Statistics
| Branch: | Revision:

root / tcg / README @ f24cb33e

History | View | Annotate | Download (12.5 kB)

1 c896fe29 bellard
Tiny Code Generator - Fabrice Bellard.
2 c896fe29 bellard
3 c896fe29 bellard
1) Introduction
4 c896fe29 bellard
5 c896fe29 bellard
TCG (Tiny Code Generator) began as a generic backend for a C
6 c896fe29 bellard
compiler. It was simplified to be used in QEMU. It also has its roots
7 c896fe29 bellard
in the QOP code generator written by Paul Brook. 
8 c896fe29 bellard
9 c896fe29 bellard
2) Definitions
10 c896fe29 bellard
11 c896fe29 bellard
The TCG "target" is the architecture for which we generate the
12 c896fe29 bellard
code. It is of course not the same as the "target" of QEMU which is
13 c896fe29 bellard
the emulated architecture. As TCG started as a generic C backend used
14 c896fe29 bellard
for cross compiling, it is assumed that the TCG target is different
15 c896fe29 bellard
from the host, although it is never the case for QEMU.
16 c896fe29 bellard
17 c896fe29 bellard
A TCG "function" corresponds to a QEMU Translated Block (TB).
18 c896fe29 bellard
19 0a6b7b78 bellard
A TCG "temporary" is a variable only live in a basic
20 0a6b7b78 bellard
block. Temporaries are allocated explicitly in each function.
21 c896fe29 bellard
22 0a6b7b78 bellard
A TCG "local temporary" is a variable only live in a function. Local
23 0a6b7b78 bellard
temporaries are allocated explicitly in each function.
24 0a6b7b78 bellard
25 0a6b7b78 bellard
A TCG "global" is a variable which is live in all the functions
26 0a6b7b78 bellard
(equivalent of a C global variable). They are defined before the
27 0a6b7b78 bellard
functions defined. A TCG global can be a memory location (e.g. a QEMU
28 0a6b7b78 bellard
CPU register), a fixed host register (e.g. the QEMU CPU state pointer)
29 0a6b7b78 bellard
or a memory location which is stored in a register outside QEMU TBs
30 0a6b7b78 bellard
(not implemented yet).
31 c896fe29 bellard
32 c896fe29 bellard
A TCG "basic block" corresponds to a list of instructions terminated
33 c896fe29 bellard
by a branch instruction. 
34 c896fe29 bellard
35 c896fe29 bellard
3) Intermediate representation
36 c896fe29 bellard
37 c896fe29 bellard
3.1) Introduction
38 c896fe29 bellard
39 0a6b7b78 bellard
TCG instructions operate on variables which are temporaries, local
40 0a6b7b78 bellard
temporaries or globals. TCG instructions and variables are strongly
41 0a6b7b78 bellard
typed. Two types are supported: 32 bit integers and 64 bit
42 0a6b7b78 bellard
integers. Pointers are defined as an alias to 32 bit or 64 bit
43 0a6b7b78 bellard
integers depending on the TCG target word size.
44 c896fe29 bellard
45 c896fe29 bellard
Each instruction has a fixed number of output variable operands, input
46 c896fe29 bellard
variable operands and always constant operands.
47 c896fe29 bellard
48 c896fe29 bellard
The notable exception is the call instruction which has a variable
49 c896fe29 bellard
number of outputs and inputs.
50 c896fe29 bellard
51 0a6b7b78 bellard
In the textual form, output operands usually come first, followed by
52 0a6b7b78 bellard
input operands, followed by constant operands. The output type is
53 0a6b7b78 bellard
included in the instruction name. Constants are prefixed with a '$'.
54 c896fe29 bellard
55 c896fe29 bellard
add_i32 t0, t1, t2  (t0 <- t1 + t2)
56 c896fe29 bellard
57 c896fe29 bellard
3.2) Assumptions
58 c896fe29 bellard
59 c896fe29 bellard
* Basic blocks
60 c896fe29 bellard
61 c896fe29 bellard
- Basic blocks end after branches (e.g. brcond_i32 instruction),
62 c896fe29 bellard
  goto_tb and exit_tb instructions.
