Statistics
| Branch: | Revision:

root / target-sh4 / op_helper.c @ efac4154

History | View | Annotate | Download (16.8 kB)

1
/*
2
 *  SH4 emulation
3
 *
4
 *  Copyright (c) 2005 Samuel Tardieu
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include <assert.h>
20
#include <stdlib.h>
21
#include "exec.h"
22
#include "helper.h"
23

    
24
static void cpu_restore_state_from_retaddr(void *retaddr)
25
{
26
    TranslationBlock *tb;
27
    unsigned long pc;
28

    
29
    if (retaddr) {
30
        pc = (unsigned long) retaddr;
31
        tb = tb_find_pc(pc);
32
        if (tb) {
33
            /* the PC is inside the translated code. It means that we have
34
               a virtual CPU fault */
35
            cpu_restore_state(tb, env, pc, NULL);
36
        }
37
    }
38
}
39

    
40
#ifndef CONFIG_USER_ONLY
41

    
42
#define MMUSUFFIX _mmu
43

    
44
#define SHIFT 0
45
#include "softmmu_template.h"
46

    
47
#define SHIFT 1
48
#include "softmmu_template.h"
49

    
50
#define SHIFT 2
51
#include "softmmu_template.h"
52

    
53
#define SHIFT 3
54
#include "softmmu_template.h"
55

    
56
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
57
{
58
    CPUState *saved_env;
59
    int ret;
60

    
61
    /* XXX: hack to restore env in all cases, even if not called from
62
       generated code */
63
    saved_env = env;
64
    env = cpu_single_env;
65
    ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
66
    if (ret) {
67
        /* now we have a real cpu fault */
68
        cpu_restore_state_from_retaddr(retaddr);
69
        cpu_loop_exit();
70
    }
71
    env = saved_env;
72
}
73

    
74
#endif
75

    
76
void helper_ldtlb(void)
77
{
78
#ifdef CONFIG_USER_ONLY
79
    /* XXXXX */
80
    cpu_abort(env, "Unhandled ldtlb");
81
#else
82
    cpu_load_tlb(env);
83
#endif
84
}
85

    
86
static inline void raise_exception(int index, void *retaddr)
87
{
88
    env->exception_index = index;
89
    cpu_restore_state_from_retaddr(retaddr);
90
    cpu_loop_exit();
91
}
92

    
93
void helper_raise_illegal_instruction(void)
94
{
95
    raise_exception(0x180, GETPC());
96
}
97

    
98
void helper_raise_slot_illegal_instruction(void)
99
{
100
    raise_exception(0x1a0, GETPC());
101
}
102

    
103
void helper_raise_fpu_disable(void)
104
{
105
    raise_exception(0x800, GETPC());
106
}
107

    
108
void helper_raise_slot_fpu_disable(void)
109
{
110
    raise_exception(0x820, GETPC());
111
}
112

    
113
void helper_debug(void)
114
{
115
    env->exception_index = EXCP_DEBUG;
116
    cpu_loop_exit();
117
}
118

    
119
void helper_sleep(uint32_t next_pc)
120
{
121
    env->halted = 1;
122
    env->in_sleep = 1;
123
    env->exception_index = EXCP_HLT;
124
    env->pc = next_pc;
125
    cpu_loop_exit();
126
}
127

    
128
void helper_trapa(uint32_t tra)
129
{
130
    env->tra = tra << 2;
131
    raise_exception(0x160, GETPC());
132
}
133

    
134
void helper_movcal(uint32_t address, uint32_t value)
135
{
136
    if (cpu_sh4_is_cached (env, address))
137
    {
138
        memory_content *r = malloc (sizeof(memory_content));
139
        r->address = address;
140
        r->value = value;
141
        r->next = NULL;
142

    
143
        *(env->movcal_backup_tail) = r;
144
        env->movcal_backup_tail = &(r->next);
145
    }
146
}
147

    
148
void helper_discard_movcal_backup(void)
149
{
150
    memory_content *current = env->movcal_backup;
151

