrl-a x
1135
Exit emulator
1136
@item Ctrl-a s
1137
Save disk data back to file (if -snapshot)
1138
@item Ctrl-a t
1139
toggle console timestamps
1140
@item Ctrl-a b
1141
Send break (magic sysrq in Linux)
1142
@item Ctrl-a c
1143
Switch between console and monitor
1144
@item Ctrl-a Ctrl-a
1145
Send Ctrl-a
1146
@end table
1147
@c man end
1148

    
1149
@ignore
1150

    
1151
@c man begin SEEALSO
1152
The HTML documentation of QEMU for more precise information and Linux
1153
user mode emulator invocation.
1154
@c man end
1155

    
1156
@c man begin AUTHOR
1157
Fabrice Bellard
1158
@c man end
1159

    
1160
@end ignore
1161

    
1162
@node pcsys_monitor
1163
@section QEMU Monitor
1164

    
1165
The QEMU monitor is used to give complex commands to the QEMU
1166
emulator. You can use it to:
1167

    
1168
@itemize @minus
1169

    
1170
@item
1171
Remove or insert removable media images
1172
(such as CD-ROM or floppies).
1173

    
1174
@item
1175
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1176
from a disk file.
1177

    
1178
@item Inspect the VM state without an external debugger.
1179

    
1180
@end itemize
1181

    
1182
@subsection Commands
1183

    
1184
The following commands are available:
1185

    
1186
@table @option
1187

    
1188
@item help or ? [@var{cmd}]
1189
Show the help for all commands or just for command @var{cmd}.
1190

    
1191
@item commit
1192
Commit changes to the disk images (if -snapshot is used).
1193

    
1194
@item info @var{subcommand}
1195
Show various information about the system state.
1196

    
1197
@table @option
1198
@item info network
1199
show the various VLANs and the associated devices
1200
@item info block
1201
show the block devices
1202
@item info registers
1203
show the cpu registers
1204
@item info history
1205
show the command line history
1206
@item info pci
1207
show emulated PCI device
1208
@item info usb
1209
show USB devices plugged on the virtual USB hub
1210
@item info usbhost
1211
show all USB host devices
1212
@item info capture
1213
show information about active capturing
1214
@item info snapshots
1215
show list of VM snapshots
1216
@item info mice
1217
show which guest mouse is receiving events
1218
@end table
1219

    
1220
@item q or quit
1221
Quit the emulator.
1222

    
1223
@item eject [-f] @var{device}
1224
Eject a removable medium (use -f to force it).
1225

    
1226
@item change @var{device} @var{setting}
1227

    
1228
Change the configuration of a device.
1229

    
1230
@table @option
1231
@item change @var{diskdevice} @var{filename}
1232
Change the medium for a removable disk device to point to @var{filename}. eg
1233

    
1234
@example
1235
(qemu) change ide1-cd0 /path/to/some.iso
1236
@end example
1237

    
1238
@item change vnc @var{display},@var{options}
1239
Change the configuration of the VNC server. The valid syntax for @var{display}
1240
and @var{options} are described at @ref{sec_invocation}. eg
1241

    
1242
@example
1243
(qemu) change vnc localhost:1
1244
@end example
1245

    
1246
@item change vnc password [@var{password}]
1247

    
1248
Change the password associated with the VNC server. If the new password is not
1249
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1250
significant up to 8 letters. eg
1251

    
1252
@example
1253
(qemu) change vnc password
1254
Password: ********
1255
@end example
1256

    
1257
@end table
1258

    
1259
@item screendump @var{filename}
1260
Save screen into PPM image @var{filename}.
1261

    
1262
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1263
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1264
with optional scroll axis @var{dz}.
1265

    
1266
@item mouse_button @var{val}
1267
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1268

    
1269
@item mouse_set @var{index}
1270
Set which mouse device receives events at given @var{index}, index
1271
can be obtained with
1272
@example
1273
info mice
1274
@end example
1275

    
1276
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1277
Capture audio into @var{filename}. Using sample rate @var{frequency}
1278
bits per sample @var{bits} and number of channels @var{channels}.
1279

    
1280
Defaults:
1281
@itemize @minus
1282
@item Sample rate = 44100 Hz - CD quality
1283
@item Bits = 16
1284
@item Number of channels = 2 - Stereo
1285
@end itemize
1286

    
1287
@item stopcapture @var{index}
1288
Stop capture with a given @var{index}, index can be obtained with
1289
@example
1290
info capture
1291
@end example
1292

    
1293
@item log @var{item1}[,...]
1294
Activate logging of the specified items to @file{/tmp/qemu.log}.
1295

    
1296
@item savevm [@var{tag}|@var{id}]
1297
Create a snapshot of the whole virtual machine. If @var{tag} is
1298
provided, it is used as human readable identifier. If there is already
1299
a snapshot with the same tag or ID, it is replaced. More info at
1300
@ref{vm_snapshots}.
1301

    
1302
@item loadvm @var{tag}|@var{id}
1303
Set the whole virtual machine to the snapshot identified by the tag
1304
@var{tag} or the unique snapshot ID @var{id}.
1305

    
1306
@item delvm @var{tag}|@var{id}
1307
Delete the snapshot identified by @var{tag} or @var{id}.
1308

    
1309
@item stop
1310
Stop emulation.
1311

    
1312
@item c or cont
1313
Resume emulation.
1314

    
1315
@item gdbserver [@var{port}]
1316
Start gdbserver session (default @var{port}=1234)
1317

    
1318
@item x/fmt @var{addr}
1319
Virtual memory dump starting at @var{addr}.
1320

    
1321
@item xp /@var{fmt} @var{addr}
1322
Physical memory dump starting at @var{addr}.
1323

    
1324
@var{fmt} is a format which tells the command how to format the
1325
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1326

    
1327
@table @var
1328
@item count
1329
is the number of items to be dumped.
1330

    
1331
@item format
1332
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1333
c (char) or i (asm instruction).
1334

    
1335
@item size
1336
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1337
@code{h} or @code{w} can be specified with the @code{i} format to
1338
respectively select 16 or 32 bit code instruction size.
1339

    
1340
@end table
1341

    
1342
Examples:
1343
@itemize
1344
@item
1345
Dump 10 instructions at the current instruction pointer:
1346
@example
1347
(qemu) x/10i $eip
1348
0x90107063:  ret
1349
0x90107064:  sti
1350
0x90107065:  lea    0x0(%esi,1),%esi
1351
0x90107069:  lea    0x0(%edi,1),%edi
1352
0x90107070:  ret
1353
0x90107071:  jmp    0x90107080
1354
0x90107073:  nop
1355
0x90107074:  nop
1356
0x90107075:  nop
1357
0x90107076:  nop
1358
@end example
1359

    
1360
@item
1361
Dump 80 16 bit values at the start of the video memory.
1362
@smallexample
1363
(qemu) xp/80hx 0xb8000
1364
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1365
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1366
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1367
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1368
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1369
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1370
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1371
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1372
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1373
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1374
@end smallexample
1375
@end itemize
1376

    
1377
@item p or print/@var{fmt} @var{expr}
1378

    
1379
Print expression value. Only the @var{format} part of @var{fmt} is
1380
used.
1381

    
1382
@item sendkey @var{keys}
1383

    
1384
Send @var{keys} to the emulator. @var{keys} could be the name of the
1385
key or @code{#} followed by the raw value in either decimal or hexadecimal
1386
format. Use @code{-} to press several keys simultaneously. Example:
1387
@example
1388
sendkey ctrl-alt-f1
1389
@end example
1390

    
1391
This command is useful to send keys that your graphical user interface
1392
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1393

    
1394
@item system_reset
1395

    
1396
Reset the system.
1397

    
1398
@item boot_set @var{bootdevicelist}
1399

    
1400
Define new values for the boot device list. Those values will override
1401
the values specified on the command line through the @code{-boot} option.
1402

    
1403
The values that can be specified here depend on the machine type, but are
1404
the same that can be specified in the @code{-boot} command line option.
1405

    
1406
@item usb_add @var{devname}
1407

    
1408
Add the USB device @var{devname}.  For details of available devices see
1409
@ref{usb_devices}
1410

    
1411
@item usb_del @var{devname}
1412

    
1413
Remove the USB device @var{devname} from the QEMU virtual USB
1414
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1415
command @code{info usb} to see the devices you can remove.
1416

