Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ f1665b21

History | View | Annotate | Download (38 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "ioport.h"
29

    
30
#ifdef CONFIG_KVM_PARA
31
#include <linux/kvm_para.h>
32
#endif
33
//
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifdef KVM_CAP_EXT_CPUID
48

    
49
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50
{
51
    struct kvm_cpuid2 *cpuid;
52
    int r, size;
53

    
54
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56
    cpuid->nent = max;
57
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58
    if (r == 0 && cpuid->nent >= max) {
59
        r = -E2BIG;
60
    }
61
    if (r < 0) {
62
        if (r == -E2BIG) {
63
            qemu_free(cpuid);
64
            return NULL;
65
        } else {
66
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67
                    strerror(-r));
68
            exit(1);
69
        }
70
    }
71
    return cpuid;
72
}
73

    
74
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75
                                      uint32_t index, int reg)
76
{
77
    struct kvm_cpuid2 *cpuid;
78
    int i, max;
79
    uint32_t ret = 0;
80
    uint32_t cpuid_1_edx;
81

    
82
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83
        return -1U;
84
    }
85

    
86
    max = 1;
87
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88
        max *= 2;
89
    }
90

    
91
    for (i = 0; i < cpuid->nent; ++i) {
92
        if (cpuid->entries[i].function == function &&
93
            cpuid->entries[i].index == index) {
94
            switch (reg) {
95
            case R_EAX:
96
                ret = cpuid->entries[i].eax;
97
                break;
98
            case R_EBX:
99
                ret = cpuid->entries[i].ebx;
100
                break;
101
            case R_ECX:
102
                ret = cpuid->entries[i].ecx;
103
                break;
104
            case R_EDX:
105
                ret = cpuid->entries[i].edx;
106
                switch (function) {
107
                case 1:
108
                    /* KVM before 2.6.30 misreports the following features */
109
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110
                    break;
111
                case 0x80000001:
112
                    /* On Intel, kvm returns cpuid according to the Intel spec,
113
                     * so add missing bits according to the AMD spec:
114
                     */
115
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116
                    ret |= cpuid_1_edx & 0x183f7ff;
117
                    break;
118
                }
119
                break;
120
            }
121
        }
122
    }
123

    
124
    qemu_free(cpuid);
125

    
126
    return ret;
127
}
128

    
129
#else
130

    
131
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132
                                      uint32_t index, int reg)
133
{
134
    return -1U;
135
}
136

    
137
#endif
138

    
139
#ifdef CONFIG_KVM_PARA
140
struct kvm_para_features {
141
        int cap;
142
        int feature;
143
} para_features[] = {
144
#ifdef KVM_CAP_CLOCKSOURCE
145
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146
#endif
147
#ifdef KVM_CAP_NOP_IO_DELAY
148
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149
#endif
150
#ifdef KVM_CAP_PV_MMU
151
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152
#endif
153
        { -1, -1 }
154
};
155

    
156
static int get_para_features(CPUState *env)
157
{
158
        int i, features = 0;
159

    
160
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162
                        features |= (1 << para_features[i].feature);
163
        }
164

    
165
        return features;
166
}
167
#endif
168

    
169
int kvm_arch_init_vcpu(CPUState *env)
170
{
171
    struct {
172
        struct kvm_cpuid2 cpuid;
173
        struct kvm_cpuid_entry2 entries[100];
174
    } __attribute__((packed)) cpuid_data;
175
    uint32_t limit, i, j, cpuid_i;
176
    uint32_t unused;
177
    struct kvm_cpuid_entry2 *c;
178
#ifdef KVM_CPUID_SIGNATURE
179
    uint32_t signature[3];
180
#endif
181

    
182
    env->mp_state = KVM_MP_STATE_RUNNABLE;
183

    
184
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
185

    
186
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
187
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
188
    env->cpuid_ext_features |= i;
189

    
190
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
191
                                                             0, R_EDX);
192
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
193
                                                             0, R_ECX);
194

    
195
    cpuid_i = 0;
196

    
197
#ifdef CONFIG_KVM_PARA
198
    /* Paravirtualization CPUIDs */
199
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
200
    c = &cpuid_data.entries[cpuid_i++];
201
    memset(c, 0, sizeof(*c));
202
    c->function = KVM_CPUID_SIGNATURE;
203
    c->eax = 0;
204
    c->ebx = signature[0];
205
    c->ecx = signature[1];
206
    c->edx = signature[2];
207

    
208
    c = &cpuid_data.entries[cpuid_i++];
209
    memset(c, 0, sizeof(*c));
210
    c->function = KVM_CPUID_FEATURES;
211
    c->eax = env->cpuid_kvm_features & get_para_features(env);
212
#endif
213

    
214
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215

    
216
    for (i = 0; i <= limit; i++) {
217
        c = &cpuid_data.entries[cpuid_i++];
218

    
219
        switch (i) {
220
        case 2: {
221
            /* Keep reading function 2 till all the input is received */
222
            int times;
223