    
152
    while(current)
153
    {
154
        memory_content *next = current->next;
155
        free (current);
156
        env->movcal_backup = current = next;
157
        if (current == NULL)
158
            env->movcal_backup_tail = &(env->movcal_backup);
159
    } 
160
}
161

    
162
void helper_ocbi(uint32_t address)
163
{
164
    memory_content **current = &(env->movcal_backup);
165
    while (*current)
166
    {
167
        uint32_t a = (*current)->address;
168
        if ((a & ~0x1F) == (address & ~0x1F))
169
        {
170
            memory_content *next = (*current)->next;
171
            stl(a, (*current)->value);
172
            
173
            if (next == NULL)
174
            {
175
                env->movcal_backup_tail = current;
176
            }
177

    
178
            free (*current);
179
            *current = next;
180
            break;
181
        }
182
    }
183
}
184

    
185
uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
186
{
187
    uint32_t tmp0, tmp1;
188

    
189
    tmp1 = arg0 + arg1;
190
    tmp0 = arg1;
191
    arg1 = tmp1 + (env->sr & 1);
192
    if (tmp0 > tmp1)
193
        env->sr |= SR_T;
194
    else
195
        env->sr &= ~SR_T;
196
    if (tmp1 > arg1)
197
        env->sr |= SR_T;
198
    return arg1;
199
}
200

    
201
uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
202
{
203
    uint32_t dest, src, ans;
204

    
205
    if ((int32_t) arg1 >= 0)
206
        dest = 0;
207
    else
208
        dest = 1;
209
    if ((int32_t) arg0 >= 0)
210
        src = 0;
211
    else
212
        src = 1;
213
    src += dest;
214
    arg1 += arg0;
215
    if ((int32_t) arg1 >= 0)
216
        ans = 0;
217
    else
218
        ans = 1;
219
    ans += dest;
220
    if (src == 0 || src == 2) {
221
        if (ans == 1)
222
            env->sr |= SR_T;
223
        else
224
            env->sr &= ~SR_T;
225
    } else
226
        env->sr &= ~SR_T;
227
    return arg1;
228
}
229

    
230
#define T (env->sr & SR_T)
231
#define Q (env->sr & SR_Q ? 1 : 0)
232
#define M (env->sr & SR_M ? 1 : 0)
233
#define SETT env->sr |= SR_T
234
#define CLRT env->sr &= ~SR_T
235
#define SETQ env->sr |= SR_Q
236
#define CLRQ env->sr &= ~SR_Q
237
#define SETM env->sr |= SR_M
238
#define CLRM env->sr &= ~SR_M
239

    
240
uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
241
{
242
    uint32_t tmp0, tmp2;
243
    uint8_t old_q, tmp1 = 0xff;
244

    
245
    //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
246
    old_q = Q;
247
    if ((0x80000000 & arg1) != 0)
248
        SETQ;
249
    else
250
        CLRQ;
251
    tmp2 = arg0;
252
    arg1 <<= 1;
253
    arg1 |= T;
254
    switch (old_q) {
255
    case 0:
256
        switch (M) {
257
        case 0:
258
            tmp0 = arg1;
259
            arg1 -= tmp2;
260
            tmp1 = arg1 > tmp0;
261
            switch (Q) {
262
            case 0:
263
                if (tmp1)
264
                    SETQ;
265
                else
266
                    CLRQ;
267
                break;
268
            case 1:
269
                if (tmp1 == 0)
270
                    SETQ;
271
                else
272
                    CLRQ;
273
                break;
274
            }
275
            break;
276
        case 1:
277
            tmp0 = arg1;
278
            arg1 += tmp2;
279
            tmp1 = arg1 < tmp0;
280
            switch (Q) {
281
            case 0:
282
                if (tmp1 == 0)
283
                    SETQ;
284
                else
285
                    CLRQ;
286
                break;
287
            case 1:
288
                if (tmp1)
289
                    SETQ;
290
                else
291
                    CLRQ;
292
                break;
293
            }
294
            break;
295
        }
296
        break;
297
    case 1:
298
        switch (M) {
299
        case 0:
300
            tmp0 = arg1;
301
            arg1 += tmp2;
302
            tmp1 = arg1 < tmp0;
303
            switch (Q) {
304
            case 0:
305
                if (tmp1)
306
                    SETQ;
307
                else
308
                    CLRQ;
309
                break;
310
            case 1:
311
                if (tmp1 == 0)
312
                    SETQ;
313
                else
314
                    CLRQ;
315
                break;
316
            }
317
            break;
318
        case 1:
319
            tmp0 = arg1;
320
            arg1 -= tmp2;
321
            tmp1 = arg1 > tmp0;
322
            switch (Q) {
323
            case 0:
324
                if (tmp1 == 0)
325
                    SETQ;
326
                else
327
                    CLRQ;
328
                break;
329
            case 1:
330
                if (tmp1)
331
                    SETQ;
332
                else
333
                    CLRQ;
334
                break;
335
            }
336
            break;
337
        }
338
        break;
339
    }
340
    if (Q == M)
341
        SETT;
342
    else
343
        CLRT;
344
    //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
345
    return arg1;
346
}
347

