Statistics
| Branch: | Revision:

root / hw / pc.c @ f16408df

History | View | Annotate | Download (43 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "fdc.h"
27
#include "pci.h"
28
#include "block.h"
29
#include "sysemu.h"
30
#include "audio/audio.h"
31
#include "net.h"
32
#include "smbus.h"
33
#include "boards.h"
34
#include "monitor.h"
35
#include "fw_cfg.h"
36
#include "hpet_emul.h"
37
#include "watchdog.h"
38
#include "smbios.h"
39

    
40
/* output Bochs bios info messages */
41
//#define DEBUG_BIOS
42

    
43
/* Show multiboot debug output */
44
//#define DEBUG_MULTIBOOT
45

    
46
#define BIOS_FILENAME "bios.bin"
47
#define VGABIOS_FILENAME "vgabios.bin"
48
#define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin"
49

    
50
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
51

    
52
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
53
#define ACPI_DATA_SIZE       0x10000
54
#define BIOS_CFG_IOPORT 0x510
55
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
56
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
57

    
58
#define MAX_IDE_BUS 2
59

    
60
static fdctrl_t *floppy_controller;
61
static RTCState *rtc_state;
62
static PITState *pit;
63
static IOAPICState *ioapic;
64
static PCIDevice *i440fx_state;
65

    
66
typedef struct rom_reset_data {
67
    uint8_t *data;
68
    target_phys_addr_t addr;
69
    unsigned size;
70
} RomResetData;
71

    
72
static void option_rom_reset(void *_rrd)
73
{
74
    RomResetData *rrd = _rrd;
75

    
76
    cpu_physical_memory_write_rom(rrd->addr, rrd->data, rrd->size);
77
}
78

    
79
static void option_rom_setup_reset(target_phys_addr_t addr, unsigned size)
80
{
81
    RomResetData *rrd = qemu_malloc(sizeof *rrd);
82

    
83
    rrd->data = qemu_malloc(size);
84
    cpu_physical_memory_read(addr, rrd->data, size);
85
    rrd->addr = addr;
86
    rrd->size = size;
87
    qemu_register_reset(option_rom_reset, 0, rrd);
88
}
89

    
90
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
91
{
92
}
93

    
94
/* MSDOS compatibility mode FPU exception support */
95
static qemu_irq ferr_irq;
96
/* XXX: add IGNNE support */
97
void cpu_set_ferr(CPUX86State *s)
98
{
99
    qemu_irq_raise(ferr_irq);
100
}
101

    
102
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
103
{
104
    qemu_irq_lower(ferr_irq);
105
}
106

    
107
/* TSC handling */
108
uint64_t cpu_get_tsc(CPUX86State *env)
109
{
110
    /* Note: when using kqemu, it is more logical to return the host TSC
111
       because kqemu does not trap the RDTSC instruction for
112
       performance reasons */
113
#ifdef CONFIG_KQEMU
114
    if (env->kqemu_enabled) {
115
        return cpu_get_real_ticks();
116
    } else
117
#endif
118
    {
119
        return cpu_get_ticks();
120
    }
121
}
122

    
123
/* SMM support */
124
void cpu_smm_update(CPUState *env)
125
{
126
    if (i440fx_state && env == first_cpu)
127
        i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1);
128
}
129

    
130

    
131
/* IRQ handling */
132
int cpu_get_pic_interrupt(CPUState *env)
133
{
134
    int intno;
135

    
136
    intno = apic_get_interrupt(env);
137
    if (intno >= 0) {
138
        /* set irq request if a PIC irq is still pending */
139
        /* XXX: improve that */
140
        pic_update_irq(isa_pic);
141
        return intno;
142
    }
143
    /* read the irq from the PIC */
144
    if (!apic_accept_pic_intr(env))
145
        return -1;
146

    
147
    intno = pic_read_irq(isa_pic);
148
    return intno;
149
}
150

    
151
static void pic_irq_request(void *opaque, int irq, int level)
152
{
153
    CPUState *env = first_cpu;
154

    
155
    if (env->apic_state) {
156
        while (env) {
157
            if (apic_accept_pic_intr(env))
158
                apic_deliver_pic_intr(env, level);
159
            env = env->next_cpu;
160
        }
161
    } else {
162
        if (level)
163
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
164
        else
165
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
166
    }
167
}
168

    
169
/* PC cmos mappings */
170

    
171
#define REG_EQUIPMENT_BYTE          0x14
172

    
173
static int cmos_get_fd_drive_type(int fd0)
174
{
175
    int val;
176

    
177
    switch (fd0) {
178
    case 0:
179
        /* 1.44 Mb 3"5 drive */
180
        val = 4;
181
        break;
182
    case 1:
183
        /* 2.88 Mb 3"5 drive */
184
        val = 5;
185
        break;
186
    case 2:
187
        /* 1.2 Mb 5"5 drive */
188
        val = 2;
189
        break;
190
    default:
191
        val = 0;
192
        break;
193
    }
194
    return val;
195
}
196

    
197
static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd)
198
{
199
    RTCState *s = rtc_state;
200
    int cylinders, heads, sectors;
201
    bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
202
    rtc_set_memory(s, type_ofs, 47);
203
    rtc_set_memory(s, info_ofs, cylinders);
204
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
205
    rtc_set_memory(s, info_ofs + 2, heads);
206
    rtc_set_memory(s, info_ofs + 3, 0xff);
207
    rtc_set_memory(s, info_ofs + 4, 0xff);
208
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
209
    rtc_set_memory(s, info_ofs + 6, cylinders);
210
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
211
    rtc_set_memory(s, info_ofs + 8, sectors);
212
}
213

    
214
/* convert boot_device letter to something recognizable by the bios */
215
static int boot_device2nibble(char boot_device)
216
{
217
    switch(boot_device) {
218
    case 'a':
219
    case 'b':
220
        return 0x01; /* floppy boot */
221
    case 'c':
222
        return 0x02; /* hard drive boot */
223
    case 'd':
224
        return 0x03; /* CD-ROM boot */
225
    case 'n':
226
        return 0x04; /* Network boot */
227
    }
228
    return 0;
229
}
230

    
231
/* copy/pasted from cmos_init, should be made a general function
232
 and used there as well */
233
static int pc_boot_set(void *opaque, const char *boot_device)
234
{
235
    Monitor *mon = cur_mon;
236
#define PC_MAX_BOOT_DEVICES 3
237
    RTCState *s = (RTCState *)opaque;
238
    int nbds, bds[3] = { 0, };
239
    int i;
240