    
1417
@end table
1418

    
1419
@subsection Integer expressions
1420

    
1421
The monitor understands integers expressions for every integer
1422
argument. You can use register names to get the value of specifics
1423
CPU registers by prefixing them with @emph{$}.
1424

    
1425
@node disk_images
1426
@section Disk Images
1427

    
1428
Since version 0.6.1, QEMU supports many disk image formats, including
1429
growable disk images (their size increase as non empty sectors are
1430
written), compressed and encrypted disk images. Version 0.8.3 added
1431
the new qcow2 disk image format which is essential to support VM
1432
snapshots.
1433

    
1434
@menu
1435
* disk_images_quickstart::    Quick start for disk image creation
1436
* disk_images_snapshot_mode:: Snapshot mode
1437
* vm_snapshots::              VM snapshots
1438
* qemu_img_invocation::       qemu-img Invocation
1439
* qemu_nbd_invocation::       qemu-nbd Invocation
1440
* host_drives::               Using host drives
1441
* disk_images_fat_images::    Virtual FAT disk images
1442
* disk_images_nbd::           NBD access
1443
@end menu
1444

    
1445
@node disk_images_quickstart
1446
@subsection Quick start for disk image creation
1447

    
1448
You can create a disk image with the command:
1449
@example
1450
qemu-img create myimage.img mysize
1451
@end example
1452
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1453
size in kilobytes. You can add an @code{M} suffix to give the size in
1454
megabytes and a @code{G} suffix for gigabytes.
1455

    
1456
See @ref{qemu_img_invocation} for more information.
1457

    
1458
@node disk_images_snapshot_mode
1459
@subsection Snapshot mode
1460

    
1461
If you use the option @option{-snapshot}, all disk images are
1462
considered as read only. When sectors in written, they are written in
1463
a temporary file created in @file{/tmp}. You can however force the
1464
write back to the raw disk images by using the @code{commit} monitor
1465
command (or @key{C-a s} in the serial console).
1466

    
1467
@node vm_snapshots
1468
@subsection VM snapshots
1469

    
1470
VM snapshots are snapshots of the complete virtual machine including
1471
CPU state, RAM, device state and the content of all the writable
1472
disks. In order to use VM snapshots, you must have at least one non
1473
removable and writable block device using the @code{qcow2} disk image
1474
format. Normally this device is the first virtual hard drive.
1475

    
1476
Use the monitor command @code{savevm} to create a new VM snapshot or
1477
replace an existing one. A human readable name can be assigned to each
1478
snapshot in addition to its numerical ID.
1479

    
1480
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1481
a VM snapshot. @code{info snapshots} lists the available snapshots
1482
with their associated information:
1483

    
1484
@example
1485
(qemu) info snapshots
1486
Snapshot devices: hda
1487
Snapshot list (from hda):
1488
ID        TAG                 VM SIZE                DATE       VM CLOCK
1489
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1490
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1491
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1492
@end example
1493

    
1494
A VM snapshot is made of a VM state info (its size is shown in
1495
@code{info snapshots}) and a snapshot of every writable disk image.
1496
The VM state info is stored in the first @code{qcow2} non removable
1497
and writable block device. The disk image snapshots are stored in
1498
every disk image. The size of a snapshot in a disk image is difficult
1499
to evaluate and is not shown by @code{info snapshots} because the
1500
associated disk sectors are shared among all the snapshots to save
1501
disk space (otherwise each snapshot would need a full copy of all the
1502
disk images).
1503

    
1504
When using the (unrelated) @code{-snapshot} option
1505
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1506
but they are deleted as soon as you exit QEMU.
1507

    
1508
VM snapshots currently have the following known limitations:
1509
@itemize
1510
@item
1511
They cannot cope with removable devices if they are removed or
1512
inserted after a snapshot is done.
1513
@item
1514
A few device drivers still have incomplete snapshot support so their
1515
state is not saved or restored properly (in particular USB).
1516
@end itemize
1517

    
1518
@node qemu_img_invocation
1519
@subsection @code{qemu-img} Invocation
1520

    
1521
@include qemu-img.texi
1522

    
1523
@node qemu_nbd_invocation
1524
@subsection @code{qemu-nbd} Invocation
1525

    
1526
@include qemu-nbd.texi
1527

    
1528
@node host_drives
1529
@subsection Using host drives
1530

    
1531
In addition to disk image files, QEMU can directly access host
1532
devices. We describe here the usage for QEMU version >= 0.8.3.
1533

    
1534
@subsubsection Linux
1535

    
1536
On Linux, you can directly use the host device filename instead of a
1537
disk image filename provided you have enough privileges to access
1538
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1539
@file{/dev/fd0} for the floppy.
1540

    
1541
@table @code
1542
@item CD
1543
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1544
specific code to detect CDROM insertion or removal. CDROM ejection by
1545
the guest OS is supported. Currently only data CDs are supported.
1546
@item Floppy
1547
You can specify a floppy device even if no floppy is loaded. Floppy
1548
removal is currently not detected accurately (if you change floppy
1549
without doing floppy access while the floppy is not loaded, the guest
1550
OS will think that the same floppy is loaded).
1551
@item Hard disks
1552
Hard disks can be used. Normally you must specify the whole disk
1553
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1554
see it as a partitioned disk. WARNING: unless you know what you do, it
1555
is better to only make READ-ONLY accesses to the hard disk otherwise
1556
you may corrupt your host data (use the @option{-snapshot} command
1557
line option or modify the device permissions accordingly).
1558
@end table
1559

    
1560
@subsubsection Windows
1561

    
1562
@table @code
1563
@item CD
1564
The preferred syntax is the drive letter (e.g. @file{d:}). The
1565
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1566
supported as an alias to the first CDROM drive.
1567

    
1568
Currently there is no specific code to handle removable media, so it
1569
is better to use the @code{change} or @code{eject} monitor commands to
1570
change or eject media.
1571
@item Hard disks
1572
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1573
where @var{N} is the drive number (0 is the first hard disk).
1574

    
1575
WARNING: unless you know what you do, it is better to only make
1576
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1577
host data (use the @option{-snapshot} command line so that the
1578
modifications are written in a temporary file).
1579
@end table
1580

    
1581

    
1582
@subsubsection Mac OS X
1583

    
1584
@file{/dev/cdrom} is an alias to the first CDROM.
1585

    
1586
Currently there is no specific code to handle removable media, so it
1587
is better to use the @code{change} or @code{eject} monitor commands to
1588
change or eject media.
1589

    
1590
@node disk_images_fat_images
1591
@subsection Virtual FAT disk images
1592

    
1593
QEMU can automatically create a virtual FAT disk image from a
1594
directory tree. In order to use it, just type:
1595

    
1596
@example
1597
qemu linux.img -hdb fat:/my_directory
1598
@end example
1599

    
1600
Then you access access to all the files in the @file{/my_directory}
1601
directory without having to copy them in a disk image or to export
1602
them via SAMBA or NFS. The default access is @emph{read-only}.
1603

    
1604
Floppies can be emulated with the @code{:floppy:} option:
1605

    
1606
@example
1607
qemu linux.img -fda fat:floppy:/my_directory
1608
@end example
1609

    
1610
A read/write support is available for testing (beta stage) with the
1611
@code{:rw:} option:
1612

    
1613
@example
1614
qemu linux.img -fda fat:floppy:rw:/my_directory
1615
@end example
1616

    
1617
What you should @emph{never} do:
1618
@itemize
1619
@item use non-ASCII filenames ;
1620
@item use "-snapshot" together with ":rw:" ;
1621
@item expect it to work when loadvm'ing ;
1622
@item write to the FAT directory on the host system while accessing it with the guest system.
1623
@end itemize
1624

    
1625
@node disk_images_nbd
1626
@subsection NBD access
1627

    
1628
QEMU can access directly to block device exported using the Network Block Device
1629
protocol.
1630

    
1631
@example
1632
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1633
@end example
1634

    
1635
If the NBD server is located on the same host, you can use an unix socket instead
1636
of an inet socket:
1637

    
1638
@example
1639
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1640
@end example
1641