    
348
void helper_macl(uint32_t arg0, uint32_t arg1)
349
{
350
    int64_t res;
351

    
352
    res = ((uint64_t) env->mach << 32) | env->macl;
353
    res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
354
    env->mach = (res >> 32) & 0xffffffff;
355
    env->macl = res & 0xffffffff;
356
    if (env->sr & SR_S) {
357
        if (res < 0)
358
            env->mach |= 0xffff0000;
359
        else
360
            env->mach &= 0x00007fff;
361
    }
362
}
363

    
364
void helper_macw(uint32_t arg0, uint32_t arg1)
365
{
366
    int64_t res;
367

    
368
    res = ((uint64_t) env->mach << 32) | env->macl;
369
    res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
370
    env->mach = (res >> 32) & 0xffffffff;
371
    env->macl = res & 0xffffffff;
372
    if (env->sr & SR_S) {
373
        if (res < -0x80000000) {
374
            env->mach = 1;
375
            env->macl = 0x80000000;
376
        } else if (res > 0x000000007fffffff) {
377
            env->mach = 1;
378
            env->macl = 0x7fffffff;
379
        }
380
    }
381
}
382

    
383
uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
384
{
385
    uint32_t tmp0, tmp1;
386

    
387
    tmp1 = arg1 - arg0;
388
    tmp0 = arg1;
389
    arg1 = tmp1 - (env->sr & SR_T);
390
    if (tmp0 < tmp1)
391
        env->sr |= SR_T;
392
    else
393
        env->sr &= ~SR_T;
394
    if (tmp1 < arg1)
395
        env->sr |= SR_T;
396
    return arg1;
397
}
398

    
399
uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
400
{
401
    int32_t dest, src, ans;
402

    
403
    if ((int32_t) arg1 >= 0)
404
        dest = 0;
405
    else
406
        dest = 1;
407
    if ((int32_t) arg0 >= 0)
408
        src = 0;
409
    else
410
        src = 1;
411
    src += dest;
412
    arg1 -= arg0;
413
    if ((int32_t) arg1 >= 0)
414
        ans = 0;
415
    else
416
        ans = 1;
417
    ans += dest;
418
    if (src == 1) {
419
        if (ans == 1)
420
            env->sr |= SR_T;
421
        else
422
            env->sr &= ~SR_T;
423
    } else
424
        env->sr &= ~SR_T;
425
    return arg1;
426
}
427

    
428
static inline void set_t(void)
429
{
430
    env->sr |= SR_T;
431
}
432

    
433
static inline void clr_t(void)
434
{
435
    env->sr &= ~SR_T;
436
}
437

    
438
void helper_ld_fpscr(uint32_t val)
439
{
440
    env->fpscr = val & FPSCR_MASK;
441
    if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
442
        set_float_rounding_mode(float_round_to_zero, &env->fp_status);
443
    } else {
444
        set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
445
    }
446
    set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
447
}
448