63 c896fe29 bellard
- Basic blocks end before legacy dyngen operations.
64 c896fe29 bellard
- Basic blocks start after the end of a previous basic block, at a
65 c896fe29 bellard
  set_label instruction or after a legacy dyngen operation.
66 c896fe29 bellard
67 0a6b7b78 bellard
After the end of a basic block, the content of temporaries is
68 0a6b7b78 bellard
destroyed, but local temporaries and globals are preserved.
69 c896fe29 bellard
70 c896fe29 bellard
* Floating point types are not supported yet
71 c896fe29 bellard
72 c896fe29 bellard
* Pointers: depending on the TCG target, pointer size is 32 bit or 64
73 c896fe29 bellard
  bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or
74 c896fe29 bellard
  TCG_TYPE_I64.
75 c896fe29 bellard
76 c896fe29 bellard
* Helpers:
77 c896fe29 bellard
78 c896fe29 bellard
Using the tcg_gen_helper_x_y it is possible to call any function
79 811d4cf4 balrog
taking i32, i64 or pointer types. Before calling an helper, all
80 c896fe29 bellard
globals are stored at their canonical location and it is assumed that
81 c896fe29 bellard
the function can modify them. In the future, function modifiers will
82 c896fe29 bellard
be allowed to tell that the helper does not read or write some globals.
83 c896fe29 bellard
84 c896fe29 bellard
On some TCG targets (e.g. x86), several calling conventions are
85 c896fe29 bellard
supported.
86 c896fe29 bellard
87 c896fe29 bellard
* Branches:
88 c896fe29 bellard
89 c896fe29 bellard
Use the instruction 'br' to jump to a label. Use 'jmp' to jump to an
90 c896fe29 bellard
explicit address. Conditional branches can only jump to labels.
91 c896fe29 bellard
92 c896fe29 bellard
3.3) Code Optimizations
93 c896fe29 bellard
94 c896fe29 bellard
When generating instructions, you can count on at least the following
95 c896fe29 bellard
optimizations:
96 c896fe29 bellard
97 c896fe29 bellard
- Single instructions are simplified, e.g.
98 c896fe29 bellard
99 c896fe29 bellard
   and_i32 t0, t0, $0xffffffff
100 c896fe29 bellard
    
101 c896fe29 bellard
  is suppressed.
102 c896fe29 bellard
103 c896fe29 bellard
- A liveness analysis is done at the basic block level. The
104 0a6b7b78 bellard
  information is used to suppress moves from a dead variable to
105 c896fe29 bellard
  another one. It is also used to remove instructions which compute
106 c896fe29 bellard
  dead results. The later is especially useful for condition code
107 9804c8e2 bellard
  optimization in QEMU.
108 c896fe29 bellard
109 c896fe29 bellard
  In the following example:
110 c896fe29 bellard
111 c896fe29 bellard
  add_i32 t0, t1, t2
112 c896fe29 bellard
  add_i32 t0, t0, $1
113 c896fe29 bellard
  mov_i32 t0, $1
114 c896fe29 bellard
115 c896fe29 bellard
  only the last instruction is kept.
116 c896fe29 bellard
117 c896fe29 bellard
3.4) Instruction Reference
118 c896fe29 bellard
119 c896fe29 bellard
********* Function call
120 c896fe29 bellard
121 c896fe29 bellard
* call <ret> <params> ptr
122 c896fe29 bellard
123 c896fe29 bellard
call function 'ptr' (pointer type)
124 c896fe29 bellard
125 c896fe29 bellard
<ret> optional 32 bit or 64 bit return value
126 c896fe29 bellard
<params> optional 32 bit or 64 bit parameters
127 c896fe29 bellard
128 c896fe29 bellard
********* Jumps/Labels
129 c896fe29 bellard
130 c896fe29 bellard
* jmp t0
131 c896fe29 bellard
132 c896fe29 bellard
Absolute jump to address t0 (pointer type).
133 c896fe29 bellard
134 c896fe29 bellard
* set_label $label
135 c896fe29 bellard
136 c896fe29 bellard
Define label 'label' at the current program point.