    
1642
In this case, the block device must be exported using qemu-nbd:
1643

    
1644
@example
1645
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1646
@end example
1647

    
1648
The use of qemu-nbd allows to share a disk between several guests:
1649
@example
1650
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1651
@end example
1652

    
1653
and then you can use it with two guests:
1654
@example
1655
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1656
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1657
@end example
1658

    
1659
@node pcsys_network
1660
@section Network emulation
1661

    
1662
QEMU can simulate several network cards (PCI or ISA cards on the PC
1663
target) and can connect them to an arbitrary number of Virtual Local
1664
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1665
VLAN. VLAN can be connected between separate instances of QEMU to
1666
simulate large networks. For simpler usage, a non privileged user mode
1667
network stack can replace the TAP device to have a basic network
1668
connection.
1669

    
1670
@subsection VLANs
1671

    
1672
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1673
connection between several network devices. These devices can be for
1674
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1675
(TAP devices).
1676

    
1677
@subsection Using TAP network interfaces
1678

    
1679
This is the standard way to connect QEMU to a real network. QEMU adds
1680
a virtual network device on your host (called @code{tapN}), and you
1681
can then configure it as if it was a real ethernet card.
1682

    
1683
@subsubsection Linux host
1684

    
1685
As an example, you can download the @file{linux-test-xxx.tar.gz}
1686
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1687
configure properly @code{sudo} so that the command @code{ifconfig}
1688
contained in @file{qemu-ifup} can be executed as root. You must verify
1689
that your host kernel supports the TAP network interfaces: the
1690
device @file{/dev/net/tun} must be present.
1691

    
1692
See @ref{sec_invocation} to have examples of command lines using the
1693
TAP network interfaces.
1694

    
1695
@subsubsection Windows host
1696

    
1697
There is a virtual ethernet driver for Windows 2000/XP systems, called
1698
TAP-Win32. But it is not included in standard QEMU for Windows,
1699
so you will need to get it separately. It is part of OpenVPN package,
1700
so download OpenVPN from : @url{http://openvpn.net/}.
1701

    
1702
@subsection Using the user mode network stack
1703

    
1704
By using the option @option{-net user} (default configuration if no
1705
@option{-net} option is specified), QEMU uses a completely user mode
1706
network stack (you don't need root privilege to use the virtual
1707
network). The virtual network configuration is the following:
1708

    
1709
@example
1710

    
1711
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1712
                           |          (10.0.2.2)
1713
                           |
1714
                           ---->  DNS server (10.0.2.3)
1715
                           |
1716
                           ---->  SMB server (10.0.2.4)
1717
@end example
1718

    
1719
The QEMU VM behaves as if it was behind a firewall which blocks all
1720
incoming connections. You can use a DHCP client to automatically
1721
configure the network in the QEMU VM. The DHCP server assign addresses
1722
to the hosts starting from 10.0.2.15.
1723

    
1724
In order to check that the user mode network is working, you can ping
1725
the address 10.0.2.2 and verify that you got an address in the range
1726
10.0.2.x from the QEMU virtual DHCP server.
1727

    
1728
Note that @code{ping} is not supported reliably to the internet as it
1729
would require root privileges. It means you can only ping the local
1730
router (10.0.2.2).
1731

    
1732
When using the built-in TFTP server, the router is also the TFTP
1733
server.
1734

    
1735
When using the @option{-redir} option, TCP or UDP connections can be
1736
redirected from the host to the guest. It allows for example to
1737
redirect X11, telnet or SSH connections.
1738

    
1739
@subsection Connecting VLANs between QEMU instances
1740

    
1741
Using the @option{-net socket} option, it is possible to make VLANs
1742
that span several QEMU instances. See @ref{sec_invocation} to have a
1743
basic example.
1744

    
1745
@node direct_linux_boot
1746
@section Direct Linux Boot
1747

    
1748
This section explains how to launch a Linux kernel inside QEMU without
1749
having to make a full bootable image. It is very useful for fast Linux
1750
kernel testing.
1751

    
1752
The syntax is:
1753
@example
1754
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1755
@end example
1756

    
1757
Use @option{-kernel} to provide the Linux kernel image and
1758
@option{-append} to give the kernel command line arguments. The
1759
@option{-initrd} option can be used to provide an INITRD image.
1760

    
1761
When using the direct Linux boot, a disk image for the first hard disk
1762
@file{hda} is required because its boot sector is used to launch the
1763
Linux kernel.
1764

    
1765
If you do not need graphical output, you can disable it and redirect
1766
the virtual serial port and the QEMU monitor to the console with the
1767
@option{-nographic} option. The typical command line is:
1768
@example
1769
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1770
     -append "root=/dev/hda console=ttyS0" -nographic
1771
@end example
1772

    
1773
Use @key{Ctrl-a c} to switch between the serial console and the
1774
monitor (@pxref{pcsys_keys}).
1775

    
1776
@node pcsys_usb
1777
@section USB emulation
1778

    
1779
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1780
virtual USB devices or real host USB devices (experimental, works only
1781
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1782
as necessary to connect multiple USB devices.
1783

    
1784
@menu
1785
* usb_devices::
1786
* host_usb_devices::
1787
@end menu
1788
@node usb_devices
1789
@subsection Connecting USB devices
1790

    
1791
USB devices can be connected with the @option{-usbdevice} commandline option
1792
or the @code{usb_add} monitor command.  Available devices are:
1793

    
1794
@table @code
1795
@item mouse
1796
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1797
@item tablet
1798
Pointer device that uses absolute coordinates (like a touchscreen).
1799
This means qemu is able to report the mouse position without having
1800
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1801
@item disk:@var{file}
1802
Mass storage device based on @var{file} (@pxref{disk_images})
1803
@item host:@var{bus.addr}
1804
Pass through the host device identified by @var{bus.addr}
1805
(Linux only)
1806
@item host:@var{vendor_id:product_id}
1807
Pass through the host device identified by @var{vendor_id:product_id}
1808
(Linux only)
1809
@item wacom-tablet
1810
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1811
above but it can be used with the tslib library because in addition to touch
1812
coordinates it reports touch pressure.
1813
@item keyboard
1814
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1815
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1816
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1817
device @var{dev}. The available character devices are the same as for the
1818
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1819
used to override the default 0403:6001. For instance, 
1820
@example
1821
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1822
@end example
1823
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1824
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1825
@item braille
1826
Braille device.  This will use BrlAPI to display the braille output on a real
1827
or fake device.
1828
@item net:@var{options}
1829
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1830
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1831
For instance, user-mode networking can be used with
1832
@example
1833
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1834
@end example
1835
Currently this cannot be used in machines that support PCI NICs.
1836
@item bt[:@var{hci-type}]
1837
Bluetooth dongle whose type is specified in the same format as with
1838
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1839
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1840
This USB device implements the USB Transport Layer of HCI.  Example
1841
usage:
1842
@example
1843
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1844
@end example
1845
@end table
1846

    
1847
@node host_usb_devices
1848
@subsection Using host USB devices on a Linux host
1849

    
1850
WARNING: this is an experimental feature. QEMU will slow down when
1851
using it. USB devices requiring real time streaming (i.e. USB Video
1852
Cameras) are not supported yet.
1853

    
1854
@enumerate
1855
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1856
is actually using the USB device. A simple way to do that is simply to
1857
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1858
to @file{mydriver.o.disabled}.
1859

    
1860
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1861
@example
1862
ls /proc/bus/usb
1863
001  devices  drivers
1864
@end example
1865

    
1866
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1867
@example
1868
chown -R myuid /proc/bus/usb
1869
@end example
1870

    
1871
@item Launch QEMU and do in the monitor:
1872
@example
1873
info usbhost
1874
  Device 1.2, speed 480 Mb/s
1875
    Class 00: USB device 1234:5678, USB DISK
1876
@end example
1877
You should see the list of the devices you can use (Never try to use
1878
hubs, it won't work).
1879

    
1880
@item Add the device in QEMU by using:
1881
@example
1882
usb_add host:1234:5678
1883
@end example
1884

    
1885
Normally the guest OS should report that a new USB device is
1886
plugged. You can use the option @option{-usbdevice} to do the same.
1887