    
224
            c->function = i;
225
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
226
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
227
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
228
            times = c->eax & 0xff;
229

    
230
            for (j = 1; j < times; ++j) {
231
                c = &cpuid_data.entries[cpuid_i++];
232
                c->function = i;
233
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
234
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235
            }
236
            break;
237
        }
238
        case 4:
239
        case 0xb:
240
        case 0xd:
241
            for (j = 0; ; j++) {
242
                c->function = i;
243
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
244
                c->index = j;
245
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246

    
247
                if (i == 4 && c->eax == 0)
248
                    break;
249
                if (i == 0xb && !(c->ecx & 0xff00))
250
                    break;
251
                if (i == 0xd && c->eax == 0)
252
                    break;
253

    
254
                c = &cpuid_data.entries[cpuid_i++];
255
            }
256
            break;
257
        default:
258
            c->function = i;
259
            c->flags = 0;
260
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
261
            break;
262
        }
263
    }
264
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265

    
266
    for (i = 0x80000000; i <= limit; i++) {
267
        c = &cpuid_data.entries[cpuid_i++];
268

    
269
        c->function = i;
270
        c->flags = 0;
271
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
272
    }
273

    
274
    cpuid_data.cpuid.nent = cpuid_i;
275

    
276
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
277
}
278

    
279
void kvm_arch_reset_vcpu(CPUState *env)
280
{
281
    env->exception_injected = -1;
282
    env->interrupt_injected = -1;
283
    env->nmi_injected = 0;
284
    env->nmi_pending = 0;
285
}
286

    
287
static int kvm_has_msr_star(CPUState *env)
288
{
289
    static int has_msr_star;
290
    int ret;
291

    
292
    /* first time */
293
    if (has_msr_star == 0) {        
294
        struct kvm_msr_list msr_list, *kvm_msr_list;
295

    
296
        has_msr_star = -1;
297

    
298
        /* Obtain MSR list from KVM.  These are the MSRs that we must
299
         * save/restore */
300
        msr_list.nmsrs = 0;
301
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
302
        if (ret < 0 && ret != -E2BIG) {
303
            return 0;
304
        }
305
        /* Old kernel modules had a bug and could write beyond the provided
306
           memory. Allocate at least a safe amount of 1K. */
307
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
308
                                              msr_list.nmsrs *
309
                                              sizeof(msr_list.indices[0])));
310

    
311
        kvm_msr_list->nmsrs = msr_list.nmsrs;
312
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
313
        if (ret >= 0) {
314
            int i;
315

    
316
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
317
                if (kvm_msr_list->indices[i] == MSR_STAR) {
318
                    has_msr_star = 1;
319
                    break;
320
                }
321
            }
322
        }
323

    
324
        free(kvm_msr_list);
325
    }
326

    
327
    if (has_msr_star == 1)
328
        return 1;
329
    return 0;
330
}
331

    
332
static int kvm_init_identity_map_page(KVMState *s)
333
{
334
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
335
    int ret;
336
    uint64_t addr = 0xfffbc000;
337

    
338
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
339
        return 0;
340
    }
341

    
342
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
343
    if (ret < 0) {
344
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
345
        return ret;
346
    }
347
#endif
348
    return 0;
349
}
350

    
351
int kvm_arch_init(KVMState *s, int smp_cpus)
352
{
353
    int ret;
354

    
355
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
356
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
357
     * must be part of guest physical memory, we need to allocate it.  Older
358
     * versions of KVM just assumed that it would be at the end of physical
359
     * memory but that doesn't work with more than 4GB of memory.  We simply
360
     * refuse to work with those older versions of KVM. */
361
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
362
    if (ret <= 0) {
363
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
364
        return ret;
365
    }
366

    
367
    /* this address is 3 pages before the bios, and the bios should present
368
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
369
     * this?
370
     */
371
    /*
372
     * Tell fw_cfg to notify the BIOS to reserve the range.
373
     */
374
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
375
        perror("e820_add_entry() table is full");
376
        exit(1);
377
    }
378
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
379
    if (ret < 0) {
380
        return ret;
381
    }
382

    
383
    return kvm_init_identity_map_page(s);
384
}
385
                    
386
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
387
{
388
    lhs->selector = rhs->selector;
389
    lhs->base = rhs->base;
390
    lhs->limit = rhs->limit;
391
    lhs->type = 3;
392
    lhs->present = 1;
393
    lhs->dpl = 3;
394
    lhs->db = 0;
395
    lhs->s = 1;
396
    lhs->l = 0;
397
    lhs->g = 0;
398
    lhs->avl = 0;
399
    lhs->unusable = 0;
400
}
401

    
402
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
403
{
404
    unsigned flags = rhs->flags;
405
    lhs->selector = rhs->selector;
406
    lhs->base = rhs->base;
407
    lhs->limit = rhs->limit;
408
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
409
    lhs->present = (flags & DESC_P_MASK) != 0;
410
    lhs->dpl = rhs->selector & 3;
411
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
412
    lhs->s = (flags & DESC_S_MASK) != 0;
413
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
414
    lhs->g = (flags & DESC_G_MASK) != 0;
415
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
416
    lhs->unusable = 0;
417
}
418

