Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ f214978a

History | View | Annotate | Download (24.2 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block_int.h"
29
#include "block/qcow2.h"
30

    
31
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32
{
33
    BDRVQcowState *s = bs->opaque;
34
    int new_l1_size, new_l1_size2, ret, i;
35
    uint64_t *new_l1_table;
36
    uint64_t new_l1_table_offset;
37
    uint8_t data[12];
38

    
39
    new_l1_size = s->l1_size;
40
    if (min_size <= new_l1_size)
41
        return 0;
42
    while (min_size > new_l1_size) {
43
        new_l1_size = (new_l1_size * 3 + 1) / 2;
44
    }
45
#ifdef DEBUG_ALLOC2
46
    printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
47
#endif
48

    
49
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
50
    new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
51
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
52

    
53
    /* write new table (align to cluster) */
54
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
55

    
56
    for(i = 0; i < s->l1_size; i++)
57
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
58
    ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
59
    if (ret != new_l1_size2)
60
        goto fail;
61
    for(i = 0; i < s->l1_size; i++)
62
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
63

    
64
    /* set new table */
65
    cpu_to_be32w((uint32_t*)data, new_l1_size);
66
    cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
67
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
68
                sizeof(data)) != sizeof(data))
69
        goto fail;
70
    qemu_free(s->l1_table);
71
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
72
    s->l1_table_offset = new_l1_table_offset;
73
    s->l1_table = new_l1_table;
74
    s->l1_size = new_l1_size;
75
    return 0;
76
 fail:
77
    qemu_free(s->l1_table);
78
    return -EIO;
79
}
80

    
81
void qcow2_l2_cache_reset(BlockDriverState *bs)
82
{
83
    BDRVQcowState *s = bs->opaque;
84

    
85
    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
86
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
87
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
88
}
89

    
90
static inline int l2_cache_new_entry(BlockDriverState *bs)
91
{
92
    BDRVQcowState *s = bs->opaque;
93
    uint32_t min_count;
94
    int min_index, i;
95

    
96
    /* find a new entry in the least used one */
97
    min_index = 0;
98
    min_count = 0xffffffff;
99
    for(i = 0; i < L2_CACHE_SIZE; i++) {
100
        if (s->l2_cache_counts[i] < min_count) {
101
            min_count = s->l2_cache_counts[i];
102
            min_index = i;
103
        }
104
    }
105
    return min_index;
106
}
107

    
108
/*
109
 * seek_l2_table
110
 *
111
 * seek l2_offset in the l2_cache table
112
 * if not found, return NULL,
113
 * if found,
114
 *   increments the l2 cache hit count of the entry,
115
 *   if counter overflow, divide by two all counters
116
 *   return the pointer to the l2 cache entry
117
 *
118
 */
119

    
120
static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
121
{
122
    int i, j;
123

    
124
    for(i = 0; i < L2_CACHE_SIZE; i++) {
125
        if (l2_offset == s->l2_cache_offsets[i]) {
126
            /* increment the hit count */
127
            if (++s->l2_cache_counts[i] == 0xffffffff) {
128
                for(j = 0; j < L2_CACHE_SIZE; j++) {
129
                    s->l2_cache_counts[j] >>= 1;
130
                }
131
            }
132
            return s->l2_cache + (i << s->l2_bits);
133
        }
134
    }
135
    return NULL;
136
}
137

    
138
/*
139
 * l2_load
140
 *
141
 * Loads a L2 table into memory. If the table is in the cache, the cache
142
 * is used; otherwise the L2 table is loaded from the image file.
143
 *
144
 * Returns a pointer to the L2 table on success, or NULL if the read from
145
 * the image file failed.
146
 */
147

    
148
static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
149
{
150
    BDRVQcowState *s = bs->opaque;
151
    int min_index;
152
    uint64_t *l2_table;
153

    
154
    /* seek if the table for the given offset is in the cache */
155

    
156
    l2_table = seek_l2_table(s, l2_offset);
157
    if (l2_table != NULL)
158
        return l2_table;
159