    
241
    nbds = strlen(boot_device);
242
    if (nbds > PC_MAX_BOOT_DEVICES) {
243
        monitor_printf(mon, "Too many boot devices for PC\n");
244
        return(1);
245
    }
246
    for (i = 0; i < nbds; i++) {
247
        bds[i] = boot_device2nibble(boot_device[i]);
248
        if (bds[i] == 0) {
249
            monitor_printf(mon, "Invalid boot device for PC: '%c'\n",
250
                           boot_device[i]);
251
            return(1);
252
        }
253
    }
254
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
255
    rtc_set_memory(s, 0x38, (bds[2] << 4));
256
    return(0);
257
}
258

    
259
/* hd_table must contain 4 block drivers */
260
static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
261
                      const char *boot_device, BlockDriverState **hd_table)
262
{
263
    RTCState *s = rtc_state;
264
    int nbds, bds[3] = { 0, };
265
    int val;
266
    int fd0, fd1, nb;
267
    int i;
268

    
269
    /* various important CMOS locations needed by PC/Bochs bios */
270

    
271
    /* memory size */
272
    val = 640; /* base memory in K */
273
    rtc_set_memory(s, 0x15, val);
274
    rtc_set_memory(s, 0x16, val >> 8);
275

    
276
    val = (ram_size / 1024) - 1024;
277
    if (val > 65535)
278
        val = 65535;
279
    rtc_set_memory(s, 0x17, val);
280
    rtc_set_memory(s, 0x18, val >> 8);
281
    rtc_set_memory(s, 0x30, val);
282
    rtc_set_memory(s, 0x31, val >> 8);
283

    
284
    if (above_4g_mem_size) {
285
        rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
286
        rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
287
        rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
288
    }
289

    
290
    if (ram_size > (16 * 1024 * 1024))
291
        val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
292
    else
293
        val = 0;
294
    if (val > 65535)
295
        val = 65535;
296
    rtc_set_memory(s, 0x34, val);
297
    rtc_set_memory(s, 0x35, val >> 8);
298

    
299
    /* set the number of CPU */
300
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
301

    
302
    /* set boot devices, and disable floppy signature check if requested */
303
#define PC_MAX_BOOT_DEVICES 3
304
    nbds = strlen(boot_device);
305
    if (nbds > PC_MAX_BOOT_DEVICES) {
306
        fprintf(stderr, "Too many boot devices for PC\n");
307
        exit(1);
308
    }
309
    for (i = 0; i < nbds; i++) {
310
        bds[i] = boot_device2nibble(boot_device[i]);
311
        if (bds[i] == 0) {
312
            fprintf(stderr, "Invalid boot device for PC: '%c'\n",
313
                    boot_device[i]);
314
            exit(1);
315
        }
316
    }
317
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
318
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ?  0x0 : 0x1));
319

    
320
    /* floppy type */
321

    
322
    fd0 = fdctrl_get_drive_type(floppy_controller, 0);
323
    fd1 = fdctrl_get_drive_type(floppy_controller, 1);
324

    
325
    val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1);
326
    rtc_set_memory(s, 0x10, val);
327

    
328
    val = 0;
329
    nb = 0;
330
    if (fd0 < 3)
331
        nb++;
332
    if (fd1 < 3)
333
        nb++;
334
    switch (nb) {
335
    case 0:
336
        break;
337
    case 1:
338
        val |= 0x01; /* 1 drive, ready for boot */
339
        break;
340
    case 2:
341
        val |= 0x41; /* 2 drives, ready for boot */
342
        break;
343
    }
344
    val |= 0x02; /* FPU is there */
345
    val |= 0x04; /* PS/2 mouse installed */
346
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
347

    
348
    /* hard drives */
349

    
350
    rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
351
    if (hd_table[0])
352
        cmos_init_hd(0x19, 0x1b, hd_table[0]);
353
    if (hd_table[1])
354
        cmos_init_hd(0x1a, 0x24, hd_table[1]);
355

    
356
    val = 0;
357
    for (i = 0; i < 4; i++) {
358
        if (hd_table[i]) {
359
            int cylinders, heads, sectors, translation;
360
            /* NOTE: bdrv_get_geometry_hint() returns the physical
361
                geometry.  It is always such that: 1 <= sects <= 63, 1
362
                <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
363
                geometry can be different if a translation is done. */
364
            translation = bdrv_get_translation_hint(hd_table[i]);
365
            if (translation == BIOS_ATA_TRANSLATION_AUTO) {
366
                bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, &sectors);
367
                if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
368
                    /* No translation. */
369
                    translation = 0;
370
                } else {
371
                    /* LBA translation. */
372
                    translation = 1;
373
                }
374
            } else {
375
                translation--;
376
            }
377
            val |= translation << (i * 2);
378
        }
379
    }
380
    rtc_set_memory(s, 0x39, val);
381
}
382

    
383
void ioport_set_a20(int enable)
384
{
385
    /* XXX: send to all CPUs ? */
386
    cpu_x86_set_a20(first_cpu, enable);
387
}
388

    
389
int ioport_get_a20(void)
390
{
391
    return ((first_cpu->a20_mask >> 20) & 1);
392
}
393

    
394
static void ioport92_write(void *opaque, uint32_t addr, uint32_t val)
395
{
396
    ioport_set_a20((val >> 1) & 1);
397
    /* XXX: bit 0 is fast reset */
398
}
399

    
400
static uint32_t ioport92_read(void *opaque, uint32_t addr)
401
{
402
    return ioport_get_a20() << 1;
403
}
404

    
405
/***********************************************************/
406
/* Bochs BIOS debug ports */
407

    
408
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
409
{
410
    static const char shutdown_str[8] = "Shutdown";
411
    static int shutdown_index = 0;
412

    
413
    switch(addr) {
414
        /* Bochs BIOS messages */
415
    case 0x400:
416
    case 0x401:
417
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
418
        exit(1);
419
    case 0x402:
420
    case 0x403:
421
#ifdef DEBUG_BIOS
422
        fprintf(stderr, "%c", val);
423
#endif
424
        break;
425
    case 0x8900:
426
        /* same as Bochs power off */
427
        if (val == shutdown_str[shutdown_index]) {
428
            shutdown_index++;
429
            if (shutdown_index == 8) {
430
                shutdown_index = 0;
431
                qemu_system_shutdown_request();
432
            }
433
        } else {
434
            shutdown_index = 0;
435
        }
436
        break;
437