137 c896fe29 bellard
138 c896fe29 bellard
* br $label
139 c896fe29 bellard
140 c896fe29 bellard
Jump to label.
141 c896fe29 bellard
142 c896fe29 bellard
* brcond_i32/i64 cond, t0, t1, label
143 c896fe29 bellard
144 c896fe29 bellard
Conditional jump if t0 cond t1 is true. cond can be:
145 c896fe29 bellard
    TCG_COND_EQ
146 c896fe29 bellard
    TCG_COND_NE
147 c896fe29 bellard
    TCG_COND_LT /* signed */
148 c896fe29 bellard
    TCG_COND_GE /* signed */
149 c896fe29 bellard
    TCG_COND_LE /* signed */
150 c896fe29 bellard
    TCG_COND_GT /* signed */
151 c896fe29 bellard
    TCG_COND_LTU /* unsigned */
152 c896fe29 bellard
    TCG_COND_GEU /* unsigned */
153 c896fe29 bellard
    TCG_COND_LEU /* unsigned */
154 c896fe29 bellard
    TCG_COND_GTU /* unsigned */
155 c896fe29 bellard
156 c896fe29 bellard
********* Arithmetic
157 c896fe29 bellard
158 c896fe29 bellard
* add_i32/i64 t0, t1, t2
159 c896fe29 bellard
160 c896fe29 bellard
t0=t1+t2
161 c896fe29 bellard
162 c896fe29 bellard
* sub_i32/i64 t0, t1, t2
163 c896fe29 bellard
164 c896fe29 bellard
t0=t1-t2
165 c896fe29 bellard
166 390efc54 pbrook
* neg_i32/i64 t0, t1
167 390efc54 pbrook
168 390efc54 pbrook
t0=-t1 (two's complement)
169 390efc54 pbrook
170 c896fe29 bellard
* mul_i32/i64 t0, t1, t2
171 c896fe29 bellard
172 c896fe29 bellard
t0=t1*t2
173 c896fe29 bellard
174 c896fe29 bellard
* div_i32/i64 t0, t1, t2
175 c896fe29 bellard
176 c896fe29 bellard
t0=t1/t2 (signed). Undefined behavior if division by zero or overflow.
177 c896fe29 bellard
178 c896fe29 bellard
* divu_i32/i64 t0, t1, t2
179 c896fe29 bellard
180 c896fe29 bellard
t0=t1/t2 (unsigned). Undefined behavior if division by zero.
181 c896fe29 bellard
182 c896fe29 bellard
* rem_i32/i64 t0, t1, t2
183 c896fe29 bellard
184 c896fe29 bellard
t0=t1%t2 (signed). Undefined behavior if division by zero or overflow.
185 c896fe29 bellard
186 c896fe29 bellard
* remu_i32/i64 t0, t1, t2
187 c896fe29 bellard
188 c896fe29 bellard
t0=t1%t2 (unsigned). Undefined behavior if division by zero.
189 c896fe29 bellard
190 c896fe29 bellard
********* Logical
191 c896fe29 bellard
192 5e85404a aurel32
* and_i32/i64 t0, t1, t2
193 5e85404a aurel32
194 c896fe29 bellard
t0=t1&t2
195 c896fe29 bellard
196 c896fe29 bellard
* or_i32/i64 t0, t1, t2
197 c896fe29 bellard
198 c896fe29 bellard
t0=t1|t2
199 c896fe29 bellard
200 c896fe29 bellard
* xor_i32/i64 t0, t1, t2
201 c896fe29 bellard
202 c896fe29 bellard
t0=t1^t2
203 c896fe29 bellard
204 0a6b7b78 bellard
* not_i32/i64 t0, t1
205 0a6b7b78 bellard
206 0a6b7b78 bellard
t0=~t1
207 0a6b7b78 bellard
208 f24cb33e aurel32
* andc_i32/i64 t0, t1, t2
209 f24cb33e aurel32
210 f24cb33e aurel32
t0=t1&~t2
211 f24cb33e aurel32
212 f24cb33e aurel32
* eqv_i32/i64 t0, t1, t2
213 f24cb33e aurel32
214 f24cb33e aurel32
t0=~(t1^t2)
215 f24cb33e aurel32
216 f24cb33e aurel32
* nand_i32/i64 t0, t1, t2
217 f24cb33e aurel32