    
419
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
420
{
421
    lhs->selector = rhs->selector;
422
    lhs->base = rhs->base;
423
    lhs->limit = rhs->limit;
424
    lhs->flags =
425
        (rhs->type << DESC_TYPE_SHIFT)
426
        | (rhs->present * DESC_P_MASK)
427
        | (rhs->dpl << DESC_DPL_SHIFT)
428
        | (rhs->db << DESC_B_SHIFT)
429
        | (rhs->s * DESC_S_MASK)
430
        | (rhs->l << DESC_L_SHIFT)
431
        | (rhs->g * DESC_G_MASK)
432
        | (rhs->avl * DESC_AVL_MASK);
433
}
434

    
435
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
436
{
437
    if (set)
438
        *kvm_reg = *qemu_reg;
439
    else
440
        *qemu_reg = *kvm_reg;
441
}
442

    
443
static int kvm_getput_regs(CPUState *env, int set)
444
{
445
    struct kvm_regs regs;
446
    int ret = 0;
447

    
448
    if (!set) {
449
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
450
        if (ret < 0)
451
            return ret;
452
    }
453

    
454
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
455
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
456
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
457
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
458
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
459
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
460
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
461
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
462
#ifdef TARGET_X86_64
463
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
464
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
465
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
466
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
467
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
468
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
469
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
470
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
471
#endif
472

    
473
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
474
    kvm_getput_reg(&regs.rip, &env->eip, set);
475

    
476
    if (set)
477
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
478

    
479
    return ret;
480
}
481

    
482
static int kvm_put_fpu(CPUState *env)
483
{
484
    struct kvm_fpu fpu;
485
    int i;
486

    
487
    memset(&fpu, 0, sizeof fpu);
488
    fpu.fsw = env->fpus & ~(7 << 11);
489
    fpu.fsw |= (env->fpstt & 7) << 11;
490
    fpu.fcw = env->fpuc;
491
    for (i = 0; i < 8; ++i)
492
        fpu.ftwx |= (!env->fptags[i]) << i;
493
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
494
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
495
    fpu.mxcsr = env->mxcsr;
496

    
497
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
498
}
499

    
500
#ifdef KVM_CAP_XSAVE
501
#define XSAVE_CWD_RIP     2
502
#define XSAVE_CWD_RDP     4
503
#define XSAVE_MXCSR       6
504
#define XSAVE_ST_SPACE    8
505
#define XSAVE_XMM_SPACE   40
506
#define XSAVE_XSTATE_BV   128
507
#define XSAVE_YMMH_SPACE  144
508
#endif
509

    
510
static int kvm_put_xsave(CPUState *env)
511
{
512
#ifdef KVM_CAP_XSAVE
513
    int i;
514
    struct kvm_xsave* xsave;
515
    uint16_t cwd, swd, twd, fop;
516

    
517
    if (!kvm_has_xsave())
518
        return kvm_put_fpu(env);
519

    
520
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
521
    memset(xsave, 0, sizeof(struct kvm_xsave));
522
    cwd = swd = twd = fop = 0;
523
    swd = env->fpus & ~(7 << 11);
524
    swd |= (env->fpstt & 7) << 11;
525
    cwd = env->fpuc;
526
    for (i = 0; i < 8; ++i)
527
        twd |= (!env->fptags[i]) << i;
528
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
529
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
530
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
531
            sizeof env->fpregs);
532
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
533
            sizeof env->xmm_regs);
534
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
535
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
536
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
537
            sizeof env->ymmh_regs);
538
    return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
539
#else
540
    return kvm_put_fpu(env);
541
#endif
542
}
543

    
544
static int kvm_put_xcrs(CPUState *env)
545
{
546
#ifdef KVM_CAP_XCRS
547
    struct kvm_xcrs xcrs;
548

    
549
    if (!kvm_has_xcrs())
550
        return 0;
551

    
552
    xcrs.nr_xcrs = 1;
553
    xcrs.flags = 0;
554
    xcrs.xcrs[0].xcr = 0;
555
    xcrs.xcrs[0].value = env->xcr0;
556
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
557
#else
558
    return 0;
559
#endif
560
}
561

    
562
static int kvm_put_sregs(CPUState *env)
563
{
564
    struct kvm_sregs sregs;
565

    
566
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
567
    if (env->interrupt_injected >= 0) {
568
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
569
                (uint64_t)1 << (env->interrupt_injected % 64);
570
    }
571

    
572
    if ((env->eflags & VM_MASK)) {
573
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
574
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
575
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
576
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
577
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
578
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
579
    } else {
580
            set_seg(&sregs.cs, &env->segs[R_CS]);
581
            set_seg(&sregs.ds, &env->segs[R_DS]);
582
            set_seg(&sregs.es, &env->segs[R_ES]);
583
            set_seg(&sregs.fs, &env->segs[R_FS]);
584
            set_seg(&sregs.gs, &env->segs[R_GS]);
585
            set_seg(&sregs.ss, &env->segs[R_SS]);
586