    
160
    /* not found: load a new entry in the least used one */
161

    
162
    min_index = l2_cache_new_entry(bs);
163
    l2_table = s->l2_cache + (min_index << s->l2_bits);
164
    if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
165
        s->l2_size * sizeof(uint64_t))
166
        return NULL;
167
    s->l2_cache_offsets[min_index] = l2_offset;
168
    s->l2_cache_counts[min_index] = 1;
169

    
170
    return l2_table;
171
}
172

    
173
/*
174
 * Writes one sector of the L1 table to the disk (can't update single entries
175
 * and we really don't want bdrv_pread to perform a read-modify-write)
176
 */
177
#define L1_ENTRIES_PER_SECTOR (512 / 8)
178
static int write_l1_entry(BDRVQcowState *s, int l1_index)
179
{
180
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
181
    int l1_start_index;
182
    int i;
183

    
184
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
185
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
186
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
187
    }
188

    
189
    if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index,
190
        buf, sizeof(buf)) != sizeof(buf))
191
    {
192
        return -1;
193
    }
194

    
195
    return 0;
196
}
197

    
198
/*
199
 * l2_allocate
200
 *
201
 * Allocate a new l2 entry in the file. If l1_index points to an already
202
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203
 * table) copy the contents of the old L2 table into the newly allocated one.
204
 * Otherwise the new table is initialized with zeros.
205
 *
206
 */
207

    
208
static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
209
{
210
    BDRVQcowState *s = bs->opaque;
211
    int min_index;
212
    uint64_t old_l2_offset;
213
    uint64_t *l2_table, l2_offset;
214

    
215
    old_l2_offset = s->l1_table[l1_index];
216

    
217
    /* allocate a new l2 entry */
218

    
219
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
220

    
221
    /* update the L1 entry */
222

    
223
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
224
    if (write_l1_entry(s, l1_index) < 0) {
225
        return NULL;
226
    }
227

    
228
    /* allocate a new entry in the l2 cache */
229

    
230
    min_index = l2_cache_new_entry(bs);
231
    l2_table = s->l2_cache + (min_index << s->l2_bits);
232

    
233
    if (old_l2_offset == 0) {
234
        /* if there was no old l2 table, clear the new table */
235
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
236
    } else {
237
        /* if there was an old l2 table, read it from the disk */
238
        if (bdrv_pread(s->hd, old_l2_offset,
239
                       l2_table, s->l2_size * sizeof(uint64_t)) !=
240
            s->l2_size * sizeof(uint64_t))
241
            return NULL;
242
    }
243
    /* write the l2 table to the file */
244
    if (bdrv_pwrite(s->hd, l2_offset,
245
                    l2_table, s->l2_size * sizeof(uint64_t)) !=
246
        s->l2_size * sizeof(uint64_t))
247
        return NULL;
248

    
249
    /* update the l2 cache entry */
250

    
251
    s->l2_cache_offsets[min_index] = l2_offset;
252
    s->l2_cache_counts[min_index] = 1;
253

    
254
    return l2_table;
255
}
256

    
257
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258
        uint64_t *l2_table, uint64_t start, uint64_t mask)
259
{
260
    int i;
261
    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
262

    
263
    if (!offset)
264
        return 0;
265

    
266
    for (i = start; i < start + nb_clusters; i++)
267
        if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
268
            break;
269

    
270
        return (i - start);
271
}
272

    
273
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
274
{
275
    int i = 0;
276

    
277
    while(nb_clusters-- && l2_table[i] == 0)
278
        i++;
279

    
280
    return i;
281
}
282

    
283
/* The crypt function is compatible with the linux cryptoloop
284
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
285
   supported */
286
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
287
                           uint8_t *out_buf, const uint8_t *in_buf,
288
                           int nb_sectors, int enc,
289
                           const AES_KEY *key)
290
{
291
    union {
292
        uint64_t ll[2];
293
        uint8_t b[16];
294
    } ivec;
295
    int i;
296