    
1888
@item Now you can try to use the host USB device in QEMU.
1889

    
1890
@end enumerate
1891

    
1892
When relaunching QEMU, you may have to unplug and plug again the USB
1893
device to make it work again (this is a bug).
1894

    
1895
@node vnc_security
1896
@section VNC security
1897

    
1898
The VNC server capability provides access to the graphical console
1899
of the guest VM across the network. This has a number of security
1900
considerations depending on the deployment scenarios.
1901

    
1902
@menu
1903
* vnc_sec_none::
1904
* vnc_sec_password::
1905
* vnc_sec_certificate::
1906
* vnc_sec_certificate_verify::
1907
* vnc_sec_certificate_pw::
1908
* vnc_generate_cert::
1909
@end menu
1910
@node vnc_sec_none
1911
@subsection Without passwords
1912

    
1913
The simplest VNC server setup does not include any form of authentication.
1914
For this setup it is recommended to restrict it to listen on a UNIX domain
1915
socket only. For example
1916

    
1917
@example
1918
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1919
@end example
1920

    
1921
This ensures that only users on local box with read/write access to that
1922
path can access the VNC server. To securely access the VNC server from a
1923
remote machine, a combination of netcat+ssh can be used to provide a secure
1924
tunnel.
1925

    
1926
@node vnc_sec_password
1927
@subsection With passwords
1928

    
1929
The VNC protocol has limited support for password based authentication. Since
1930
the protocol limits passwords to 8 characters it should not be considered
1931
to provide high security. The password can be fairly easily brute-forced by
1932
a client making repeat connections. For this reason, a VNC server using password
1933
authentication should be restricted to only listen on the loopback interface
1934
or UNIX domain sockets. Password authentication is requested with the @code{password}
1935
option, and then once QEMU is running the password is set with the monitor. Until
1936
the monitor is used to set the password all clients will be rejected.
1937

    
1938
@example
1939
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1940
(qemu) change vnc password
1941
Password: ********
1942
(qemu)
1943
@end example
1944

    
1945
@node vnc_sec_certificate
1946
@subsection With x509 certificates
1947

    
1948
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1949
TLS for encryption of the session, and x509 certificates for authentication.
1950
The use of x509 certificates is strongly recommended, because TLS on its
1951
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1952
support provides a secure session, but no authentication. This allows any
1953
client to connect, and provides an encrypted session.
1954

    
1955
@example
1956
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1957
@end example
1958

    
1959
In the above example @code{/etc/pki/qemu} should contain at least three files,
1960
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1961
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1962
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1963
only be readable by the user owning it.
1964

    
1965
@node vnc_sec_certificate_verify
1966
@subsection With x509 certificates and client verification
1967

    
1968
Certificates can also provide a means to authenticate the client connecting.
1969
The server will request that the client provide a certificate, which it will
1970
then validate against the CA certificate. This is a good choice if deploying
1971
in an environment with a private internal certificate authority.
1972

    
1973
@example
1974
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1975
@end example
1976

    
1977

    
1978
@node vnc_sec_certificate_pw
1979
@subsection With x509 certificates, client verification and passwords
1980

    
1981
Finally, the previous method can be combined with VNC password authentication
1982
to provide two layers of authentication for clients.
1983

    
1984
@example
1985
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1986
(qemu) change vnc password
1987
Password: ********
1988
(qemu)
1989
@end example
1990

    
1991
@node vnc_generate_cert
1992
@subsection Generating certificates for VNC
1993

    
1994
The GNU TLS packages provides a command called @code{certtool} which can
1995
be used to generate certificates and keys in PEM format. At a minimum it
1996
is neccessary to setup a certificate authority, and issue certificates to
1997
each server. If using certificates for authentication, then each client
1998
will also need to be issued a certificate. The recommendation is for the
1999
server to keep its certificates in either @code{/etc/pki/qemu} or for
2000
unprivileged users in @code{$HOME/.pki/qemu}.
2001

    
2002
@menu
2003
* vnc_generate_ca::
2004
* vnc_generate_server::
2005
* vnc_generate_client::
2006
@end menu
2007
@node vnc_generate_ca
2008
@subsubsection Setup the Certificate Authority
2009

    
2010
This step only needs to be performed once per organization / organizational
2011
unit. First the CA needs a private key. This key must be kept VERY secret
2012
and secure. If this key is compromised the entire trust chain of the certificates
2013
issued with it is lost.
2014

    
2015
@example
2016
# certtool --generate-privkey > ca-key.pem
2017
@end example
2018

    
2019
A CA needs to have a public certificate. For simplicity it can be a self-signed
2020
certificate, or one issue by a commercial certificate issuing authority. To
2021
generate a self-signed certificate requires one core piece of information, the
2022
name of the organization.
2023

    
2024
@example
2025
# cat > ca.info <<EOF
2026
cn = Name of your organization
2027
ca
2028
cert_signing_key
2029
EOF
2030
# certtool --generate-self-signed \
2031
           --load-privkey ca-key.pem
2032
           --template ca.info \
2033
           --outfile ca-cert.pem
2034
@end example
2035

    
2036
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2037
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2038

    
2039
@node vnc_generate_server
2040
@subsubsection Issuing server certificates
2041

    
2042
Each server (or host) needs to be issued with a key and certificate. When connecting
2043
the certificate is sent to the client which validates it against the CA certificate.
2044
The core piece of information for a server certificate is the hostname. This should
2045
be the fully qualified hostname that the client will connect with, since the client
2046
will typically also verify the hostname in the certificate. On the host holding the
2047
secure CA private key:
2048

    
2049
@example
2050
# cat > server.info <<EOF
2051
organization = Name  of your organization
2052
cn = server.foo.example.com
2053
tls_www_server
2054
encryption_key
2055
signing_key
2056
EOF
2057
# certtool --generate-privkey > server-key.pem
2058
# certtool --generate-certificate \
2059
           --load-ca-certificate ca-cert.pem \
2060
           --load-ca-privkey ca-key.pem \
2061
           --load-privkey server server-key.pem \
2062
           --template server.info \
2063
           --outfile server-cert.pem
2064
@end example
2065

    
2066
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2067
to the server for which they were generated. The @code{server-key.pem} is security
2068
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2069

    
2070
@node vnc_generate_client
2071
@subsubsection Issuing client certificates
2072

    
2073
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2074
certificates as its authentication mechanism, each client also needs to be issued
2075
a certificate. The client certificate contains enough metadata to uniquely identify
2076
the client, typically organization, state, city, building, etc. On the host holding
2077
the secure CA private key:
2078

    
2079
@example
2080
# cat > client.info <<EOF
2081
country = GB
2082
state = London
2083
locality = London
2084
organiazation = Name of your organization
2085
cn = client.foo.example.com
2086
tls_www_client
2087
encryption_key
2088
signing_key
2089
EOF
2090
# certtool --generate-privkey > client-key.pem
2091
# certtool --generate-certificate \
2092
           --load-ca-certificate ca-cert.pem \
2093
           --load-ca-privkey ca-key.pem \
2094
           --load-privkey client-key.pem \
2095
           --template client.info \
2096
           --outfile client-cert.pem
2097
@end example
2098

    
2099
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2100
copied to the client for which they were generated.
2101

    
2102
@node gdb_usage
2103
@section GDB usage
2104

    
2105
QEMU has a primitive support to work with gdb, so that you can do
2106
'Ctrl-C' while the virtual machine is running and inspect its state.
2107

    
2108
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2109
gdb connection:
2110
@example
2111
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2112
       -append "root=/dev/hda"
2113
Connected to host network interface: tun0
2114
Waiting gdb connection on port 1234
2115
@end example
2116

    
2117
Then launch gdb on the 'vmlinux' executable:
2118
@example
2119
> gdb vmlinux
2120
@end example
2121

    
2122
In gdb, connect to QEMU:
2123
@example
2124
(gdb) target remote localhost:1234
2125
@end example
2126

    
2127
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2128
@example
2129
(gdb) c
2130
@end example
2131

    
2132
Here are some useful tips in order to use gdb on system code:
2133

    
2134
@enumerate
2135
@item
2136
Use @code{info reg} to display all the CPU registers.
2137
@item
2138
Use @code{x/10i $eip} to display the code at the PC position.
2139
@item
2140
Use @code{set architecture i8086} to dump 16 bit code. Then use
2141
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2142
@end enumerate
2143