    
587
            if (env->cr[0] & CR0_PE_MASK) {
588
                /* force ss cpl to cs cpl */
589
                sregs.ss.selector = (sregs.ss.selector & ~3) |
590
                        (sregs.cs.selector & 3);
591
                sregs.ss.dpl = sregs.ss.selector & 3;
592
            }
593
    }
594

    
595
    set_seg(&sregs.tr, &env->tr);
596
    set_seg(&sregs.ldt, &env->ldt);
597

    
598
    sregs.idt.limit = env->idt.limit;
599
    sregs.idt.base = env->idt.base;
600
    sregs.gdt.limit = env->gdt.limit;
601
    sregs.gdt.base = env->gdt.base;
602

    
603
    sregs.cr0 = env->cr[0];
604
    sregs.cr2 = env->cr[2];
605
    sregs.cr3 = env->cr[3];
606
    sregs.cr4 = env->cr[4];
607

    
608
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
609
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
610

    
611
    sregs.efer = env->efer;
612

    
613
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
614
}
615

    
616
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
617
                              uint32_t index, uint64_t value)
618
{
619
    entry->index = index;
620
    entry->data = value;
621
}
622

    
623
static int kvm_put_msrs(CPUState *env, int level)
624
{
625
    struct {
626
        struct kvm_msrs info;
627
        struct kvm_msr_entry entries[100];
628
    } msr_data;
629
    struct kvm_msr_entry *msrs = msr_data.entries;
630
    int n = 0;
631

    
632
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
633
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
634
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
635
    if (kvm_has_msr_star(env))
636
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
637
#ifdef TARGET_X86_64
638
    /* FIXME if lm capable */
639
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
640
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
641
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
642
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
643
#endif
644
    if (level == KVM_PUT_FULL_STATE) {
645
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
646
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
647
                          env->system_time_msr);
648
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
649
    }
650

    
651
    msr_data.info.nmsrs = n;
652

    
653
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
654

    
655
}
656

    
657

    
658
static int kvm_get_fpu(CPUState *env)
659
{
660
    struct kvm_fpu fpu;
661
    int i, ret;
662

    
663
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
664
    if (ret < 0)
665
        return ret;
666

    
667
    env->fpstt = (fpu.fsw >> 11) & 7;
668
    env->fpus = fpu.fsw;
669
    env->fpuc = fpu.fcw;
670
    for (i = 0; i < 8; ++i)
671
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
672
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
673
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
674
    env->mxcsr = fpu.mxcsr;
675

    
676
    return 0;
677
}
678

    
679
static int kvm_get_xsave(CPUState *env)
680
{
681
#ifdef KVM_CAP_XSAVE
682
    struct kvm_xsave* xsave;
683
    int ret, i;
684
    uint16_t cwd, swd, twd, fop;
685

    
686
    if (!kvm_has_xsave())
687
        return kvm_get_fpu(env);
688

    
689
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
690
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
691
    if (ret < 0)
692
        return ret;
693

    
694
    cwd = (uint16_t)xsave->region[0];
695
    swd = (uint16_t)(xsave->region[0] >> 16);
696
    twd = (uint16_t)xsave->region[1];
697
    fop = (uint16_t)(xsave->region[1] >> 16);
698
    env->fpstt = (swd >> 11) & 7;
699
    env->fpus = swd;
700
    env->fpuc = cwd;
701
    for (i = 0; i < 8; ++i)
702
        env->fptags[i] = !((twd >> i) & 1);
703
    env->mxcsr = xsave->region[XSAVE_MXCSR];
704
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
705
            sizeof env->fpregs);
706
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
707
            sizeof env->xmm_regs);
708
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
709
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
710
            sizeof env->ymmh_regs);
711
    return 0;
712
#else
713
    return kvm_get_fpu(env);
714
#endif
715
}
716

    
717
static int kvm_get_xcrs(CPUState *env)
718
{
719
#ifdef KVM_CAP_XCRS
720
    int i, ret;
721
    struct kvm_xcrs xcrs;
722

    
723
    if (!kvm_has_xcrs())
724
        return 0;
725

    
726
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
727
    if (ret < 0)
728
        return ret;
729

    
730
    for (i = 0; i < xcrs.nr_xcrs; i++)
731
        /* Only support xcr0 now */
732
        if (xcrs.xcrs[0].xcr == 0) {
733
            env->xcr0 = xcrs.xcrs[0].value;
734
            break;
735
        }
736
    return 0;
737
#else
738
    return 0;
739
#endif
740
}
741

    
742
static int kvm_get_sregs(CPUState *env)
743
{
744
    struct kvm_sregs sregs;
745
    uint32_t hflags;
746
    int bit, i, ret;
747

    
748
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
749
    if (ret < 0)
750
        return ret;
751