    
297
    for(i = 0; i < nb_sectors; i++) {
298
        ivec.ll[0] = cpu_to_le64(sector_num);
299
        ivec.ll[1] = 0;
300
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
301
                        ivec.b, enc);
302
        sector_num++;
303
        in_buf += 512;
304
        out_buf += 512;
305
    }
306
}
307

    
308

    
309
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
310
                     uint8_t *buf, int nb_sectors)
311
{
312
    BDRVQcowState *s = bs->opaque;
313
    int ret, index_in_cluster, n, n1;
314
    uint64_t cluster_offset;
315

    
316
    while (nb_sectors > 0) {
317
        n = nb_sectors;
318
        cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
319
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
320
        if (!cluster_offset) {
321
            if (bs->backing_hd) {
322
                /* read from the base image */
323
                n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
324
                if (n1 > 0) {
325
                    ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
326
                    if (ret < 0)
327
                        return -1;
328
                }
329
            } else {
330
                memset(buf, 0, 512 * n);
331
            }
332
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
333
            if (qcow2_decompress_cluster(s, cluster_offset) < 0)
334
                return -1;
335
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
336
        } else {
337
            ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
338
            if (ret != n * 512)
339
                return -1;
340
            if (s->crypt_method) {
341
                qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
342
                                &s->aes_decrypt_key);
343
            }
344
        }
345
        nb_sectors -= n;
346
        sector_num += n;
347
        buf += n * 512;
348
    }
349
    return 0;
350
}
351

    
352
static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
353
                        uint64_t cluster_offset, int n_start, int n_end)
354
{
355
    BDRVQcowState *s = bs->opaque;
356
    int n, ret;
357

    
358
    n = n_end - n_start;
359
    if (n <= 0)
360
        return 0;
361
    ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
362
    if (ret < 0)
363
        return ret;
364
    if (s->crypt_method) {
365
        qcow2_encrypt_sectors(s, start_sect + n_start,
366
                        s->cluster_data,
367
                        s->cluster_data, n, 1,
368
                        &s->aes_encrypt_key);
369
    }
370
    ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
371
                     s->cluster_data, n);
372
    if (ret < 0)
373
        return ret;
374
    return 0;
375
}
376

    
377

    
378
/*
379
 * get_cluster_offset
380
 *
381
 * For a given offset of the disk image, return cluster offset in
382
 * qcow2 file.
383
 *
384
 * on entry, *num is the number of contiguous clusters we'd like to
385
 * access following offset.
386
 *
387
 * on exit, *num is the number of contiguous clusters we can read.
388
 *
389
 * Return 1, if the offset is found
390
 * Return 0, otherwise.
391
 *
392
 */
393

    
394
uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
395
    int *num)
396
{
397
    BDRVQcowState *s = bs->opaque;
398
    int l1_index, l2_index;
399
    uint64_t l2_offset, *l2_table, cluster_offset;
400
    int l1_bits, c;
401
    int index_in_cluster, nb_available, nb_needed, nb_clusters;
402

    
403
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
404
    nb_needed = *num + index_in_cluster;
405

    
406
    l1_bits = s->l2_bits + s->cluster_bits;
407

    
408
    /* compute how many bytes there are between the offset and
409
     * the end of the l1 entry
410
     */
411

    
412
    nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
413

    
414
    /* compute the number of available sectors */
415

    
416
    nb_available = (nb_available >> 9) + index_in_cluster;
417

    
418
    if (nb_needed > nb_available) {
419
        nb_needed = nb_available;
420
    }
421

    
422
    cluster_offset = 0;
423

    
424
    /* seek the the l2 offset in the l1 table */
425

    
426
    l1_index = offset >> l1_bits;
427
    if (l1_index >= s->l1_size)
428
        goto out;
429