    
438
        /* LGPL'ed VGA BIOS messages */
439
    case 0x501:
440
    case 0x502:
441
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
442
        exit(1);
443
    case 0x500:
444
    case 0x503:
445
#ifdef DEBUG_BIOS
446
        fprintf(stderr, "%c", val);
447
#endif
448
        break;
449
    }
450
}
451

    
452
extern uint64_t node_cpumask[MAX_NODES];
453

    
454
static void *bochs_bios_init(void)
455
{
456
    void *fw_cfg;
457
    uint8_t *smbios_table;
458
    size_t smbios_len;
459
    uint64_t *numa_fw_cfg;
460
    int i, j;
461

    
462
    register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
463
    register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
464
    register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
465
    register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
466
    register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
467

    
468
    register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
469
    register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
470
    register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
471
    register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
472

    
473
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
474

    
475
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
476
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
477
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
478
                     acpi_tables_len);
479

    
480
    smbios_table = smbios_get_table(&smbios_len);
481
    if (smbios_table)
482
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
483
                         smbios_table, smbios_len);
484

    
485
    /* allocate memory for the NUMA channel: one (64bit) word for the number
486
     * of nodes, one word for each VCPU->node and one word for each node to
487
     * hold the amount of memory.
488
     */
489
    numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8);
490
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
491
    for (i = 0; i < smp_cpus; i++) {
492
        for (j = 0; j < nb_numa_nodes; j++) {
493
            if (node_cpumask[j] & (1 << i)) {
494
                numa_fw_cfg[i + 1] = cpu_to_le64(j);
495
                break;
496
            }
497
        }
498
    }
499
    for (i = 0; i < nb_numa_nodes; i++) {
500
        numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
501
    }
502
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
503
                     (1 + smp_cpus + nb_numa_nodes) * 8);
504

    
505
    return fw_cfg;
506
}
507

    
508
/* Generate an initial boot sector which sets state and jump to
509
   a specified vector */
510
static void generate_bootsect(target_phys_addr_t option_rom,
511
                              uint32_t gpr[8], uint16_t segs[6], uint16_t ip)
512
{
513
    uint8_t rom[512], *p, *reloc;
514
    uint8_t sum;
515
    int i;
516

    
517
    memset(rom, 0, sizeof(rom));
518

    
519
    p = rom;
520
    /* Make sure we have an option rom signature */
521
    *p++ = 0x55;
522
    *p++ = 0xaa;
523

    
524
    /* ROM size in sectors*/
525
    *p++ = 1;
526

    
527
    /* Hook int19 */
528

    
529
    *p++ = 0x50;                /* push ax */
530
    *p++ = 0x1e;                /* push ds */
531
    *p++ = 0x31; *p++ = 0xc0;        /* xor ax, ax */
532
    *p++ = 0x8e; *p++ = 0xd8;        /* mov ax, ds */
533

    
534
    *p++ = 0xc7; *p++ = 0x06;   /* movvw _start,0x64 */
535
    *p++ = 0x64; *p++ = 0x00;
536
    reloc = p;
537
    *p++ = 0x00; *p++ = 0x00;
538

    
539
    *p++ = 0x8c; *p++ = 0x0e;   /* mov cs,0x66 */
540
    *p++ = 0x66; *p++ = 0x00;
541

    
542
    *p++ = 0x1f;                /* pop ds */
543
    *p++ = 0x58;                /* pop ax */
544
    *p++ = 0xcb;                /* lret */
545
    
546
    /* Actual code */
547
    *reloc = (p - rom);
548

    
549
    *p++ = 0xfa;                /* CLI */
550
    *p++ = 0xfc;                /* CLD */
551

    
552
    for (i = 0; i < 6; i++) {
553
        if (i == 1)                /* Skip CS */
554
            continue;
555

    
556
        *p++ = 0xb8;                /* MOV AX,imm16 */
557
        *p++ = segs[i];
558
        *p++ = segs[i] >> 8;
559
        *p++ = 0x8e;                /* MOV <seg>,AX */
560
        *p++ = 0xc0 + (i << 3);
561
    }
562

    
563
    for (i = 0; i < 8; i++) {
564
        *p++ = 0x66;                /* 32-bit operand size */
565
        *p++ = 0xb8 + i;        /* MOV <reg>,imm32 */
566
        *p++ = gpr[i];
567
        *p++ = gpr[i] >> 8;
568
        *p++ = gpr[i] >> 16;
569
        *p++ = gpr[i] >> 24;
570
    }
571

    
572
    *p++ = 0xea;                /* JMP FAR */
573
    *p++ = ip;                        /* IP */
574
    *p++ = ip >> 8;
575
    *p++ = segs[1];                /* CS */
576
    *p++ = segs[1] >> 8;
577

    
578
    /* sign rom */
579
    sum = 0;
580
    for (i = 0; i < (sizeof(rom) - 1); i++)
581
        sum += rom[i];
582
    rom[sizeof(rom) - 1] = -sum;
583

    
584
    cpu_physical_memory_write_rom(option_rom, rom, sizeof(rom));
585
    option_rom_setup_reset(option_rom, sizeof (rom));
586
}
587

    
588
static long get_file_size(FILE *f)
589
{
590
    long where, size;
591

    
592
    /* XXX: on Unix systems, using fstat() probably makes more sense */
593

    
594
    where = ftell(f);
595
    fseek(f, 0, SEEK_END);
596
    size = ftell(f);
597
    fseek(f, where, SEEK_SET);
598

    
599
    return size;
600
}
601

    
602
#define MULTIBOOT_STRUCT_ADDR 0x9000
603

    
604
#if MULTIBOOT_STRUCT_ADDR > 0xf0000
605
#error multiboot struct needs to fit in 16 bit real mode
606
#endif
607

    
608
static int load_multiboot(void *fw_cfg,
609
                          FILE *f,
610
                          const char *kernel_filename,
611
                          const char *initrd_filename,
612
                          const char *kernel_cmdline,
613
                          uint8_t *header)
614
{
615
    int i, t, is_multiboot = 0;
616
    uint32_t flags = 0;
617
    uint32_t mh_entry_addr;
618
    uint32_t mh_load_addr;
619
    uint32_t mb_kernel_size;
620
    uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR;
621
    uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500;
622
    uint32_t mb_cmdline = mb_bootinfo + 0x200;
623
    uint32_t mb_mod_end;
624