    
752
    /* There can only be one pending IRQ set in the bitmap at a time, so try
753
       to find it and save its number instead (-1 for none). */
754
    env->interrupt_injected = -1;
755
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
756
        if (sregs.interrupt_bitmap[i]) {
757
            bit = ctz64(sregs.interrupt_bitmap[i]);
758
            env->interrupt_injected = i * 64 + bit;
759
            break;
760
        }
761
    }
762

    
763
    get_seg(&env->segs[R_CS], &sregs.cs);
764
    get_seg(&env->segs[R_DS], &sregs.ds);
765
    get_seg(&env->segs[R_ES], &sregs.es);
766
    get_seg(&env->segs[R_FS], &sregs.fs);
767
    get_seg(&env->segs[R_GS], &sregs.gs);
768
    get_seg(&env->segs[R_SS], &sregs.ss);
769

    
770
    get_seg(&env->tr, &sregs.tr);
771
    get_seg(&env->ldt, &sregs.ldt);
772

    
773
    env->idt.limit = sregs.idt.limit;
774
    env->idt.base = sregs.idt.base;
775
    env->gdt.limit = sregs.gdt.limit;
776
    env->gdt.base = sregs.gdt.base;
777

    
778
    env->cr[0] = sregs.cr0;
779
    env->cr[2] = sregs.cr2;
780
    env->cr[3] = sregs.cr3;
781
    env->cr[4] = sregs.cr4;
782

    
783
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
784

    
785
    env->efer = sregs.efer;
786
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
787

    
788
#define HFLAG_COPY_MASK ~( \
789
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
790
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
791
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
792
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
793

    
794

    
795

    
796
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
797
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
798
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
799
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
800
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
801
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
802
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
803

    
804
    if (env->efer & MSR_EFER_LMA) {
805
        hflags |= HF_LMA_MASK;
806
    }
807

    
808
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
809
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
810
    } else {
811
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
812
                (DESC_B_SHIFT - HF_CS32_SHIFT);
813
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
814
                (DESC_B_SHIFT - HF_SS32_SHIFT);
815
        if (!(env->cr[0] & CR0_PE_MASK) ||
816
                   (env->eflags & VM_MASK) ||
817
                   !(hflags & HF_CS32_MASK)) {
818
                hflags |= HF_ADDSEG_MASK;
819
            } else {
820
                hflags |= ((env->segs[R_DS].base |
821
                                env->segs[R_ES].base |
822
                                env->segs[R_SS].base) != 0) <<
823
                    HF_ADDSEG_SHIFT;
824
            }
825
    }
826
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
827

    
828
    return 0;
829
}
830

    
831
static int kvm_get_msrs(CPUState *env)
832
{
833
    struct {
834
        struct kvm_msrs info;
835
        struct kvm_msr_entry entries[100];
836
    } msr_data;
837
    struct kvm_msr_entry *msrs = msr_data.entries;
838
    int ret, i, n;
839

    
840
    n = 0;
841
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
842
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
843
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
844
    if (kvm_has_msr_star(env))
845
        msrs[n++].index = MSR_STAR;
846
    msrs[n++].index = MSR_IA32_TSC;
847
#ifdef TARGET_X86_64
848
    /* FIXME lm_capable_kernel */
849
    msrs[n++].index = MSR_CSTAR;
850
    msrs[n++].index = MSR_KERNELGSBASE;
851
    msrs[n++].index = MSR_FMASK;
852
    msrs[n++].index = MSR_LSTAR;
853
#endif
854
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
855
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
856

    
857
    msr_data.info.nmsrs = n;
858
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
859
    if (ret < 0)
860
        return ret;
861

    
862
    for (i = 0; i < ret; i++) {
863
        switch (msrs[i].index) {
864
        case MSR_IA32_SYSENTER_CS:
865
            env->sysenter_cs = msrs[i].data;
866
            break;
867
        case MSR_IA32_SYSENTER_ESP:
868
            env->sysenter_esp = msrs[i].data;
869
            break;
870
        case MSR_IA32_SYSENTER_EIP:
871
            env->sysenter_eip = msrs[i].data;
872
            break;
873
        case MSR_STAR:
874
            env->star = msrs[i].data;
875
            break;
876
#ifdef TARGET_X86_64
877
        case MSR_CSTAR:
878
            env->cstar = msrs[i].data;
879
            break;
880
        case MSR_KERNELGSBASE:
881
            env->kernelgsbase = msrs[i].data;
882
            break;
883
        case MSR_FMASK:
884
            env->fmask = msrs[i].data;
885
            break;
886
        case MSR_LSTAR:
887
            env->lstar = msrs[i].data;
888
            break;
889
#endif
890
        case MSR_IA32_TSC:
891
            env->tsc = msrs[i].data;
892
            break;
893
        case MSR_KVM_SYSTEM_TIME:
894
            env->system_time_msr = msrs[i].data;
895
            break;
896
        case MSR_KVM_WALL_CLOCK:
897
            env->wall_clock_msr = msrs[i].data;
898
            break;
899
        }
900
    }
901

    
902
    return 0;
903
}
904

    
905
static int kvm_put_mp_state(CPUState *env)
906
{
907
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
908