    
430
    l2_offset = s->l1_table[l1_index];
431

    
432
    /* seek the l2 table of the given l2 offset */
433

    
434
    if (!l2_offset)
435
        goto out;
436

    
437
    /* load the l2 table in memory */
438

    
439
    l2_offset &= ~QCOW_OFLAG_COPIED;
440
    l2_table = l2_load(bs, l2_offset);
441
    if (l2_table == NULL)
442
        return 0;
443

    
444
    /* find the cluster offset for the given disk offset */
445

    
446
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
447
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
448
    nb_clusters = size_to_clusters(s, nb_needed << 9);
449

    
450
    if (!cluster_offset) {
451
        /* how many empty clusters ? */
452
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
453
    } else {
454
        /* how many allocated clusters ? */
455
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
456
                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
457
    }
458

    
459
   nb_available = (c * s->cluster_sectors);
460
out:
461
    if (nb_available > nb_needed)
462
        nb_available = nb_needed;
463

    
464
    *num = nb_available - index_in_cluster;
465

    
466
    return cluster_offset & ~QCOW_OFLAG_COPIED;
467
}
468

    
469
/*
470
 * get_cluster_table
471
 *
472
 * for a given disk offset, load (and allocate if needed)
473
 * the l2 table.
474
 *
475
 * the l2 table offset in the qcow2 file and the cluster index
476
 * in the l2 table are given to the caller.
477
 *
478
 */
479

    
480
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
481
                             uint64_t **new_l2_table,
482
                             uint64_t *new_l2_offset,
483
                             int *new_l2_index)
484
{
485
    BDRVQcowState *s = bs->opaque;
486
    int l1_index, l2_index, ret;
487
    uint64_t l2_offset, *l2_table;
488

    
489
    /* seek the the l2 offset in the l1 table */
490

    
491
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
492
    if (l1_index >= s->l1_size) {
493
        ret = qcow2_grow_l1_table(bs, l1_index + 1);
494
        if (ret < 0)
495
            return 0;
496
    }
497
    l2_offset = s->l1_table[l1_index];
498

    
499
    /* seek the l2 table of the given l2 offset */
500

    
501
    if (l2_offset & QCOW_OFLAG_COPIED) {
502
        /* load the l2 table in memory */
503
        l2_offset &= ~QCOW_OFLAG_COPIED;
504
        l2_table = l2_load(bs, l2_offset);
505
        if (l2_table == NULL)
506
            return 0;
507
    } else {
508
        if (l2_offset)
509
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
510
        l2_table = l2_allocate(bs, l1_index);
511
        if (l2_table == NULL)
512
            return 0;
513
        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
514
    }
515

    
516
    /* find the cluster offset for the given disk offset */
517

    
518
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
519

    
520
    *new_l2_table = l2_table;
521
    *new_l2_offset = l2_offset;
522
    *new_l2_index = l2_index;
523

    
524
    return 1;
525
}
526

    
527
/*
528
 * alloc_compressed_cluster_offset
529
 *
530
 * For a given offset of the disk image, return cluster offset in
531
 * qcow2 file.
532
 *
533
 * If the offset is not found, allocate a new compressed cluster.
534
 *
535
 * Return the cluster offset if successful,
536
 * Return 0, otherwise.
537
 *
538
 */
539

    
540
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
541
                                               uint64_t offset,
542
                                               int compressed_size)
543
{
544
    BDRVQcowState *s = bs->opaque;
545
    int l2_index, ret;
546
    uint64_t l2_offset, *l2_table, cluster_offset;
547
    int nb_csectors;
548

    
549
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
550
    if (ret == 0)
551
        return 0;
552

    
553
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
554
    if (cluster_offset & QCOW_OFLAG_COPIED)
555
        return cluster_offset & ~QCOW_OFLAG_COPIED;
556

    
557
    if (cluster_offset)
558
        qcow2_free_any_clusters(bs, cluster_offset, 1);
559

    
560
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
561
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
562
                  (cluster_offset >> 9);
563

    
564
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
565
                      ((uint64_t)nb_csectors << s->csize_shift);
566