    
625
    /* Ok, let's see if it is a multiboot image.
626
       The header is 12x32bit long, so the latest entry may be 8192 - 48. */
627
    for (i = 0; i < (8192 - 48); i += 4) {
628
        if (ldl_p(header+i) == 0x1BADB002) {
629
            uint32_t checksum = ldl_p(header+i+8);
630
            flags = ldl_p(header+i+4);
631
            checksum += flags;
632
            checksum += (uint32_t)0x1BADB002;
633
            if (!checksum) {
634
                is_multiboot = 1;
635
                break;
636
            }
637
        }
638
    }
639

    
640
    if (!is_multiboot)
641
        return 0; /* no multiboot */
642

    
643
#ifdef DEBUG_MULTIBOOT
644
    fprintf(stderr, "qemu: I believe we found a multiboot image!\n");
645
#endif
646

    
647
    if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */
648
        fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n");
649
    }
650
    if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */
651
        uint64_t elf_entry;
652
        int kernel_size;
653
        fclose(f);
654
        kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
655
        if (kernel_size < 0) {
656
            fprintf(stderr, "Error while loading elf kernel\n");
657
            exit(1);
658
        }
659
        mh_load_addr = mh_entry_addr = elf_entry;
660
        mb_kernel_size = kernel_size;
661

    
662
#ifdef DEBUG_MULTIBOOT
663
        fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n",
664
                mb_kernel_size, (size_t)mh_entry_addr);
665
#endif
666
    } else {
667
        /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */
668
        uint32_t mh_header_addr = ldl_p(header+i+12);
669
        mh_load_addr = ldl_p(header+i+16);
670
#ifdef DEBUG_MULTIBOOT
671
        uint32_t mh_load_end_addr = ldl_p(header+i+20);
672
        uint32_t mh_bss_end_addr = ldl_p(header+i+24);
673
#endif
674
        uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr);
675

    
676
        mh_entry_addr = ldl_p(header+i+28);
677
        mb_kernel_size = get_file_size(f) - mb_kernel_text_offset;
678

    
679
        /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE.
680
        uint32_t mh_mode_type = ldl_p(header+i+32);
681
        uint32_t mh_width = ldl_p(header+i+36);
682
        uint32_t mh_height = ldl_p(header+i+40);
683
        uint32_t mh_depth = ldl_p(header+i+44); */
684

    
685
#ifdef DEBUG_MULTIBOOT
686
        fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr);
687
        fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr);
688
        fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr);
689
        fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr);
690
#endif
691

    
692
        fseek(f, mb_kernel_text_offset, SEEK_SET);
693

    
694
#ifdef DEBUG_MULTIBOOT
695
        fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n",
696
                mb_kernel_size, mh_load_addr);
697
#endif
698

    
699
        if (!fread_targphys_ok(mh_load_addr, mb_kernel_size, f)) {
700
            fprintf(stderr, "qemu: read error on multiboot kernel '%s' (%#x)\n",
701
                    kernel_filename, mb_kernel_size);
702
            exit(1);
703
        }
704
        fclose(f);
705
    }
706

    
707
    /* blob size is only the kernel for now */
708
    mb_mod_end = mh_load_addr + mb_kernel_size;
709

    
710
    /* load modules */
711
    stl_phys(mb_bootinfo + 20, 0x0); /* mods_count */
712
    if (initrd_filename) {
713
        uint32_t mb_mod_info = mb_bootinfo + 0x100;
714
        uint32_t mb_mod_cmdline = mb_bootinfo + 0x300;
715
        uint32_t mb_mod_start = mh_load_addr;
716
        uint32_t mb_mod_length = mb_kernel_size;
717
        char *next_initrd;
718
        char *next_space;
719
        int mb_mod_count = 0;
720

    
721
        do {
722
            next_initrd = strchr(initrd_filename, ',');
723
            if (next_initrd)
724
                *next_initrd = '\0';
725
            /* if a space comes after the module filename, treat everything
726
               after that as parameters */
727
            cpu_physical_memory_write(mb_mod_cmdline, (uint8_t*)initrd_filename,
728
                                      strlen(initrd_filename) + 1);
729
            stl_phys(mb_mod_info + 8, mb_mod_cmdline); /* string */
730
            mb_mod_cmdline += strlen(initrd_filename) + 1;
731
            if ((next_space = strchr(initrd_filename, ' ')))
732
                *next_space = '\0';
733
#ifdef DEBUG_MULTIBOOT
734
             printf("multiboot loading module: %s\n", initrd_filename);
735
#endif
736
            f = fopen(initrd_filename, "rb");
737
            if (f) {
738
                mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1))
739
                             & (TARGET_PAGE_MASK);
740
                mb_mod_length = get_file_size(f);
741
                mb_mod_end = mb_mod_start + mb_mod_length;
742

    
743
                if (!fread_targphys_ok(mb_mod_start, mb_mod_length, f)) {
744
                    fprintf(stderr, "qemu: read error on multiboot module '%s' (%#x)\n",
745
                            initrd_filename, mb_mod_length);
746
                    exit(1);
747
                }
748

    
749
                mb_mod_count++;
750
                stl_phys(mb_mod_info + 0, mb_mod_start);
751
                stl_phys(mb_mod_info + 4, mb_mod_start + mb_mod_length);
752
#ifdef DEBUG_MULTIBOOT
753
                printf("mod_start: %#x\nmod_end:   %#x\n", mb_mod_start,
754
                       mb_mod_start + mb_mod_length);
755
#endif
756
                stl_phys(mb_mod_info + 12, 0x0); /* reserved */
757
            }
758
            initrd_filename = next_initrd+1;
759
            mb_mod_info += 16;
760
        } while (next_initrd);
761
        stl_phys(mb_bootinfo + 20, mb_mod_count); /* mods_count */
762
        stl_phys(mb_bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */
763
    }
764

    
765
    /* Make sure we're getting kernel + modules back after reset */
766
    option_rom_setup_reset(mh_load_addr, mb_mod_end - mh_load_addr);
767