    
909
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
910
}
911

    
912
static int kvm_get_mp_state(CPUState *env)
913
{
914
    struct kvm_mp_state mp_state;
915
    int ret;
916

    
917
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
918
    if (ret < 0) {
919
        return ret;
920
    }
921
    env->mp_state = mp_state.mp_state;
922
    return 0;
923
}
924

    
925
static int kvm_put_vcpu_events(CPUState *env, int level)
926
{
927
#ifdef KVM_CAP_VCPU_EVENTS
928
    struct kvm_vcpu_events events;
929

    
930
    if (!kvm_has_vcpu_events()) {
931
        return 0;
932
    }
933

    
934
    events.exception.injected = (env->exception_injected >= 0);
935
    events.exception.nr = env->exception_injected;
936
    events.exception.has_error_code = env->has_error_code;
937
    events.exception.error_code = env->error_code;
938

    
939
    events.interrupt.injected = (env->interrupt_injected >= 0);
940
    events.interrupt.nr = env->interrupt_injected;
941
    events.interrupt.soft = env->soft_interrupt;
942

    
943
    events.nmi.injected = env->nmi_injected;
944
    events.nmi.pending = env->nmi_pending;
945
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
946

    
947
    events.sipi_vector = env->sipi_vector;
948

    
949
    events.flags = 0;
950
    if (level >= KVM_PUT_RESET_STATE) {
951
        events.flags |=
952
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
953
    }
954

    
955
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
956
#else
957
    return 0;
958
#endif
959
}
960

    
961
static int kvm_get_vcpu_events(CPUState *env)
962
{
963
#ifdef KVM_CAP_VCPU_EVENTS
964
    struct kvm_vcpu_events events;
965
    int ret;
966

    
967
    if (!kvm_has_vcpu_events()) {
968
        return 0;
969
    }
970

    
971
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
972
    if (ret < 0) {
973
       return ret;
974
    }
975
    env->exception_injected =
976
       events.exception.injected ? events.exception.nr : -1;
977
    env->has_error_code = events.exception.has_error_code;
978
    env->error_code = events.exception.error_code;
979

    
980
    env->interrupt_injected =
981
        events.interrupt.injected ? events.interrupt.nr : -1;
982
    env->soft_interrupt = events.interrupt.soft;
983

    
984
    env->nmi_injected = events.nmi.injected;
985
    env->nmi_pending = events.nmi.pending;
986
    if (events.nmi.masked) {
987
        env->hflags2 |= HF2_NMI_MASK;
988
    } else {
989
        env->hflags2 &= ~HF2_NMI_MASK;
990
    }
991

    
992
    env->sipi_vector = events.sipi_vector;
993
#endif
994

    
995
    return 0;
996
}
997

    
998
static int kvm_guest_debug_workarounds(CPUState *env)
999
{
1000
    int ret = 0;
1001
#ifdef KVM_CAP_SET_GUEST_DEBUG
1002
    unsigned long reinject_trap = 0;
1003

    
1004
    if (!kvm_has_vcpu_events()) {
1005
        if (env->exception_injected == 1) {
1006
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1007
        } else if (env->exception_injected == 3) {
1008
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1009
        }
1010
        env->exception_injected = -1;
1011
    }
1012

    
1013
    /*
1014
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1015
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1016
     * by updating the debug state once again if single-stepping is on.
1017
     * Another reason to call kvm_update_guest_debug here is a pending debug
1018
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1019
     * reinject them via SET_GUEST_DEBUG.
1020
     */
1021
    if (reinject_trap ||
1022
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1023
        ret = kvm_update_guest_debug(env, reinject_trap);
1024
    }
1025
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1026
    return ret;
1027
}
1028

    
1029
static int kvm_put_debugregs(CPUState *env)
1030
{
1031
#ifdef KVM_CAP_DEBUGREGS
1032
    struct kvm_debugregs dbgregs;
1033
    int i;
1034

    
1035
    if (!kvm_has_debugregs()) {
1036
        return 0;
1037
    }
1038

    
1039
    for (i = 0; i < 4; i++) {
1040
        dbgregs.db[i] = env->dr[i];
1041
    }
1042
    dbgregs.dr6 = env->dr[6];
1043
    dbgregs.dr7 = env->dr[7];
1044
    dbgregs.flags = 0;
1045

    
1046
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1047
#else
1048
    return 0;
1049
#endif
1050
}
1051

    
1052
static int kvm_get_debugregs(CPUState *env)
1053
{
1054
#ifdef KVM_CAP_DEBUGREGS
1055
    struct kvm_debugregs dbgregs;
1056
    int i, ret;
1057

    
1058
    if (!kvm_has_debugregs()) {
1059
        return 0;
1060
    }
1061

    
1062
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1063
    if (ret < 0) {
1064
       return ret;
1065
    }
1066
    for (i = 0; i < 4; i++) {
1067
        env->dr[i] = dbgregs.db[i];
1068
    }
1069
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1070
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1071
#endif
1072