218 f24cb33e aurel32
t0=~(t1&t2)
219 f24cb33e aurel32
220 f24cb33e aurel32
* nor_i32/i64 t0, t1, t2
221 f24cb33e aurel32
222 f24cb33e aurel32
t0=~(t1|t2)
223 f24cb33e aurel32
224 f24cb33e aurel32
* orc_i32/i64 t0, t1, t2
225 f24cb33e aurel32
226 f24cb33e aurel32
t0=t1|~t2
227 f24cb33e aurel32
228 c896fe29 bellard
********* Shifts
229 c896fe29 bellard
230 c896fe29 bellard
* shl_i32/i64 t0, t1, t2
231 c896fe29 bellard
232 c896fe29 bellard
t0=t1 << t2. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
233 c896fe29 bellard
234 c896fe29 bellard
* shr_i32/i64 t0, t1, t2
235 c896fe29 bellard
236 c896fe29 bellard
t0=t1 >> t2 (unsigned). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
237 c896fe29 bellard
238 c896fe29 bellard
* sar_i32/i64 t0, t1, t2
239 c896fe29 bellard
240 c896fe29 bellard
t0=t1 >> t2 (signed). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
241 c896fe29 bellard
242 c896fe29 bellard
********* Misc
243 c896fe29 bellard
244 c896fe29 bellard
* mov_i32/i64 t0, t1
245 c896fe29 bellard
246 c896fe29 bellard
t0 = t1
247 c896fe29 bellard
248 c896fe29 bellard
Move t1 to t0 (both operands must have the same type).
249 c896fe29 bellard
250 c896fe29 bellard
* ext8s_i32/i64 t0, t1
251 86831435 pbrook
ext8u_i32/i64 t0, t1
252 c896fe29 bellard
ext16s_i32/i64 t0, t1
253 86831435 pbrook
ext16u_i32/i64 t0, t1
254 c896fe29 bellard
ext32s_i64 t0, t1
255 86831435 pbrook
ext32u_i64 t0, t1
256 c896fe29 bellard
257 86831435 pbrook
8, 16 or 32 bit sign/zero extension (both operands must have the same type)
258 c896fe29 bellard
259 c896fe29 bellard
* bswap16_i32 t0, t1
260 c896fe29 bellard
261 c896fe29 bellard
16 bit byte swap on a 32 bit value. The two high order bytes must be set
262 c896fe29 bellard
to zero.
263 c896fe29 bellard
264 c896fe29 bellard
* bswap_i32 t0, t1
265 c896fe29 bellard
266 c896fe29 bellard
32 bit byte swap
267 c896fe29 bellard
268 c896fe29 bellard
* bswap_i64 t0, t1
269 c896fe29 bellard
270 c896fe29 bellard
64 bit byte swap
271 c896fe29 bellard
272 5ff9d6a4 bellard
* discard_i32/i64 t0
273 5ff9d6a4 bellard
274 5ff9d6a4 bellard
Indicate that the value of t0 won't be used later. It is useful to
275 5ff9d6a4 bellard
force dead code elimination.
276 5ff9d6a4 bellard
277 c896fe29 bellard
********* Type conversions
278 c896fe29 bellard
279 c896fe29 bellard
* ext_i32_i64 t0, t1
280 c896fe29 bellard
Convert t1 (32 bit) to t0 (64 bit) and does sign extension
281 c896fe29 bellard
282 c896fe29 bellard
* extu_i32_i64 t0, t1
283 c896fe29 bellard
Convert t1 (32 bit) to t0 (64 bit) and does zero extension
284 c896fe29 bellard
285 c896fe29 bellard
* trunc_i64_i32 t0, t1
286 c896fe29 bellard
Truncate t1 (64 bit) to t0 (32 bit)
287 c896fe29 bellard
288 36aa55dc pbrook
* concat_i32_i64 t0, t1, t2
289 36aa55dc pbrook
Construct t0 (64-bit) taking the low half from t1 (32 bit) and the high half
290 36aa55dc pbrook
from t2 (32 bit).