    
2144
Advanced debugging options:
2145

    
2146
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2147
@table @code
2148
@item maintenance packet qqemu.sstepbits
2149

    
2150
This will display the MASK bits used to control the single stepping IE:
2151
@example
2152
(gdb) maintenance packet qqemu.sstepbits
2153
sending: "qqemu.sstepbits"
2154
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2155
@end example
2156
@item maintenance packet qqemu.sstep
2157

    
2158
This will display the current value of the mask used when single stepping IE:
2159
@example
2160
(gdb) maintenance packet qqemu.sstep
2161
sending: "qqemu.sstep"
2162
received: "0x7"
2163
@end example
2164
@item maintenance packet Qqemu.sstep=HEX_VALUE
2165

    
2166
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2167
@example
2168
(gdb) maintenance packet Qqemu.sstep=0x5
2169
sending: "qemu.sstep=0x5"
2170
received: "OK"
2171
@end example
2172
@end table
2173

    
2174
@node pcsys_os_specific
2175
@section Target OS specific information
2176

    
2177
@subsection Linux
2178

    
2179
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2180
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2181
color depth in the guest and the host OS.
2182

    
2183
When using a 2.6 guest Linux kernel, you should add the option
2184
@code{clock=pit} on the kernel command line because the 2.6 Linux
2185
kernels make very strict real time clock checks by default that QEMU
2186
cannot simulate exactly.
2187

    
2188
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2189
not activated because QEMU is slower with this patch. The QEMU
2190
Accelerator Module is also much slower in this case. Earlier Fedora
2191
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2192
patch by default. Newer kernels don't have it.
2193

    
2194
@subsection Windows
2195

    
2196
If you have a slow host, using Windows 95 is better as it gives the
2197
best speed. Windows 2000 is also a good choice.
2198

    
2199
@subsubsection SVGA graphic modes support
2200

    
2201
QEMU emulates a Cirrus Logic GD5446 Video
2202
card. All Windows versions starting from Windows 95 should recognize
2203
and use this graphic card. For optimal performances, use 16 bit color
2204
depth in the guest and the host OS.
2205

    
2206
If you are using Windows XP as guest OS and if you want to use high
2207
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2208
1280x1024x16), then you should use the VESA VBE virtual graphic card
2209
(option @option{-std-vga}).
2210

    
2211
@subsubsection CPU usage reduction
2212

    
2213
Windows 9x does not correctly use the CPU HLT
2214
instruction. The result is that it takes host CPU cycles even when
2215
idle. You can install the utility from
2216
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2217
problem. Note that no such tool is needed for NT, 2000 or XP.
2218

    
2219
@subsubsection Windows 2000 disk full problem
2220

    
2221
Windows 2000 has a bug which gives a disk full problem during its
2222
installation. When installing it, use the @option{-win2k-hack} QEMU
2223
option to enable a specific workaround. After Windows 2000 is
2224
installed, you no longer need this option (this option slows down the
2225
IDE transfers).
2226

    
2227
@subsubsection Windows 2000 shutdown
2228

    
2229
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2230
can. It comes from the fact that Windows 2000 does not automatically
2231
use the APM driver provided by the BIOS.
2232

    
2233
In order to correct that, do the following (thanks to Struan
2234
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2235
Add/Troubleshoot a device => Add a new device & Next => No, select the
2236
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2237
(again) a few times. Now the driver is installed and Windows 2000 now
2238
correctly instructs QEMU to shutdown at the appropriate moment.
2239

    
2240
@subsubsection Share a directory between Unix and Windows
2241

    
2242
See @ref{sec_invocation} about the help of the option @option{-smb}.
2243

    
2244
@subsubsection Windows XP security problem
2245

    
2246
Some releases of Windows XP install correctly but give a security
2247
error when booting:
2248
@example
2249
A problem is preventing Windows from accurately checking the
2250
license for this computer. Error code: 0x800703e6.
2251
@end example
2252

    
2253
The workaround is to install a service pack for XP after a boot in safe
2254
mode. Then reboot, and the problem should go away. Since there is no
2255
network while in safe mode, its recommended to download the full
2256
installation of SP1 or SP2 and transfer that via an ISO or using the
2257
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2258

    
2259
@subsection MS-DOS and FreeDOS
2260

    
2261
@subsubsection CPU usage reduction
2262

    
2263
DOS does not correctly use the CPU HLT instruction. The result is that
2264
it takes host CPU cycles even when idle. You can install the utility
2265
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2266
problem.
2267

    
2268
@node QEMU System emulator for non PC targets
2269
@chapter QEMU System emulator for non PC targets
2270

    
2271
QEMU is a generic emulator and it emulates many non PC
2272
machines. Most of the options are similar to the PC emulator. The
2273
differences are mentioned in the following sections.
2274

    
2275
@menu
2276
* QEMU PowerPC System emulator::
2277
* Sparc32 System emulator::
2278
* Sparc64 System emulator::
2279
* MIPS System emulator::
2280
* ARM System emulator::
2281
* ColdFire System emulator::
2282
@end menu
2283

    
2284
@node QEMU PowerPC System emulator
2285
@section QEMU PowerPC System emulator
2286

    
2287
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2288
or PowerMac PowerPC system.
2289

    
2290
QEMU emulates the following PowerMac peripherals:
2291

    
2292
@itemize @minus
2293
@item
2294
UniNorth PCI Bridge
2295
@item
2296
PCI VGA compatible card with VESA Bochs Extensions
2297
@item
2298
2 PMAC IDE interfaces with hard disk and CD-ROM support
2299
@item
2300
NE2000 PCI adapters
2301
@item
2302
Non Volatile RAM
2303
@item
2304
VIA-CUDA with ADB keyboard and mouse.
2305
@end itemize
2306

    
2307
QEMU emulates the following PREP peripherals:
2308

    
2309
@itemize @minus
2310
@item
2311
PCI Bridge
2312
@item
2313
PCI VGA compatible card with VESA Bochs Extensions
2314
@item
2315
2 IDE interfaces with hard disk and CD-ROM support
2316
@item
2317
Floppy disk
2318
@item
2319
NE2000 network adapters
2320
@item
2321
Serial port
2322
@item
2323
PREP Non Volatile RAM
2324
@item
2325
PC compatible keyboard and mouse.
2326
@end itemize
2327

    
2328
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2329
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2330

    
2331
@c man begin OPTIONS
2332

    
2333
The following options are specific to the PowerPC emulation:
2334

    
2335
@table @option
2336

    
2337
@item -g WxH[xDEPTH]
2338

    
2339
Set the initial VGA graphic mode. The default is 800x600x15.
2340

    
2341
@end table
2342

    
2343
@c man end
2344

    
2345

    
2346
More information is available at
2347
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2348

    
2349
@node Sparc32 System emulator
2350
@section Sparc32 System emulator
2351

    
2352
Use the executable @file{qemu-system-sparc} to simulate the following
2353
Sun4m architecture machines:
2354
@itemize @minus
2355
@item
2356
SPARCstation 4
2357
@item
2358
SPARCstation 5
2359
@item
2360
SPARCstation 10
2361
@item
2362
SPARCstation 20
2363
@item
2364
SPARCserver 600MP
2365
@item
2366
SPARCstation LX
2367
@item
2368
SPARCstation Voyager
2369
@item
2370
SPARCclassic
2371
@item
2372
SPARCbook
2373
@end itemize
2374

    
2375
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2376
but Linux limits the number of usable CPUs to 4.
2377

    
2378
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2379
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2380
emulators are not usable yet.
2381

    
2382
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2383

    
2384
@itemize @minus
2385
@item
2386
IOMMU or IO-UNITs
2387
@item
2388
TCX Frame buffer
2389
@item
2390
Lance (Am7990) Ethernet
2391
@item
2392
Non Volatile RAM M48T02/M48T08
2393
@item
2394
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2395
and power/reset logic
2396
@item
2397
ESP SCSI controller with hard disk and CD-ROM support
2398
@item
2399
Floppy drive (not on SS-600MP)
2400
@item
2401
CS4231 sound device (only on SS-5, not working yet)
2402
@end itemize
2403