    
449
static void update_fpscr(void *retaddr)
450
{
451
    int xcpt, cause, enable;
452

    
453
    xcpt = get_float_exception_flags(&env->fp_status);
454

    
455
    /* Clear the flag entries */
456
    env->fpscr &= ~FPSCR_FLAG_MASK;
457

    
458
    if (unlikely(xcpt)) {
459
        if (xcpt & float_flag_invalid) {
460
            env->fpscr |= FPSCR_FLAG_V;
461
        }
462
        if (xcpt & float_flag_divbyzero) {
463
            env->fpscr |= FPSCR_FLAG_Z;
464
        }
465
        if (xcpt & float_flag_overflow) {
466
            env->fpscr |= FPSCR_FLAG_O;
467
        }
468
        if (xcpt & float_flag_underflow) {
469
            env->fpscr |= FPSCR_FLAG_U;
470
        }
471
        if (xcpt & float_flag_inexact) {
472
            env->fpscr |= FPSCR_FLAG_I;
473
        }
474

    
475
        /* Accumulate in cause entries */
476
        env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
477
                      << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
478

    
479
        /* Generate an exception if enabled */
480
        cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
481
        enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
482
        if (cause & enable) {
483
            cpu_restore_state_from_retaddr(retaddr);
484
            env->exception_index = 0x120;
485
            cpu_loop_exit();
486
        }
487
    }
488
}
489

    
490
uint32_t helper_fabs_FT(uint32_t t0)
491
{
492
    CPU_FloatU f;
493
    f.l = t0;
494
    f.f = float32_abs(f.f);
495
    return f.l;
496
}
497

    
498
uint64_t helper_fabs_DT(uint64_t t0)
499
{
500
    CPU_DoubleU d;
501
    d.ll = t0;
502
    d.d = float64_abs(d.d);
503
    return d.ll;
504
}
505

    
506
uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
507
{
508
    CPU_FloatU f0, f1;
509
    f0.l = t0;
510
    f1.l = t1;
511
    set_float_exception_flags(0, &env->fp_status);
512
    f0.f = float32_add(f0.f, f1.f, &env->fp_status);
513
    update_fpscr(GETPC());
514
    return f0.l;
515
}
516

    
517
uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
518
{
519
    CPU_DoubleU d0, d1;
520
    d0.ll = t0;
521
    d1.ll = t1;
522
    set_float_exception_flags(0, &env->fp_status);
523
    d0.d = float64_add(d0.d, d1.d, &env->fp_status);
524
    update_fpscr(GETPC());
525
    return d0.ll;
526
}
527

    
528
void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
529
{
530
    CPU_FloatU f0, f1;
531
    int relation;
532
    f0.l = t0;
533
    f1.l = t1;
534

    
535
    set_float_exception_flags(0, &env->fp_status);
536
    relation = float32_compare(f0.f, f1.f, &env->fp_status);
537
    if (unlikely(relation == float_relation_unordered)) {
538
        update_fpscr(GETPC());
539
    } else if (relation == float_relation_equal) {
540
        set_t();
541
    } else {
542
        clr_t();
543
    }
544
}
545

    
546
void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
547
{
548
    CPU_DoubleU d0, d1;
549
    int relation;
550
    d0.ll = t0;
551
    d1.ll = t1;
552

    
553
    set_float_exception_flags(0, &env->fp_status);
554
    relation = float64_compare(d0.d, d1.d, &env->fp_status);
555
    if (unlikely(relation == float_relation_unordered)) {
556
        update_fpscr(GETPC());
557
    } else if (relation == float_relation_equal) {
558
        set_t();
559
    } else {
560
        clr_t();
561
    }
562
}
563

    
564
void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
565
{
566
    CPU_FloatU f0, f1;
567
    int relation;
568
    f0.l = t0;
569
    f1.l = t1;
570