    
1073
    return 0;
1074
}
1075

    
1076
int kvm_arch_put_registers(CPUState *env, int level)
1077
{
1078
    int ret;
1079

    
1080
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1081

    
1082
    ret = kvm_getput_regs(env, 1);
1083
    if (ret < 0)
1084
        return ret;
1085

    
1086
    ret = kvm_put_xsave(env);
1087
    if (ret < 0)
1088
        return ret;
1089

    
1090
    ret = kvm_put_xcrs(env);
1091
    if (ret < 0)
1092
        return ret;
1093

    
1094
    ret = kvm_put_sregs(env);
1095
    if (ret < 0)
1096
        return ret;
1097

    
1098
    ret = kvm_put_msrs(env, level);
1099
    if (ret < 0)
1100
        return ret;
1101

    
1102
    if (level >= KVM_PUT_RESET_STATE) {
1103
        ret = kvm_put_mp_state(env);
1104
        if (ret < 0)
1105
            return ret;
1106
    }
1107

    
1108
    ret = kvm_put_vcpu_events(env, level);
1109
    if (ret < 0)
1110
        return ret;
1111

    
1112
    /* must be last */
1113
    ret = kvm_guest_debug_workarounds(env);
1114
    if (ret < 0)
1115
        return ret;
1116

    
1117
    ret = kvm_put_debugregs(env);
1118
    if (ret < 0)
1119
        return ret;
1120

    
1121
    return 0;
1122
}
1123

    
1124
int kvm_arch_get_registers(CPUState *env)
1125
{
1126
    int ret;
1127

    
1128
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1129

    
1130
    ret = kvm_getput_regs(env, 0);
1131
    if (ret < 0)
1132
        return ret;
1133

    
1134
    ret = kvm_get_xsave(env);
1135
    if (ret < 0)
1136
        return ret;
1137

    
1138
    ret = kvm_get_xcrs(env);
1139
    if (ret < 0)
1140
        return ret;
1141

    
1142
    ret = kvm_get_sregs(env);
1143
    if (ret < 0)
1144
        return ret;
1145

    
1146
    ret = kvm_get_msrs(env);
1147
    if (ret < 0)
1148
        return ret;
1149

    
1150
    ret = kvm_get_mp_state(env);
1151
    if (ret < 0)
1152
        return ret;
1153

    
1154
    ret = kvm_get_vcpu_events(env);
1155
    if (ret < 0)
1156
        return ret;
1157

    
1158
    ret = kvm_get_debugregs(env);
1159
    if (ret < 0)
1160
        return ret;
1161

    
1162
    return 0;
1163
}
1164

    
1165
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1166
{
1167
    /* Try to inject an interrupt if the guest can accept it */
1168
    if (run->ready_for_interrupt_injection &&
1169
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1170
        (env->eflags & IF_MASK)) {
1171
        int irq;
1172

    
1173
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1174
        irq = cpu_get_pic_interrupt(env);
1175
        if (irq >= 0) {
1176
            struct kvm_interrupt intr;
1177
            intr.irq = irq;
1178
            /* FIXME: errors */
1179
            DPRINTF("injected interrupt %d\n", irq);
1180
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1181
        }
1182
    }
1183

    
1184
    /* If we have an interrupt but the guest is not ready to receive an
1185
     * interrupt, request an interrupt window exit.  This will
1186
     * cause a return to userspace as soon as the guest is ready to
1187
     * receive interrupts. */
1188
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1189
        run->request_interrupt_window = 1;
1190
    else
1191
        run->request_interrupt_window = 0;
1192

    
1193
    DPRINTF("setting tpr\n");
1194
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1195

    
1196
    return 0;
1197
}
1198

    
1199
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1200
{
1201
    if (run->if_flag)
1202
        env->eflags |= IF_MASK;
1203
    else
1204
        env->eflags &= ~IF_MASK;
1205
    
1206
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1207
    cpu_set_apic_base(env->apic_state, run->apic_base);
1208

    
1209
    return 0;
1210
}
1211

    
1212
int kvm_arch_process_irqchip_events(CPUState *env)
1213
{
1214
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1215
        kvm_cpu_synchronize_state(env);
1216
        do_cpu_init(env);
1217
        env->exception_index = EXCP_HALTED;
1218
    }
1219

    
1220
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1221
        kvm_cpu_synchronize_state(env);
1222
        do_cpu_sipi(env);
1223
    }
1224

    
1225
    return env->halted;
1226
}
1227

    
1228
static int kvm_handle_halt(CPUState *env)
1229
{
1230
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1231
          (env->eflags & IF_MASK)) &&
1232
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1233
        env->halted = 1;
1234
        env->exception_index = EXCP_HLT;
1235
        return 0;
1236
    }
1237

    
1238
    return 1;
1239
}
1240

    
1241
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1242
{
1243
    int ret = 0;
1244

    
1245
    switch (run->exit_reason) {
1246
    case KVM_EXIT_HLT:
1247
        DPRINTF("handle_hlt\n");
1248
        ret = kvm_handle_halt(env);
1249
        break;
1250
    }
1251