    
567
    /* update L2 table */
568

    
569
    /* compressed clusters never have the copied flag */
570

    
571
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
572
    if (bdrv_pwrite(s->hd,
573
                    l2_offset + l2_index * sizeof(uint64_t),
574
                    l2_table + l2_index,
575
                    sizeof(uint64_t)) != sizeof(uint64_t))
576
        return 0;
577

    
578
    return cluster_offset;
579
}
580

    
581
/*
582
 * Write L2 table updates to disk, writing whole sectors to avoid a
583
 * read-modify-write in bdrv_pwrite
584
 */
585
#define L2_ENTRIES_PER_SECTOR (512 / 8)
586
static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table,
587
    uint64_t l2_offset, int l2_index, int num)
588
{
589
    int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
590
    int start_offset = (8 * l2_index) & ~511;
591
    int end_offset = (8 * (l2_index + num) + 511) & ~511;
592
    size_t len = end_offset - start_offset;
593

    
594
    if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index],
595
        len) != len)
596
    {
597
        return -1;
598
    }
599

    
600
    return 0;
601
}
602

    
603
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
604
    QCowL2Meta *m)
605
{
606
    BDRVQcowState *s = bs->opaque;
607
    int i, j = 0, l2_index, ret;
608
    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
609

    
610
    if (m->nb_clusters == 0)
611
        return 0;
612

    
613
    old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
614

    
615
    /* copy content of unmodified sectors */
616
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
617
    if (m->n_start) {
618
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
619
        if (ret < 0)
620
            goto err;
621
    }
622

    
623
    if (m->nb_available & (s->cluster_sectors - 1)) {
624
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
625
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
626
                m->nb_available - end, s->cluster_sectors);
627
        if (ret < 0)
628
            goto err;
629
    }
630

    
631
    ret = -EIO;
632
    /* update L2 table */
633
    if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
634
        goto err;
635

    
636
    for (i = 0; i < m->nb_clusters; i++) {
637
        /* if two concurrent writes happen to the same unallocated cluster
638
         * each write allocates separate cluster and writes data concurrently.
639
         * The first one to complete updates l2 table with pointer to its
640
         * cluster the second one has to do RMW (which is done above by
641
         * copy_sectors()), update l2 table with its cluster pointer and free
642
         * old cluster. This is what this loop does */
643
        if(l2_table[l2_index + i] != 0)
644
            old_cluster[j++] = l2_table[l2_index + i];
645

    
646
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
647
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
648
     }
649

    
650
    if (write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters) < 0) {
651
        ret = -1;
652
        goto err;
653
    }
654

    
655
    for (i = 0; i < j; i++)
656
        qcow2_free_any_clusters(bs,
657
            be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
658

    
659
    ret = 0;
660
err:
661
    qemu_free(old_cluster);
662
    return ret;
663
 }
664

    
665
/*
666
 * alloc_cluster_offset
667
 *
668
 * For a given offset of the disk image, return cluster offset in
669
 * qcow2 file.
670
 *
671
 * If the offset is not found, allocate a new cluster.
672
 *
673
 * Return the cluster offset if successful,
674
 * Return 0, otherwise.
675
 *
676
 */
677

    
678
uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs,
679
                                    uint64_t offset,
680
                                    int n_start, int n_end,
681
                                    int *num, QCowL2Meta *m)
682
{
683
    BDRVQcowState *s = bs->opaque;
684
    int l2_index, ret;
685
    uint64_t l2_offset, *l2_table, cluster_offset;
686
    int nb_clusters, i = 0;
687
    QCowL2Meta *old_alloc;
688

    
689
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
690
    if (ret == 0)
691
        return 0;
692

    
693
    nb_clusters = size_to_clusters(s, n_end << 9);
694

    
695
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
696

    
697
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
698

    
699
    /* We keep all QCOW_OFLAG_COPIED clusters */
700

    
701
    if (cluster_offset & QCOW_OFLAG_COPIED) {
702
        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
703
                &l2_table[l2_index], 0, 0);
704