    
768
    /* Commandline support */
769
    stl_phys(mb_bootinfo + 16, mb_cmdline);
770
    t = strlen(kernel_filename);
771
    cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_filename, t);
772
    mb_cmdline += t;
773
    stb_phys(mb_cmdline++, ' ');
774
    t = strlen(kernel_cmdline) + 1;
775
    cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_cmdline, t);
776

    
777
    /* the kernel is where we want it to be now */
778

    
779
#define MULTIBOOT_FLAGS_MEMORY (1 << 0)
780
#define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1)
781
#define MULTIBOOT_FLAGS_CMDLINE (1 << 2)
782
#define MULTIBOOT_FLAGS_MODULES (1 << 3)
783
#define MULTIBOOT_FLAGS_MMAP (1 << 6)
784
    stl_phys(mb_bootinfo, MULTIBOOT_FLAGS_MEMORY
785
                        | MULTIBOOT_FLAGS_BOOT_DEVICE
786
                        | MULTIBOOT_FLAGS_CMDLINE
787
                        | MULTIBOOT_FLAGS_MODULES
788
                        | MULTIBOOT_FLAGS_MMAP);
789
    stl_phys(mb_bootinfo + 4, 640); /* mem_lower */
790
    stl_phys(mb_bootinfo + 8, ram_size / 1024); /* mem_upper */
791
    stl_phys(mb_bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */
792
    stl_phys(mb_bootinfo + 48, mmap_addr); /* mmap_addr */
793

    
794
#ifdef DEBUG_MULTIBOOT
795
    fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr);
796
#endif
797

    
798
    /* Pass variables to option rom */
799
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_entry_addr);
800
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo);
801
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, mmap_addr);
802

    
803
    /* Make sure we're getting the config space back after reset */
804
    option_rom_setup_reset(mb_bootinfo, 0x500);
805

    
806
    option_rom[nb_option_roms] = "multiboot.bin";
807
    nb_option_roms++;
808

    
809
    return 1; /* yes, we are multiboot */
810
}
811

    
812
static void load_linux(void *fw_cfg,
813
                       target_phys_addr_t option_rom,
814
                       const char *kernel_filename,
815
                       const char *initrd_filename,
816
                       const char *kernel_cmdline,
817
               target_phys_addr_t max_ram_size)
818
{
819
    uint16_t protocol;
820
    uint32_t gpr[8];
821
    uint16_t seg[6];
822
    uint16_t real_seg;
823
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
824
    uint32_t initrd_max;
825
    uint8_t header[8192];
826
    target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
827
    FILE *f, *fi;
828

    
829
    /* Align to 16 bytes as a paranoia measure */
830
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
831

    
832
    /* load the kernel header */
833
    f = fopen(kernel_filename, "rb");
834
    if (!f || !(kernel_size = get_file_size(f)) ||
835
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
836
        MIN(ARRAY_SIZE(header), kernel_size)) {
837
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
838
                kernel_filename);
839
        exit(1);
840
    }
841

    
842
    /* kernel protocol version */
843
#if 0
844
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
845
#endif
846
    if (ldl_p(header+0x202) == 0x53726448)
847
        protocol = lduw_p(header+0x206);
848
    else {
849
        /* This looks like a multiboot kernel. If it is, let's stop
850
           treating it like a Linux kernel. */
851
        if (load_multiboot(fw_cfg, f, kernel_filename,
852
                           initrd_filename, kernel_cmdline, header))
853
           return;
854
        protocol = 0;
855
    }
856

    
857
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
858
        /* Low kernel */
859
        real_addr    = 0x90000;
860
        cmdline_addr = 0x9a000 - cmdline_size;
861
        prot_addr    = 0x10000;
862
    } else if (protocol < 0x202) {
863
        /* High but ancient kernel */
864
        real_addr    = 0x90000;
865
        cmdline_addr = 0x9a000 - cmdline_size;
866
        prot_addr    = 0x100000;
867
    } else {
868
        /* High and recent kernel */
869
        real_addr    = 0x10000;
870
        cmdline_addr = 0x20000;
871
        prot_addr    = 0x100000;
872
    }
873

    
874
#if 0
875
    fprintf(stderr,
876
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
877
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
878
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
879
            real_addr,
880
            cmdline_addr,
881
            prot_addr);
882
#endif
883

    
884
    /* highest address for loading the initrd */
885
    if (protocol >= 0x203)
886
        initrd_max = ldl_p(header+0x22c);
887
    else
888
        initrd_max = 0x37ffffff;
889

    
890
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
891
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
892

    
893
    /* kernel command line */
894
    pstrcpy_targphys(cmdline_addr, 4096, kernel_cmdline);
895

    
896
    if (protocol >= 0x202) {
897
        stl_p(header+0x228, cmdline_addr);
898
    } else {
899
        stw_p(header+0x20, 0xA33F);
900
        stw_p(header+0x22, cmdline_addr-real_addr);
901
    }
902

    
903
    /* loader type */
904
    /* High nybble = B reserved for Qemu; low nybble is revision number.
905
       If this code is substantially changed, you may want to consider
906
       incrementing the revision. */
907
    if (protocol >= 0x200)
908
        header[0x210] = 0xB0;
909

    
910
    /* heap */
911
    if (protocol >= 0x201) {
912
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
913
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
914
    }
915

    
916
    /* load initrd */
917
    if (initrd_filename) {
918
        if (protocol < 0x200) {
919
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
920
            exit(1);
921
        }
922

    
923
        fi = fopen(initrd_filename, "rb");
924
        if (!fi) {
925
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
926
                    initrd_filename);
927
            exit(1);
928
        }
929

    
930
        initrd_size = get_file_size(fi);
931
        initrd_addr = (initrd_max-initrd_size) & ~4095;
932

    
933
        if (!fread_targphys_ok(initrd_addr, initrd_size, fi)) {
934
            fprintf(stderr, "qemu: read error on initial ram disk '%s'\n",
935
                    initrd_filename);
936
            exit(1);
937
        }
938
        fclose(fi);
939

    
940
        stl_p(header+0x218, initrd_addr);
941
        stl_p(header+0x21c, initrd_size);
942
    }
943

    
944
    /* store the finalized header and load the rest of the kernel */
945
    cpu_physical_memory_write(real_addr, header, ARRAY_SIZE(header));
946