    
2404
The number of peripherals is fixed in the architecture.  Maximum
2405
memory size depends on the machine type, for SS-5 it is 256MB and for
2406
others 2047MB.
2407

    
2408
Since version 0.8.2, QEMU uses OpenBIOS
2409
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2410
firmware implementation. The goal is to implement a 100% IEEE
2411
1275-1994 (referred to as Open Firmware) compliant firmware.
2412

    
2413
A sample Linux 2.6 series kernel and ram disk image are available on
2414
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2415
some kernel versions work. Please note that currently Solaris kernels
2416
don't work probably due to interface issues between OpenBIOS and
2417
Solaris.
2418

    
2419
@c man begin OPTIONS
2420

    
2421
The following options are specific to the Sparc32 emulation:
2422

    
2423
@table @option
2424

    
2425
@item -g WxHx[xDEPTH]
2426

    
2427
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2428
the only other possible mode is 1024x768x24.
2429

    
2430
@item -prom-env string
2431

    
2432
Set OpenBIOS variables in NVRAM, for example:
2433

    
2434
@example
2435
qemu-system-sparc -prom-env 'auto-boot?=false' \
2436
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2437
@end example
2438

    
2439
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2440

    
2441
Set the emulated machine type. Default is SS-5.
2442

    
2443
@end table
2444

    
2445
@c man end
2446

    
2447
@node Sparc64 System emulator
2448
@section Sparc64 System emulator
2449

    
2450
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2451
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2452
Niagara (T1) machine. The emulator is not usable for anything yet, but
2453
it can launch some kernels.
2454

    
2455
QEMU emulates the following peripherals:
2456

    
2457
@itemize @minus
2458
@item
2459
UltraSparc IIi APB PCI Bridge
2460
@item
2461
PCI VGA compatible card with VESA Bochs Extensions
2462
@item
2463
PS/2 mouse and keyboard
2464
@item
2465
Non Volatile RAM M48T59
2466
@item
2467
PC-compatible serial ports
2468
@item
2469
2 PCI IDE interfaces with hard disk and CD-ROM support
2470
@item
2471
Floppy disk
2472
@end itemize
2473

    
2474
@c man begin OPTIONS
2475

    
2476
The following options are specific to the Sparc64 emulation:
2477

    
2478
@table @option
2479

    
2480
@item -prom-env string
2481

    
2482
Set OpenBIOS variables in NVRAM, for example:
2483

    
2484
@example
2485
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2486
@end example
2487

    
2488
@item -M [sun4u|sun4v|Niagara]
2489

    
2490
Set the emulated machine type. The default is sun4u.
2491

    
2492
@end table
2493

    
2494
@c man end
2495

    
2496
@node MIPS System emulator
2497
@section MIPS System emulator
2498

    
2499
Four executables cover simulation of 32 and 64-bit MIPS systems in
2500
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2501
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2502
Five different machine types are emulated:
2503

    
2504
@itemize @minus
2505
@item
2506
A generic ISA PC-like machine "mips"
2507
@item
2508
The MIPS Malta prototype board "malta"
2509
@item
2510
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2511
@item
2512
MIPS emulator pseudo board "mipssim"
2513
@item
2514
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2515
@end itemize
2516

    
2517
The generic emulation is supported by Debian 'Etch' and is able to
2518
install Debian into a virtual disk image. The following devices are
2519
emulated:
2520

    
2521
@itemize @minus
2522
@item
2523
A range of MIPS CPUs, default is the 24Kf
2524
@item
2525
PC style serial port
2526
@item
2527
PC style IDE disk
2528
@item
2529
NE2000 network card
2530
@end itemize
2531

    
2532
The Malta emulation supports the following devices:
2533

    
2534
@itemize @minus
2535
@item
2536
Core board with MIPS 24Kf CPU and Galileo system controller
2537
@item
2538
PIIX4 PCI/USB/SMbus controller
2539
@item
2540
The Multi-I/O chip's serial device
2541
@item
2542
PCnet32 PCI network card
2543
@item
2544
Malta FPGA serial device
2545
@item
2546
Cirrus VGA graphics card
2547
@end itemize
2548

    
2549
The ACER Pica emulation supports:
2550

    
2551
@itemize @minus
2552
@item
2553
MIPS R4000 CPU
2554
@item
2555
PC-style IRQ and DMA controllers
2556
@item
2557
PC Keyboard
2558
@item
2559
IDE controller
2560
@end itemize
2561

    
2562
The mipssim pseudo board emulation provides an environment similiar
2563
to what the proprietary MIPS emulator uses for running Linux.
2564
It supports:
2565

    
2566
@itemize @minus
2567
@item
2568
A range of MIPS CPUs, default is the 24Kf
2569
@item
2570
PC style serial port
2571
@item
2572
MIPSnet network emulation
2573
@end itemize
2574

    
2575
The MIPS Magnum R4000 emulation supports:
2576

    
2577
@itemize @minus
2578
@item
2579
MIPS R4000 CPU
2580
@item
2581
PC-style IRQ controller
2582
@item
2583
PC Keyboard
2584
@item
2585
SCSI controller
2586
@item
2587
G364 framebuffer
2588
@end itemize
2589

    
2590

    
2591
@node ARM System emulator
2592
@section ARM System emulator
2593

    
2594
Use the executable @file{qemu-system-arm} to simulate a ARM
2595
machine. The ARM Integrator/CP board is emulated with the following
2596
devices:
2597

    
2598
@itemize @minus
2599
@item
2600
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2601
@item
2602
Two PL011 UARTs
2603
@item
2604
SMC 91c111 Ethernet adapter
2605
@item
2606
PL110 LCD controller
2607
@item
2608
PL050 KMI with PS/2 keyboard and mouse.
2609
@item
2610
PL181 MultiMedia Card Interface with SD card.
2611
@end itemize
2612

    
2613
The ARM Versatile baseboard is emulated with the following devices:
2614

    
2615
@itemize @minus
2616
@item
2617
ARM926E, ARM1136 or Cortex-A8 CPU
2618
@item
2619
PL190 Vectored Interrupt Controller
2620
@item
2621
Four PL011 UARTs
2622
@item
2623
SMC 91c111 Ethernet adapter
2624
@item
2625
PL110 LCD controller
2626
@item
2627
PL050 KMI with PS/2 keyboard and mouse.
2628
@item
2629
PCI host bridge.  Note the emulated PCI bridge only provides access to
2630
PCI memory space.  It does not provide access to PCI IO space.
2631
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2632
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2633
mapped control registers.
2634
@item
2635
PCI OHCI USB controller.
2636
@item
2637
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2638
@item
2639
PL181 MultiMedia Card Interface with SD card.
2640
@end itemize
2641

    
2642
The ARM RealView Emulation baseboard is emulated with the following devices:
2643

    
2644
@itemize @minus
2645
@item
2646
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2647
@item
2648
ARM AMBA Generic/Distributed Interrupt Controller
2649
@item
2650
Four PL011 UARTs
2651
@item
2652
SMC 91c111 Ethernet adapter
2653
@item
2654
PL110 LCD controller
2655
@item
2656
PL050 KMI with PS/2 keyboard and mouse
2657
@item
2658
PCI host bridge
2659
@item
2660
PCI OHCI USB controller
2661
@item
2662
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2663
@item
2664
PL181 MultiMedia Card Interface with SD card.
2665
@end itemize
2666

    
2667
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2668
and "Terrier") emulation includes the following peripherals:
2669

    
2670
@itemize @minus
2671
@item
2672
Intel PXA270 System-on-chip (ARM V5TE core)
2673
@item
2674
NAND Flash memory
2675
@item
2676
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2677
@item
2678
On-chip OHCI USB controller
2679
@item
2680
On-chip LCD controller
2681
@item
2682
On-chip Real Time Clock
2683
@item
2684
TI ADS7846 touchscreen controller on SSP bus
2685
@item
2686
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2687
@item
2688
GPIO-connected keyboard controller and LEDs
2689
@item
2690
Secure Digital card connected to PXA MMC/SD host
2691
@item
2692
Three on-chip UARTs
2693
@item
2694
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2695
@end itemize
2696

    
2697
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2698
following elements:
2699