    
705
        cluster_offset &= ~QCOW_OFLAG_COPIED;
706
        m->nb_clusters = 0;
707

    
708
        goto out;
709
    }
710

    
711
    /* for the moment, multiple compressed clusters are not managed */
712

    
713
    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
714
        nb_clusters = 1;
715

    
716
    /* how many available clusters ? */
717

    
718
    while (i < nb_clusters) {
719
        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
720
                &l2_table[l2_index], i, 0);
721

    
722
        if(be64_to_cpu(l2_table[l2_index + i]))
723
            break;
724

    
725
        i += count_contiguous_free_clusters(nb_clusters - i,
726
                &l2_table[l2_index + i]);
727

    
728
        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
729

    
730
        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
731
                (cluster_offset & QCOW_OFLAG_COMPRESSED))
732
            break;
733
    }
734
    nb_clusters = i;
735

    
736
    /*
737
     * Check if there already is an AIO write request in flight which allocates
738
     * the same cluster. In this case we need to wait until the previous
739
     * request has completed and updated the L2 table accordingly.
740
     */
741
    LIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
742

    
743
        uint64_t end_offset = offset + nb_clusters * s->cluster_size;
744
        uint64_t old_offset = old_alloc->offset;
745
        uint64_t old_end_offset = old_alloc->offset +
746
            old_alloc->nb_clusters * s->cluster_size;
747

    
748
        if (end_offset < old_offset || offset > old_end_offset) {
749
            /* No intersection */
750
        } else {
751
            if (offset < old_offset) {
752
                /* Stop at the start of a running allocation */
753
                nb_clusters = (old_offset - offset) >> s->cluster_bits;
754
            } else {
755
                nb_clusters = 0;
756
            }
757

    
758
            if (nb_clusters == 0) {
759
                /* Set dependency and wait for a callback */
760
                m->depends_on = old_alloc;
761
                m->nb_clusters = 0;
762
                *num = 0;
763
                return 0;
764
            }
765
        }
766
    }
767

    
768
    if (!nb_clusters) {
769
        abort();
770
    }
771

    
772
    LIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
773

    
774
    /* allocate a new cluster */
775

    
776
    cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
777

    
778
    /* save info needed for meta data update */
779
    m->offset = offset;
780
    m->n_start = n_start;
781
    m->nb_clusters = nb_clusters;
782

    
783
out:
784
    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
785

    
786
    *num = m->nb_available - n_start;
787

    
788
    return cluster_offset;
789
}
790

    
791
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
792
                             const uint8_t *buf, int buf_size)
793
{
794
    z_stream strm1, *strm = &strm1;
795
    int ret, out_len;
796

    
797
    memset(strm, 0, sizeof(*strm));
798

    
799
    strm->next_in = (uint8_t *)buf;
800
    strm->avail_in = buf_size;
801
    strm->next_out = out_buf;
802
    strm->avail_out = out_buf_size;
803

    
804
    ret = inflateInit2(strm, -12);
805
    if (ret != Z_OK)
806
        return -1;
807
    ret = inflate(strm, Z_FINISH);
808
    out_len = strm->next_out - out_buf;
809
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
810
        out_len != out_buf_size) {
811
        inflateEnd(strm);
812
        return -1;
813
    }
814
    inflateEnd(strm);
815
    return 0;
816
}
817

    
818
int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
819
{
820
    int ret, csize, nb_csectors, sector_offset;
821
    uint64_t coffset;
822

    
823
    coffset = cluster_offset & s->cluster_offset_mask;
824
    if (s->cluster_cache_offset != coffset) {
825
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
826
        sector_offset = coffset & 511;
827
        csize = nb_csectors * 512 - sector_offset;
828
        ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
829
        if (ret < 0) {
830
            return -1;
831
        }
832
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
833
                              s->cluster_data + sector_offset, csize) < 0) {
834
            return -1;
835
        }
836
        s->cluster_cache_offset = coffset;
837
    }
838
    return 0;
839
}