    
947
    setup_size = header[0x1f1];
948
    if (setup_size == 0)
949
        setup_size = 4;
950

    
951
    setup_size = (setup_size+1)*512;
952
    /* Size of protected-mode code */
953
    kernel_size -= (setup_size > ARRAY_SIZE(header)) ? setup_size : ARRAY_SIZE(header);
954

    
955
    /* In case we have read too much already, copy that over */
956
    if (setup_size < ARRAY_SIZE(header)) {
957
        cpu_physical_memory_write(prot_addr, header + setup_size, ARRAY_SIZE(header) - setup_size);
958
        prot_addr += (ARRAY_SIZE(header) - setup_size);
959
        setup_size = ARRAY_SIZE(header);
960
    }
961

    
962
    if (!fread_targphys_ok(real_addr + ARRAY_SIZE(header),
963
                           setup_size - ARRAY_SIZE(header), f) ||
964
        !fread_targphys_ok(prot_addr, kernel_size, f)) {
965
        fprintf(stderr, "qemu: read error on kernel '%s'\n",
966
                kernel_filename);
967
        exit(1);
968
    }
969
    fclose(f);
970

    
971
    /* generate bootsector to set up the initial register state */
972
    real_seg = real_addr >> 4;
973
    seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg;
974
    seg[1] = real_seg+0x20;        /* CS */
975
    memset(gpr, 0, sizeof gpr);
976
    gpr[4] = cmdline_addr-real_addr-16;        /* SP (-16 is paranoia) */
977

    
978
    option_rom_setup_reset(real_addr, setup_size);
979
    option_rom_setup_reset(prot_addr, kernel_size);
980
    option_rom_setup_reset(cmdline_addr, cmdline_size);
981
    if (initrd_filename)
982
        option_rom_setup_reset(initrd_addr, initrd_size);
983

    
984
    generate_bootsect(option_rom, gpr, seg, 0);
985
}
986

    
987
static const int ide_iobase[2] = { 0x1f0, 0x170 };
988
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
989
static const int ide_irq[2] = { 14, 15 };
990

    
991
#define NE2000_NB_MAX 6
992

    
993
static int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 };
994
static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
995

    
996
static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
997
static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
998

    
999
static int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
1000
static int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
1001

    
1002
#ifdef HAS_AUDIO
1003
static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
1004
{
1005
    struct soundhw *c;
1006

    
1007
    for (c = soundhw; c->name; ++c) {
1008
        if (c->enabled) {
1009
            if (c->isa) {
1010
                c->init.init_isa(pic);
1011
            } else {
1012
                if (pci_bus) {
1013
                    c->init.init_pci(pci_bus);
1014
                }
1015
            }
1016
        }
1017
    }
1018
}
1019
#endif
1020

    
1021
static void pc_init_ne2k_isa(NICInfo *nd, qemu_irq *pic)
1022
{
1023
    static int nb_ne2k = 0;
1024

    
1025
    if (nb_ne2k == NE2000_NB_MAX)
1026
        return;
1027
    isa_ne2000_init(ne2000_io[nb_ne2k], pic[ne2000_irq[nb_ne2k]], nd);
1028
    nb_ne2k++;
1029
}
1030

    
1031
static int load_option_rom(const char *oprom, target_phys_addr_t start,
1032
                           target_phys_addr_t end)
1033
{
1034
        int size;
1035
        char *filename;
1036

    
1037
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, oprom);
1038
        if (filename) {
1039
            size = get_image_size(filename);
1040
            if (size > 0 && start + size > end) {
1041
                fprintf(stderr, "Not enough space to load option rom '%s'\n",
1042
                        oprom);
1043
                exit(1);
1044
            }
1045
            size = load_image_targphys(filename, start, end - start);
1046
            qemu_free(filename);
1047
        } else {
1048
            size = -1;
1049
        }
1050
        if (size < 0) {
1051
            fprintf(stderr, "Could not load option rom '%s'\n", oprom);
1052
            exit(1);
1053
        }
1054
        /* Round up optiom rom size to the next 2k boundary */
1055
        size = (size + 2047) & ~2047;
1056
        option_rom_setup_reset(start, size);
1057
        return size;
1058
}
1059

    
1060
int cpu_is_bsp(CPUState *env)
1061
{
1062
        return env->cpuid_apic_id == 0;
1063
}
1064

    
1065
/* PC hardware initialisation */
1066
static void pc_init1(ram_addr_t ram_size,
1067
                     const char *boot_device,
1068
                     const char *kernel_filename, const char *kernel_cmdline,
1069
                     const char *initrd_filename,
1070
                     int pci_enabled, const char *cpu_model)
1071
{
1072
    char *filename;
1073
    int ret, linux_boot, i;
1074
    ram_addr_t ram_addr, bios_offset, option_rom_offset;
1075
    ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
1076
    int bios_size, isa_bios_size, oprom_area_size;
1077
    PCIBus *pci_bus;
1078
    PCIDevice *pci_dev;
1079
    int piix3_devfn = -1;
1080
    CPUState *env;
1081
    qemu_irq *cpu_irq;
1082
    qemu_irq *i8259;
1083
    int index;
1084
    BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1085
    BlockDriverState *fd[MAX_FD];
1086
    int using_vga = cirrus_vga_enabled || std_vga_enabled || vmsvga_enabled;
1087
    void *fw_cfg;
1088

    
1089
    if (ram_size >= 0xe0000000 ) {
1090
        above_4g_mem_size = ram_size - 0xe0000000;
1091
        below_4g_mem_size = 0xe0000000;
1092
    } else {
1093
        below_4g_mem_size = ram_size;
1094
    }
1095

    
1096
    linux_boot = (kernel_filename != NULL);
1097

    
1098
    /* init CPUs */
1099
    if (cpu_model == NULL) {
1100
#ifdef TARGET_X86_64
1101
        cpu_model = "qemu64";
1102
#else
1103
        cpu_model = "qemu32";
1104
#endif
1105
    }
1106
    
1107
    for(i = 0; i < smp_cpus; i++) {
1108
        env = cpu_init(cpu_model);
1109
        if (!env) {
1110
            fprintf(stderr, "Unable to find x86 CPU definition\n");
1111
            exit(1);
1112
        }
1113
        if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
1114
            env->cpuid_apic_id = env->cpu_index;
1115
            /* APIC reset callback resets cpu */
1116
            apic_init(env);
1117
        } else {
1118
            qemu_register_reset((QEMUResetHandler*)cpu_reset, 0, env);
1119
        }
1120
    }
1121