    
571
    set_float_exception_flags(0, &env->fp_status);
572
    relation = float32_compare(f0.f, f1.f, &env->fp_status);
573
    if (unlikely(relation == float_relation_unordered)) {
574
        update_fpscr(GETPC());
575
    } else if (relation == float_relation_greater) {
576
        set_t();
577
    } else {
578
        clr_t();
579
    }
580
}
581

    
582
void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
583
{
584
    CPU_DoubleU d0, d1;
585
    int relation;
586
    d0.ll = t0;
587
    d1.ll = t1;
588

    
589
    set_float_exception_flags(0, &env->fp_status);
590
    relation = float64_compare(d0.d, d1.d, &env->fp_status);
591
    if (unlikely(relation == float_relation_unordered)) {
592
        update_fpscr(GETPC());
593
    } else if (relation == float_relation_greater) {
594
        set_t();
595
    } else {
596
        clr_t();
597
    }
598
}
599

    
600
uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
601
{
602
    CPU_DoubleU d;
603
    CPU_FloatU f;
604
    f.l = t0;
605
    set_float_exception_flags(0, &env->fp_status);
606
    d.d = float32_to_float64(f.f, &env->fp_status);
607
    update_fpscr(GETPC());
608
    return d.ll;
609
}
610

    
611
uint32_t helper_fcnvds_DT_FT(uint64_t t0)
612
{
613
    CPU_DoubleU d;
614
    CPU_FloatU f;
615
    d.ll = t0;
616
    set_float_exception_flags(0, &env->fp_status);
617
    f.f = float64_to_float32(d.d, &env->fp_status);
618
    update_fpscr(GETPC());
619
    return f.l;
620
}
621

    
622
uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
623
{
624
    CPU_FloatU f0, f1;
625
    f0.l = t0;
626
    f1.l = t1;
627
    set_float_exception_flags(0, &env->fp_status);
628
    f0.f = float32_div(f0.f, f1.f, &env->fp_status);
629
    update_fpscr(GETPC());
630
    return f0.l;
631
}
632

    
633
uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
634
{
635
    CPU_DoubleU d0, d1;
636
    d0.ll = t0;
637
    d1.ll = t1;
638
    set_float_exception_flags(0, &env->fp_status);
639
    d0.d = float64_div(d0.d, d1.d, &env->fp_status);
640
    update_fpscr(GETPC());
641
    return d0.ll;
642
}
643

    
644
uint32_t helper_float_FT(uint32_t t0)
645
{
646
    CPU_FloatU f;
647

    
648
    set_float_exception_flags(0, &env->fp_status);
649
    f.f = int32_to_float32(t0, &env->fp_status);
650
    update_fpscr(GETPC());
651

    
652
    return f.l;
653
}
654

    
655
uint64_t helper_float_DT(uint32_t t0)
656
{
657
    CPU_DoubleU d;
658
    set_float_exception_flags(0, &env->fp_status);
659
    d.d = int32_to_float64(t0, &env->fp_status);
660
    update_fpscr(GETPC());
661
    return d.ll;
662
}
663

    
664
uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
665
{
666
    CPU_FloatU f0, f1, f2;
667
    f0.l = t0;
668
    f1.l = t1;
669
    f2.l = t2;
670
    set_float_exception_flags(0, &env->fp_status);
671
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
672
    f0.f = float32_add(f0.f, f2.f, &env->fp_status);
673
    update_fpscr(GETPC());
674

    
675
    return f0.l;
676
}
677

    
678
uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
679
{
680
    CPU_FloatU f0, f1;
681
    f0.l = t0;
682
    f1.l = t1;
683
    set_float_exception_flags(0, &env->fp_status);
684
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
685
    update_fpscr(GETPC());
686
    return f0.l;
687
}
688

    
689
uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
690
{
691
    CPU_DoubleU d0, d1;
692
    d0.ll = t0;
693
    d1.ll = t1;
694
    set_float_exception_flags(0, &env->fp_status);
695
    d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
696
    update_fpscr(GETPC());
697