291 36aa55dc pbrook
292 945ca823 blueswir1
* concat32_i64 t0, t1, t2
293 945ca823 blueswir1
Construct t0 (64-bit) taking the low half from t1 (64 bit) and the high half
294 945ca823 blueswir1
from t2 (64 bit).
295 945ca823 blueswir1
296 c896fe29 bellard
********* Load/Store
297 c896fe29 bellard
298 c896fe29 bellard
* ld_i32/i64 t0, t1, offset
299 c896fe29 bellard
ld8s_i32/i64 t0, t1, offset
300 c896fe29 bellard
ld8u_i32/i64 t0, t1, offset
301 c896fe29 bellard
ld16s_i32/i64 t0, t1, offset
302 c896fe29 bellard
ld16u_i32/i64 t0, t1, offset
303 c896fe29 bellard
ld32s_i64 t0, t1, offset
304 c896fe29 bellard
ld32u_i64 t0, t1, offset
305 c896fe29 bellard
306 c896fe29 bellard
t0 = read(t1 + offset)
307 c896fe29 bellard
Load 8, 16, 32 or 64 bits with or without sign extension from host memory. 
308 c896fe29 bellard
offset must be a constant.
309 c896fe29 bellard
310 c896fe29 bellard
* st_i32/i64 t0, t1, offset
311 c896fe29 bellard
st8_i32/i64 t0, t1, offset
312 c896fe29 bellard
st16_i32/i64 t0, t1, offset
313 c896fe29 bellard
st32_i64 t0, t1, offset
314 c896fe29 bellard
315 c896fe29 bellard
write(t0, t1 + offset)
316 c896fe29 bellard
Write 8, 16, 32 or 64 bits to host memory.
317 c896fe29 bellard
318 c896fe29 bellard
********* QEMU specific operations
319 c896fe29 bellard
320 c896fe29 bellard
* tb_exit t0
321 c896fe29 bellard
322 c896fe29 bellard
Exit the current TB and return the value t0 (word type).
323 c896fe29 bellard
324 c896fe29 bellard
* goto_tb index
325 c896fe29 bellard
326 c896fe29 bellard
Exit the current TB and jump to the TB index 'index' (constant) if the
327 c896fe29 bellard
current TB was linked to this TB. Otherwise execute the next
328 c896fe29 bellard
instructions.
329 c896fe29 bellard
330 c896fe29 bellard
* qemu_ld_i32/i64 t0, t1, flags
331 c896fe29 bellard
qemu_ld8u_i32/i64 t0, t1, flags
332 c896fe29 bellard
qemu_ld8s_i32/i64 t0, t1, flags
333 c896fe29 bellard
qemu_ld16u_i32/i64 t0, t1, flags
334 c896fe29 bellard
qemu_ld16s_i32/i64 t0, t1, flags
335 c896fe29 bellard
qemu_ld32u_i64 t0, t1, flags
336 c896fe29 bellard
qemu_ld32s_i64 t0, t1, flags
337 c896fe29 bellard
338 c896fe29 bellard
Load data at the QEMU CPU address t1 into t0. t1 has the QEMU CPU
339 c896fe29 bellard
address type. 'flags' contains the QEMU memory index (selects user or
340 c896fe29 bellard
kernel access) for example.
341 c896fe29 bellard
342 c896fe29 bellard
* qemu_st_i32/i64 t0, t1, flags
343 c896fe29 bellard
qemu_st8_i32/i64 t0, t1, flags
344 c896fe29 bellard
qemu_st16_i32/i64 t0, t1, flags
345 c896fe29 bellard
qemu_st32_i64 t0, t1, flags
346 c896fe29 bellard
347 c896fe29 bellard
Store the data t0 at the QEMU CPU Address t1. t1 has the QEMU CPU
348 c896fe29 bellard
address type. 'flags' contains the QEMU memory index (selects user or
349 c896fe29 bellard
kernel access) for example.
350 c896fe29 bellard
351 c896fe29 bellard
Note 1: Some shortcuts are defined when the last operand is known to be
352 c896fe29 bellard
a constant (e.g. addi for add, movi for mov).