    
2700
@itemize @minus
2701
@item
2702
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2703
@item
2704
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2705
@item
2706
On-chip LCD controller
2707
@item
2708
On-chip Real Time Clock
2709
@item
2710
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2711
CODEC, connected through MicroWire and I@math{^2}S busses
2712
@item
2713
GPIO-connected matrix keypad
2714
@item
2715
Secure Digital card connected to OMAP MMC/SD host
2716
@item
2717
Three on-chip UARTs
2718
@end itemize
2719

    
2720
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2721
emulation supports the following elements:
2722

    
2723
@itemize @minus
2724
@item
2725
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2726
@item
2727
RAM and non-volatile OneNAND Flash memories
2728
@item
2729
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2730
display controller and a LS041y3 MIPI DBI-C controller
2731
@item
2732
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2733
driven through SPI bus
2734
@item
2735
National Semiconductor LM8323-controlled qwerty keyboard driven
2736
through I@math{^2}C bus
2737
@item
2738
Secure Digital card connected to OMAP MMC/SD host
2739
@item
2740
Three OMAP on-chip UARTs and on-chip STI debugging console
2741
@item
2742
A Bluetooth(R) transciever and HCI connected to an UART
2743
@item
2744
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2745
TUSB6010 chip - only USB host mode is supported
2746
@item
2747
TI TMP105 temperature sensor driven through I@math{^2}C bus
2748
@item
2749
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2750
@item
2751
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2752
through CBUS
2753
@end itemize
2754

    
2755
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2756
devices:
2757

    
2758
@itemize @minus
2759
@item
2760
Cortex-M3 CPU core.
2761
@item
2762
64k Flash and 8k SRAM.
2763
@item
2764
Timers, UARTs, ADC and I@math{^2}C interface.
2765
@item
2766
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2767
@end itemize
2768

    
2769
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2770
devices:
2771

    
2772
@itemize @minus
2773
@item
2774
Cortex-M3 CPU core.
2775
@item
2776
256k Flash and 64k SRAM.
2777
@item
2778
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2779
@item
2780
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2781
@end itemize
2782

    
2783
The Freecom MusicPal internet radio emulation includes the following
2784
elements:
2785

    
2786
@itemize @minus
2787
@item
2788
Marvell MV88W8618 ARM core.
2789
@item
2790
32 MB RAM, 256 KB SRAM, 8 MB flash.
2791
@item
2792
Up to 2 16550 UARTs
2793
@item
2794
MV88W8xx8 Ethernet controller
2795
@item
2796
MV88W8618 audio controller, WM8750 CODEC and mixer
2797
@item
2798
128?64 display with brightness control
2799
@item
2800
2 buttons, 2 navigation wheels with button function
2801
@end itemize
2802

    
2803
The Siemens SX1 models v1 and v2 (default) basic emulation.
2804
The emulaton includes the following elements:
2805

    
2806
@itemize @minus
2807
@item
2808
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2809
@item
2810
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2811
V1
2812
1 Flash of 16MB and 1 Flash of 8MB
2813
V2
2814
1 Flash of 32MB
2815
@item
2816
On-chip LCD controller
2817
@item
2818
On-chip Real Time Clock
2819
@item
2820
Secure Digital card connected to OMAP MMC/SD host
2821
@item
2822
Three on-chip UARTs
2823
@end itemize
2824

    
2825
A Linux 2.6 test image is available on the QEMU web site. More
2826
information is available in the QEMU mailing-list archive.
2827

    
2828
@node ColdFire System emulator
2829
@section ColdFire System emulator
2830

    
2831
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2832
The emulator is able to boot a uClinux kernel.
2833

    
2834
The M5208EVB emulation includes the following devices:
2835

    
2836
@itemize @minus
2837
@item
2838
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2839
@item
2840
Three Two on-chip UARTs.
2841
@item
2842
Fast Ethernet Controller (FEC)
2843
@end itemize
2844

    
2845
The AN5206 emulation includes the following devices:
2846

    
2847
@itemize @minus
2848
@item
2849
MCF5206 ColdFire V2 Microprocessor.
2850
@item
2851
Two on-chip UARTs.
2852
@end itemize
2853

    
2854
@node QEMU User space emulator
2855
@chapter QEMU User space emulator
2856

    
2857
@menu
2858
* Supported Operating Systems ::
2859
* Linux User space emulator::
2860
* Mac OS X/Darwin User space emulator ::
2861
* BSD User space emulator ::
2862
@end menu
2863

    
2864
@node Supported Operating Systems
2865
@section Supported Operating Systems
2866

    
2867
The following OS are supported in user space emulation:
2868

    
2869
@itemize @minus
2870
@item
2871
Linux (referred as qemu-linux-user)
2872
@item
2873
Mac OS X/Darwin (referred as qemu-darwin-user)
2874
@item
2875
BSD (referred as qemu-bsd-user)
2876
@end itemize
2877

    
2878
@node Linux User space emulator
2879
@section Linux User space emulator
2880

    
2881
@menu
2882
* Quick Start::
2883
* Wine launch::
2884
* Command line options::
2885
* Other binaries::
2886
@end menu
2887

    
2888
@node Quick Start
2889
@subsection Quick Start
2890

    
2891
In order to launch a Linux process, QEMU needs the process executable
2892
itself and all the target (x86) dynamic libraries used by it.
2893

    
2894
@itemize
2895

    
2896
@item On x86, you can just try to launch any process by using the native
2897
libraries:
2898

    
2899
@example
2900
qemu-i386 -L / /bin/ls
2901
@end example
2902

    
2903
@code{-L /} tells that the x86 dynamic linker must be searched with a
2904
@file{/} prefix.
2905

    
2906
@item Since QEMU is also a linux process, you can launch qemu with
2907
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2908

    
2909
@example
2910
qemu-i386 -L / qemu-i386 -L / /bin/ls
2911
@end example
2912

    
2913
@item On non x86 CPUs, you need first to download at least an x86 glibc
2914
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2915
@code{LD_LIBRARY_PATH} is not set:
2916

    
2917
@example
2918
unset LD_LIBRARY_PATH
2919
@end example
2920

    
2921
Then you can launch the precompiled @file{ls} x86 executable:
2922

    
2923
@example
2924
qemu-i386 tests/i386/ls
2925
@end example
2926
You can look at @file{qemu-binfmt-conf.sh} so that
2927
QEMU is automatically launched by the Linux kernel when you try to
2928
launch x86 executables. It requires the @code{binfmt_misc} module in the
2929
Linux kernel.
2930

    
2931
@item The x86 version of QEMU is also included. You can try weird things such as:
2932
@example
2933
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2934
          /usr/local/qemu-i386/bin/ls-i386
2935
@end example
2936

    
2937
@end itemize
2938

    
2939
@node Wine launch
2940
@subsection Wine launch
2941

    
2942
@itemize
2943

    
2944
@item Ensure that you have a working QEMU with the x86 glibc
2945
distribution (see previous section). In order to verify it, you must be
2946
able to do:
2947

    
2948
@example
2949
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2950
@end example
2951

    
2952
@item Download the binary x86 Wine install
2953
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2954

    
2955
@item Configure Wine on your account. Look at the provided script
2956
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2957
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2958

    
2959
@item Then you can try the example @file{putty.exe}:
2960

    
2961
@example
2962
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2963
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2964
@end example
2965

    
2966
@end itemize
2967

    
2968
@node Command line options
2969
@subsection Command line options
2970

    
2971
@example
2972
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2973
@end example
2974

    
2975
@table @option
2976
@item -h
2977
Print the help
2978
@item -L path
2979
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2980
@item -s size
2981
Set the x86 stack size in bytes (default=524288)
2982
@item -cpu model
2983
Select CPU model (-cpu ? for list and additional feature selection)
2984
@end table
2985

    
2986
Debug options:
2987

    
2988
@table @option
2989
@item -d
2990
Activate log (logfile=/tmp/qemu.log)
2991
@item -p pagesize
2992
Act as if the host page size was 'pagesize' bytes
2993
@item -g port
2994
Wait gdb connection to port
2995
@end table
2996