    
698
    return d0.ll;
699
}
700

    
701
uint32_t helper_fneg_T(uint32_t t0)
702
{
703
    CPU_FloatU f;
704
    f.l = t0;
705
    f.f = float32_chs(f.f);
706
    return f.l;
707
}
708

    
709
uint32_t helper_fsqrt_FT(uint32_t t0)
710
{
711
    CPU_FloatU f;
712
    f.l = t0;
713
    set_float_exception_flags(0, &env->fp_status);
714
    f.f = float32_sqrt(f.f, &env->fp_status);
715
    update_fpscr(GETPC());
716
    return f.l;
717
}
718

    
719
uint64_t helper_fsqrt_DT(uint64_t t0)
720
{
721
    CPU_DoubleU d;
722
    d.ll = t0;
723
    set_float_exception_flags(0, &env->fp_status);
724
    d.d = float64_sqrt(d.d, &env->fp_status);
725
    update_fpscr(GETPC());
726
    return d.ll;
727
}
728

    
729
uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
730
{
731
    CPU_FloatU f0, f1;
732
    f0.l = t0;
733
    f1.l = t1;
734
    set_float_exception_flags(0, &env->fp_status);
735
    f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
736
    update_fpscr(GETPC());
737
    return f0.l;
738
}
739

    
740
uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
741
{
742
    CPU_DoubleU d0, d1;
743

    
744
    d0.ll = t0;
745
    d1.ll = t1;
746
    set_float_exception_flags(0, &env->fp_status);
747
    d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
748
    update_fpscr(GETPC());
749
    return d0.ll;
750
}
751

    
752
uint32_t helper_ftrc_FT(uint32_t t0)
753
{
754
    CPU_FloatU f;
755
    uint32_t ret;
756
    f.l = t0;
757
    set_float_exception_flags(0, &env->fp_status);
758
    ret = float32_to_int32_round_to_zero(f.f, &env->fp_status);
759
    update_fpscr(GETPC());
760
    return ret;
761
}
762

    
763
uint32_t helper_ftrc_DT(uint64_t t0)
764
{
765
    CPU_DoubleU d;
766
    uint32_t ret;
767
    d.ll = t0;
768
    set_float_exception_flags(0, &env->fp_status);
769
    ret = float64_to_int32_round_to_zero(d.d, &env->fp_status);
770
    update_fpscr(GETPC());
771
    return ret;
772
}
773

    
774
void helper_fipr(uint32_t m, uint32_t n)
775
{
776
    int bank, i;
777
    float32 r, p;
778

    
779
    bank = (env->sr & FPSCR_FR) ? 16 : 0;
780
    r = float32_zero;
781
    set_float_exception_flags(0, &env->fp_status);
782

    
783
    for (i = 0 ; i < 4 ; i++) {
784
        p = float32_mul(env->fregs[bank + m + i],
785
                        env->fregs[bank + n + i],
786
                        &env->fp_status);
787
        r = float32_add(r, p, &env->fp_status);
788
    }
789
    update_fpscr(GETPC());
790

    
791
    env->fregs[bank + n + 3] = r;
792
}
793

    
794
void helper_ftrv(uint32_t n)
795
{
796
    int bank_matrix, bank_vector;
797
    int i, j;
798
    float32 r[4];
799
    float32 p;
800

    
801
    bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
802
    bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
803
    set_float_exception_flags(0, &env->fp_status);
804
    for (i = 0 ; i < 4 ; i++) {
805
        r[i] = float32_zero;
806
        for (j = 0 ; j < 4 ; j++) {
807
            p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
808
                            env->fregs[bank_vector + j],
809
                            &env->fp_status);
810
            r[i] = float32_add(r[i], p, &env->fp_status);
811
        }
812
    }
813
    update_fpscr(GETPC());
814

    
815
    for (i = 0 ; i < 4 ; i++) {
816
        env->fregs[bank_vector + i] = r[i];
817
    }
818
}