    
1252
    return ret;
1253
}
1254

    
1255
#ifdef KVM_CAP_SET_GUEST_DEBUG
1256
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1257
{
1258
    static const uint8_t int3 = 0xcc;
1259

    
1260
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1261
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1262
        return -EINVAL;
1263
    return 0;
1264
}
1265

    
1266
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1267
{
1268
    uint8_t int3;
1269

    
1270
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1271
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1272
        return -EINVAL;
1273
    return 0;
1274
}
1275

    
1276
static struct {
1277
    target_ulong addr;
1278
    int len;
1279
    int type;
1280
} hw_breakpoint[4];
1281

    
1282
static int nb_hw_breakpoint;
1283

    
1284
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1285
{
1286
    int n;
1287

    
1288
    for (n = 0; n < nb_hw_breakpoint; n++)
1289
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1290
            (hw_breakpoint[n].len == len || len == -1))
1291
            return n;
1292
    return -1;
1293
}
1294

    
1295
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1296
                                  target_ulong len, int type)
1297
{
1298
    switch (type) {
1299
    case GDB_BREAKPOINT_HW:
1300
        len = 1;
1301
        break;
1302
    case GDB_WATCHPOINT_WRITE:
1303
    case GDB_WATCHPOINT_ACCESS:
1304
        switch (len) {
1305
        case 1:
1306
            break;
1307
        case 2:
1308
        case 4:
1309
        case 8:
1310
            if (addr & (len - 1))
1311
                return -EINVAL;
1312
            break;
1313
        default:
1314
            return -EINVAL;
1315
        }
1316
        break;
1317
    default:
1318
        return -ENOSYS;
1319
    }
1320

    
1321
    if (nb_hw_breakpoint == 4)
1322
        return -ENOBUFS;
1323

    
1324
    if (find_hw_breakpoint(addr, len, type) >= 0)
1325
        return -EEXIST;
1326

    
1327
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1328
    hw_breakpoint[nb_hw_breakpoint].len = len;
1329
    hw_breakpoint[nb_hw_breakpoint].type = type;
1330
    nb_hw_breakpoint++;
1331

    
1332
    return 0;
1333
}
1334

    
1335
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1336
                                  target_ulong len, int type)
1337
{
1338
    int n;
1339

    
1340
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1341
    if (n < 0)
1342
        return -ENOENT;
1343

    
1344
    nb_hw_breakpoint--;
1345
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1346

    
1347
    return 0;
1348
}
1349

    
1350
void kvm_arch_remove_all_hw_breakpoints(void)
1351
{
1352
    nb_hw_breakpoint = 0;
1353
}
1354

    
1355
static CPUWatchpoint hw_watchpoint;
1356

    
1357
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1358
{
1359
    int handle = 0;
1360
    int n;
1361

    
1362
    if (arch_info->exception == 1) {
1363
        if (arch_info->dr6 & (1 << 14)) {
1364
            if (cpu_single_env->singlestep_enabled)
1365
                handle = 1;
1366
        } else {
1367
            for (n = 0; n < 4; n++)
1368
                if (arch_info->dr6 & (1 << n))
1369
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1370
                    case 0x0:
1371
                        handle = 1;
1372
                        break;
1373
                    case 0x1:
1374
                        handle = 1;
1375
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1376
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1377
                        hw_watchpoint.flags = BP_MEM_WRITE;
1378
                        break;
1379
                    case 0x3:
1380
                        handle = 1;
1381
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1382
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1383
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1384
                        break;
1385
                    }
1386
        }
1387
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1388
        handle = 1;
1389

    
1390
    if (!handle) {
1391
        cpu_synchronize_state(cpu_single_env);
1392
        assert(cpu_single_env->exception_injected == -1);
1393

    
1394
        cpu_single_env->exception_injected = arch_info->exception;
1395
        cpu_single_env->has_error_code = 0;
1396
    }
1397

    
1398
    return handle;
1399
}
1400

    
1401
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1402
{
1403
    const uint8_t type_code[] = {
1404
        [GDB_BREAKPOINT_HW] = 0x0,
1405
        [GDB_WATCHPOINT_WRITE] = 0x1,
1406
        [GDB_WATCHPOINT_ACCESS] = 0x3
1407
    };
1408
    const uint8_t len_code[] = {
1409
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1410
    };
1411
    int n;
1412

    
1413
    if (kvm_sw_breakpoints_active(env))
1414
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1415

    
1416
    if (nb_hw_breakpoint > 0) {
1417
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1418
        dbg->arch.debugreg[7] = 0x0600;
1419
        for (n = 0; n < nb_hw_breakpoint; n++) {
1420
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1421
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1422
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1423
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1424
        }
1425
    }
1426
    /* Legal xcr0 for loading */
1427
    env->xcr0 = 1;
1428
}
1429
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1430

    
1431
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1432
{
1433
      return !(env->cr[0] & CR0_PE_MASK) ||
1434
              ((env->segs[R_CS].selector  & 3) != 3);
1435
}
1436