    
2997
Environment variables:
2998

    
2999
@table @env
3000
@item QEMU_STRACE
3001
Print system calls and arguments similar to the 'strace' program
3002
(NOTE: the actual 'strace' program will not work because the user
3003
space emulator hasn't implemented ptrace).  At the moment this is
3004
incomplete.  All system calls that don't have a specific argument
3005
format are printed with information for six arguments.  Many
3006
flag-style arguments don't have decoders and will show up as numbers.
3007
@end table
3008

    
3009
@node Other binaries
3010
@subsection Other binaries
3011

    
3012
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3013
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3014
configurations), and arm-uclinux bFLT format binaries.
3015

    
3016
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3017
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3018
coldfire uClinux bFLT format binaries.
3019

    
3020
The binary format is detected automatically.
3021

    
3022
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3023

    
3024
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3025
(Sparc64 CPU, 32 bit ABI).
3026

    
3027
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3028
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3029

    
3030
@node Mac OS X/Darwin User space emulator
3031
@section Mac OS X/Darwin User space emulator
3032

    
3033
@menu
3034
* Mac OS X/Darwin Status::
3035
* Mac OS X/Darwin Quick Start::
3036
* Mac OS X/Darwin Command line options::
3037
@end menu
3038

    
3039
@node Mac OS X/Darwin Status
3040
@subsection Mac OS X/Darwin Status
3041

    
3042
@itemize @minus
3043
@item
3044
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3045
@item
3046
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3047
@item
3048
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3049
@item
3050
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3051
@end itemize
3052

    
3053
[1] If you're host commpage can be executed by qemu.
3054

    
3055
@node Mac OS X/Darwin Quick Start
3056
@subsection Quick Start
3057

    
3058
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3059
itself and all the target dynamic libraries used by it. If you don't have the FAT
3060
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3061
CD or compile them by hand.
3062

    
3063
@itemize
3064

    
3065
@item On x86, you can just try to launch any process by using the native
3066
libraries:
3067

    
3068
@example
3069
qemu-i386 /bin/ls
3070
@end example
3071

    
3072
or to run the ppc version of the executable:
3073

    
3074
@example
3075
qemu-ppc /bin/ls
3076
@end example
3077

    
3078
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3079
are installed:
3080

    
3081
@example
3082
qemu-i386 -L /opt/x86_root/ /bin/ls
3083
@end example
3084

    
3085
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3086
@file{/opt/x86_root/usr/bin/dyld}.
3087

    
3088
@end itemize
3089

    
3090
@node Mac OS X/Darwin Command line options
3091
@subsection Command line options
3092

    
3093
@example
3094
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3095
@end example
3096

    
3097
@table @option
3098
@item -h
3099
Print the help
3100
@item -L path
3101
Set the library root path (default=/)
3102
@item -s size
3103
Set the stack size in bytes (default=524288)
3104
@end table
3105

    
3106
Debug options:
3107

    
3108
@table @option
3109
@item -d
3110
Activate log (logfile=/tmp/qemu.log)
3111
@item -p pagesize
3112
Act as if the host page size was 'pagesize' bytes
3113
@end table
3114

    
3115
@node BSD User space emulator
3116
@section BSD User space emulator
3117

    
3118
@menu
3119
* BSD Status::
3120
* BSD Quick Start::
3121
* BSD Command line options::
3122
@end menu
3123

    
3124
@node BSD Status
3125
@subsection BSD Status
3126

    
3127
@itemize @minus
3128
@item
3129
target Sparc64 on Sparc64: Some trivial programs work.
3130
@end itemize
3131

    
3132
@node BSD Quick Start
3133
@subsection Quick Start
3134

    
3135
In order to launch a BSD process, QEMU needs the process executable
3136
itself and all the target dynamic libraries used by it.
3137

    
3138
@itemize
3139

    
3140
@item On Sparc64, you can just try to launch any process by using the native
3141
libraries:
3142

    
3143
@example
3144
qemu-sparc64 /bin/ls
3145
@end example
3146

    
3147
@end itemize
3148

    
3149
@node BSD Command line options
3150
@subsection Command line options
3151

    
3152
@example
3153
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3154
@end example
3155

    
3156
@table @option
3157
@item -h
3158
Print the help
3159
@item -L path
3160
Set the library root path (default=/)
3161
@item -s size
3162
Set the stack size in bytes (default=524288)
3163
@item -bsd type
3164
Set the type of the emulated BSD Operating system. Valid values are
3165
FreeBSD, NetBSD and OpenBSD (default).
3166
@end table
3167

    
3168
Debug options:
3169

    
3170
@table @option
3171
@item -d
3172
Activate log (logfile=/tmp/qemu.log)
3173
@item -p pagesize
3174
Act as if the host page size was 'pagesize' bytes
3175
@end table
3176

    
3177
@node compilation
3178
@chapter Compilation from the sources
3179

    
3180
@menu
3181
* Linux/Unix::
3182
* Windows::
3183
* Cross compilation for Windows with Linux::
3184
* Mac OS X::
3185
@end menu
3186

    
3187
@node Linux/Unix
3188
@section Linux/Unix
3189

    
3190
@subsection Compilation
3191

    
3192
First you must decompress the sources:
3193
@example
3194
cd /tmp
3195
tar zxvf qemu-x.y.z.tar.gz
3196
cd qemu-x.y.z
3197
@end example
3198

    
3199
Then you configure QEMU and build it (usually no options are needed):
3200
@example
3201
./configure
3202
make
3203
@end example
3204

    
3205
Then type as root user:
3206
@example
3207
make install
3208
@end example
3209
to install QEMU in @file{/usr/local}.
3210

    
3211
@subsection GCC version
3212

    
3213
In order to compile QEMU successfully, it is very important that you
3214
have the right tools. The most important one is gcc. On most hosts and
3215
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3216
Linux distribution includes a gcc 4.x compiler, you can usually
3217
install an older version (it is invoked by @code{gcc32} or
3218
@code{gcc34}). The QEMU configure script automatically probes for
3219
these older versions so that usually you don't have to do anything.
3220

    
3221
@node Windows
3222
@section Windows
3223

    
3224
@itemize
3225
@item Install the current versions of MSYS and MinGW from
3226
@url{http://www.mingw.org/}. You can find detailed installation
3227
instructions in the download section and the FAQ.
3228

    
3229
@item Download
3230
the MinGW development library of SDL 1.2.x
3231
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3232
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3233
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3234
directory. Edit the @file{sdl-config} script so that it gives the
3235
correct SDL directory when invoked.
3236

    
3237
@item Extract the current version of QEMU.
3238

    
3239
@item Start the MSYS shell (file @file{msys.bat}).
3240

    
3241
@item Change to the QEMU directory. Launch @file{./configure} and
3242
@file{make}.  If you have problems using SDL, verify that
3243
@file{sdl-config} can be launched from the MSYS command line.
3244

    
3245
@item You can install QEMU in @file{Program Files/Qemu} by typing
3246
@file{make install}. Don't forget to copy @file{SDL.dll} in
3247
@file{Program Files/Qemu}.
3248

    
3249
@end itemize
3250

    
3251
@node Cross compilation for Windows with Linux
3252
@section Cross compilation for Windows with Linux
3253

    
3254
@itemize
3255
@item
3256
Install the MinGW cross compilation tools available at
3257
@url{http://www.mingw.org/}.
3258

    
3259
@item
3260
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3261
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3262
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3263
the QEMU configuration script.
3264

    
3265
@item
3266
Configure QEMU for Windows cross compilation:
3267
@example
3268
./configure --enable-mingw32
3269
@end example
3270
If necessary, you can change the cross-prefix according to the prefix
3271
chosen for the MinGW tools with --cross-prefix. You can also use
3272
--prefix to set the Win32 install path.
3273

    
3274
@item You can install QEMU in the installation directory by typing
3275
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3276
installation directory.
3277

    
3278
@end itemize
3279

    
3280
Note: Currently, Wine does not seem able to launch
3281
QEMU for Win32.
3282

    
3283
@node Mac OS X
3284
@section Mac OS X
3285

    
3286
The Mac OS X patches are not fully merged in QEMU, so you should look
3287
at the QEMU mailing list archive to have all the necessary
3288
information.
3289

    
3290
@node Index
3291
@chapter Index
3292
@printindex cp
3293

    
3294
@bye