    
1122
    vmport_init();
1123

    
1124
    /* allocate RAM */
1125
    ram_addr = qemu_ram_alloc(0xa0000);
1126
    cpu_register_physical_memory(0, 0xa0000, ram_addr);
1127

    
1128
    /* Allocate, even though we won't register, so we don't break the
1129
     * phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
1130
     * and some bios areas, which will be registered later
1131
     */
1132
    ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
1133
    ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
1134
    cpu_register_physical_memory(0x100000,
1135
                 below_4g_mem_size - 0x100000,
1136
                 ram_addr);
1137

    
1138
    /* above 4giga memory allocation */
1139
    if (above_4g_mem_size > 0) {
1140
#if TARGET_PHYS_ADDR_BITS == 32
1141
        hw_error("To much RAM for 32-bit physical address");
1142
#else
1143
        ram_addr = qemu_ram_alloc(above_4g_mem_size);
1144
        cpu_register_physical_memory(0x100000000ULL,
1145
                                     above_4g_mem_size,
1146
                                     ram_addr);
1147
#endif
1148
    }
1149

    
1150

    
1151
    /* BIOS load */
1152
    if (bios_name == NULL)
1153
        bios_name = BIOS_FILENAME;
1154
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1155
    if (filename) {
1156
        bios_size = get_image_size(filename);
1157
    } else {
1158
        bios_size = -1;
1159
    }
1160
    if (bios_size <= 0 ||
1161
        (bios_size % 65536) != 0) {
1162
        goto bios_error;
1163
    }
1164
    bios_offset = qemu_ram_alloc(bios_size);
1165
    ret = load_image(filename, qemu_get_ram_ptr(bios_offset));
1166
    if (ret != bios_size) {
1167
    bios_error:
1168
        fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1169
        exit(1);
1170
    }
1171
    if (filename) {
1172
        qemu_free(filename);
1173
    }
1174
    /* map the last 128KB of the BIOS in ISA space */
1175
    isa_bios_size = bios_size;
1176
    if (isa_bios_size > (128 * 1024))
1177
        isa_bios_size = 128 * 1024;
1178
    cpu_register_physical_memory(0x100000 - isa_bios_size,
1179
                                 isa_bios_size,
1180
                                 (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
1181

    
1182

    
1183

    
1184
    option_rom_offset = qemu_ram_alloc(0x20000);
1185
    oprom_area_size = 0;
1186
    cpu_register_physical_memory(0xc0000, 0x20000, option_rom_offset);
1187

    
1188
    if (using_vga) {
1189
        const char *vgabios_filename;
1190
        /* VGA BIOS load */
1191
        if (cirrus_vga_enabled) {
1192
            vgabios_filename = VGABIOS_CIRRUS_FILENAME;
1193
        } else {
1194
            vgabios_filename = VGABIOS_FILENAME;
1195
        }
1196
        oprom_area_size = load_option_rom(vgabios_filename, 0xc0000, 0xe0000);
1197
    }
1198
    /* Although video roms can grow larger than 0x8000, the area between
1199
     * 0xc0000 - 0xc8000 is reserved for them. It means we won't be looking
1200
     * for any other kind of option rom inside this area */
1201
    if (oprom_area_size < 0x8000)
1202
        oprom_area_size = 0x8000;
1203

    
1204
    /* map all the bios at the top of memory */
1205
    cpu_register_physical_memory((uint32_t)(-bios_size),
1206
                                 bios_size, bios_offset | IO_MEM_ROM);
1207

    
1208
    fw_cfg = bochs_bios_init();
1209

    
1210
    if (linux_boot) {
1211
        load_linux(fw_cfg, 0xc0000 + oprom_area_size,
1212
                   kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1213
        oprom_area_size += 2048;
1214
    }
1215

    
1216
    for (i = 0; i < nb_option_roms; i++) {
1217
        oprom_area_size += load_option_rom(option_rom[i], 0xc0000 + oprom_area_size,
1218
                                           0xe0000);
1219
    }
1220

    
1221
    for (i = 0; i < nb_nics; i++) {
1222
        char nic_oprom[1024];
1223
        const char *model = nd_table[i].model;
1224

    
1225
        if (!nd_table[i].bootable)
1226
            continue;
1227

    
1228
        if (model == NULL)
1229
            model = "ne2k_pci";
1230
        snprintf(nic_oprom, sizeof(nic_oprom), "pxe-%s.bin", model);
1231

    
1232
        oprom_area_size += load_option_rom(nic_oprom, 0xc0000 + oprom_area_size,
1233
                                           0xe0000);
1234
    }
1235

    
1236
    cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
1237
    i8259 = i8259_init(cpu_irq[0]);
1238
    ferr_irq = i8259[13];
1239

    
1240
    if (pci_enabled) {
1241
        pci_bus = i440fx_init(&i440fx_state, i8259);
1242
        piix3_devfn = piix3_init(pci_bus, -1);
1243
    } else {
1244
        pci_bus = NULL;
1245
    }
1246

    
1247
    /* init basic PC hardware */
1248
    register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1249

    
1250
    register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1251

    
1252
    if (cirrus_vga_enabled) {
1253
        if (pci_enabled) {
1254
            pci_cirrus_vga_init(pci_bus);
1255
        } else {
1256
            isa_cirrus_vga_init();
1257
        }
1258
    } else if (vmsvga_enabled) {
1259
        if (pci_enabled)
1260
            pci_vmsvga_init(pci_bus);
1261
        else
1262
            fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1263
    } else if (std_vga_enabled) {
1264
        if (pci_enabled) {
1265
            pci_vga_init(pci_bus, 0, 0);
1266
        } else {
1267
            isa_vga_init();
1268
        }
1269
    }
1270

    
1271
    rtc_state = rtc_init(0x70, i8259[8], 2000);
1272

    
1273
    qemu_register_boot_set(pc_boot_set, rtc_state);
1274

    
1275
    register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
1276
    register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
1277

    
1278
    if (pci_enabled) {
1279
        ioapic = ioapic_init();
1280
    }
1281
    pit = pit_init(0x40, i8259[0]);
1282
    pcspk_init(pit);
1283
    if (!no_hpet) {
1284
        hpet_init(i8259);
1285
    }
1286
    if (pci_enabled) {
1287
        pic_set_alt_irq_func(isa_pic, ioapic_set_irq, ioapic);
1288
    }
1289

    
1290
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1291
        if (serial_hds[i]) {
1292
            serial_init(serial_io[i], i8259[serial_irq[i]], 115200,
1293
                        serial_hds[i]);
1294
        }
1295
    }
1296

    
1297
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1298
        if (parallel_hds[i]) {
1299
            parallel_init(parallel_io[i], i8259[parallel_irq[i]],
1300
                          parallel_hds[i]);
1301
        }
1302
    }
1303

    
1304
    watchdog_pc_init(pci_bus);
1305

    
1306
    for(i = 0; i < nb_nics; i++) {
1307
        NICInfo *nd = &nd_table[i];
1308

    
1309
        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
1310
            pc_init_ne2k_isa(nd, i8259);
1311
        else
1312
            pci_nic_init(nd, "ne2k_pci", NULL);
1313
    }
1314

    
1315
    piix4_acpi_system_hot_add_init();
1316

    
1317
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
1318
        fprintf(stderr, "qemu: too many IDE bus\n");
1319
        exit(1);
1320
    }
1321

    
1322
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
1323
        index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
1324
        if (index != -1)
1325
            hd[i] = drives_table[index].bdrv;
1326
        else
1327
            hd[i] = NULL;
1328
    }
1329

    
1330
    if (pci_enabled) {
1331
        pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1, i8259);
1332
    } else {
1333
        for(i = 0; i < MAX_IDE_BUS; i++) {
1334
            isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]],
1335
                         hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
1336
        }
1337
    }
1338

    
1339
    i8042_init(i8259[1], i8259[12], 0x60);
1340
    DMA_init(0);
1341
#ifdef HAS_AUDIO
1342
    audio_init(pci_enabled ? pci_bus : NULL, i8259);
1343
#endif
1344

    
1345
    for(i = 0; i < MAX_FD; i++) {
1346
        index = drive_get_index(IF_FLOPPY, 0, i);
1347
        if (index != -1)
1348
            fd[i] = drives_table[index].bdrv;
1349
        else
1350
            fd[i] = NULL;
1351
    }
1352
    floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
1353

    
1354
    cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
1355

    
1356
    if (pci_enabled && usb_enabled) {
1357
        usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
1358
    }
1359

    
1360
    if (pci_enabled && acpi_enabled) {
1361
        uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
1362
        i2c_bus *smbus;
1363

    
1364
        /* TODO: Populate SPD eeprom data.  */
1365
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, i8259[9]);
1366
        for (i = 0; i < 8; i++) {
1367
            DeviceState *eeprom;
1368
            eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
1369
            qdev_set_prop_int(eeprom, "address", 0x50 + i);
1370
            qdev_set_prop_ptr(eeprom, "data", eeprom_buf + (i * 256));
1371
            qdev_init(eeprom);
1372
        }
1373
    }
1374

    
1375
    if (i440fx_state) {
1376
        i440fx_init_memory_mappings(i440fx_state);
1377
    }
1378

    
1379
    if (pci_enabled) {
1380
        int max_bus;
1381
        int bus;
1382

    
1383
        max_bus = drive_get_max_bus(IF_SCSI);
1384
        for (bus = 0; bus <= max_bus; bus++) {
1385
            pci_create_simple(pci_bus, -1, "lsi53c895a");
1386
        }
1387
    }
1388

    
1389
    /* Add virtio block devices */
1390
    if (pci_enabled) {
1391
        int index;
1392
        int unit_id = 0;
1393

    
1394
        while ((index = drive_get_index(IF_VIRTIO, 0, unit_id)) != -1) {
1395
            pci_dev = pci_create("virtio-blk-pci",
1396
                                 drives_table[index].devaddr);
1397
            qdev_init(&pci_dev->qdev);
1398
            unit_id++;
1399
        }
1400
    }
1401

    
1402
    /* Add virtio balloon device */
1403
    if (pci_enabled && !no_virtio_balloon) {
1404
        pci_create_simple(pci_bus, -1, "virtio-balloon-pci");
1405
    }
1406

    
1407
    /* Add virtio console devices */
1408
    if (pci_enabled) {
1409
        for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
1410
            if (virtcon_hds[i]) {
1411
                pci_create_simple(pci_bus, -1, "virtio-console-pci");
1412
            }
1413
        }
1414
    }
1415
}
1416

    
1417
static void pc_init_pci(ram_addr_t ram_size,
1418
                        const char *boot_device,
1419
                        const char *kernel_filename,
1420
                        const char *kernel_cmdline,
1421
                        const char *initrd_filename,
1422
                        const char *cpu_model)
1423
{
1424
    pc_init1(ram_size, boot_device,
1425
             kernel_filename, kernel_cmdline,
1426
             initrd_filename, 1, cpu_model);
1427
}
1428

    
1429
static void pc_init_isa(ram_addr_t ram_size,
1430
                        const char *boot_device,
1431
                        const char *kernel_filename,
1432
                        const char *kernel_cmdline,
1433
                        const char *initrd_filename,
1434
                        const char *cpu_model)
1435
{
1436
    pc_init1(ram_size, boot_device,
1437
             kernel_filename, kernel_cmdline,
1438
             initrd_filename, 0, cpu_model);
1439
}
1440

    
1441
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
1442
   BIOS will read it and start S3 resume at POST Entry */
1443
void cmos_set_s3_resume(void)
1444
{
1445
    if (rtc_state)
1446
        rtc_set_memory(rtc_state, 0xF, 0xFE);
1447
}
1448

    
1449
static QEMUMachine pc_machine = {
1450
    .name = "pc",
1451
    .desc = "Standard PC",
1452
    .init = pc_init_pci,
1453
    .max_cpus = 255,
1454
    .is_default = 1,
1455
};
1456

    
1457
static QEMUMachine isapc_machine = {
1458
    .name = "isapc",
1459
    .desc = "ISA-only PC",
1460
    .init = pc_init_isa,
1461
    .max_cpus = 1,
1462
};
1463

    
1464
static void pc_machine_init(void)
1465
{
1466
    qemu_register_machine(&pc_machine);
1467
    qemu_register_machine(&isapc_machine);
1468
}
1469

    
1470
machine_init(pc_machine_init);