353 c896fe29 bellard
354 c896fe29 bellard
Note 2: When using TCG, the opcodes must never be generated directly
355 c896fe29 bellard
as some of them may not be available as "real" opcodes. Always use the
356 c896fe29 bellard
function tcg_gen_xxx(args).
357 c896fe29 bellard
358 c896fe29 bellard
4) Backend
359 c896fe29 bellard
360 c896fe29 bellard
tcg-target.h contains the target specific definitions. tcg-target.c
361 c896fe29 bellard
contains the target specific code.
362 c896fe29 bellard
363 c896fe29 bellard
4.1) Assumptions
364 c896fe29 bellard
365 c896fe29 bellard
The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or
366 c896fe29 bellard
64 bit. It is expected that the pointer has the same size as the word.
367 c896fe29 bellard
368 c896fe29 bellard
On a 32 bit target, all 64 bit operations are converted to 32 bits. A
369 c896fe29 bellard
few specific operations must be implemented to allow it (see add2_i32,
370 c896fe29 bellard
sub2_i32, brcond2_i32).
371 c896fe29 bellard
372 c896fe29 bellard
Floating point operations are not supported in this version. A
373 c896fe29 bellard
previous incarnation of the code generator had full support of them,
374 c896fe29 bellard
but it is better to concentrate on integer operations first.
375 c896fe29 bellard
376 c896fe29 bellard
On a 64 bit target, no assumption is made in TCG about the storage of
377 c896fe29 bellard
the 32 bit values in 64 bit registers.
378 c896fe29 bellard
379 c896fe29 bellard
4.2) Constraints
380 c896fe29 bellard
381 c896fe29 bellard
GCC like constraints are used to define the constraints of every
382 c896fe29 bellard
instruction. Memory constraints are not supported in this
383 c896fe29 bellard
version. Aliases are specified in the input operands as for GCC.
384 c896fe29 bellard
385 c896fe29 bellard
A target can define specific register or constant constraints. If an
386 c896fe29 bellard
operation uses a constant input constraint which does not allow all
387 c896fe29 bellard
constants, it must also accept registers in order to have a fallback.
388 c896fe29 bellard
389 c896fe29 bellard
The movi_i32 and movi_i64 operations must accept any constants.
390 c896fe29 bellard
391 c896fe29 bellard
The mov_i32 and mov_i64 operations must accept any registers of the
392 c896fe29 bellard
same type.
393 c896fe29 bellard
394 c896fe29 bellard
The ld/st instructions must accept signed 32 bit constant offsets. It
395 c896fe29 bellard
can be implemented by reserving a specific register to compute the
396 c896fe29 bellard
address if the offset is too big.
397 c896fe29 bellard
398 c896fe29 bellard
The ld/st instructions must accept any destination (ld) or source (st)
399 c896fe29 bellard
register.
400 c896fe29 bellard
401 c896fe29 bellard
4.3) Function call assumptions
402 c896fe29 bellard
403 c896fe29 bellard
- The only supported types for parameters and return value are: 32 and
404 c896fe29 bellard
  64 bit integers and pointer.
405 c896fe29 bellard
- The stack grows downwards.
406 c896fe29 bellard
- The first N parameters are passed in registers.
407 c896fe29 bellard
- The next parameters are passed on the stack by storing them as words.
408 c896fe29 bellard
- Some registers are clobbered during the call. 
409 c896fe29 bellard
- The function can return 0 or 1 value in registers. On a 32 bit
410 c896fe29 bellard
  target, functions must be able to return 2 values in registers for
411 c896fe29 bellard
  64 bit return type.
412 c896fe29 bellard
413 c896fe29 bellard
5) Migration from dyngen to TCG
414 c896fe29 bellard
415 c896fe29 bellard
TCG is backward compatible with QEMU "dyngen" operations. It means
416 c896fe29 bellard
that TCG instructions can be freely mixed with dyngen operations. It
417 c896fe29 bellard
is expected that QEMU targets will be progressively fully converted to
418 9804c8e2 bellard
TCG. Once a target is fully converted to TCG, it will be possible
419 c896fe29 bellard
to apply more optimizations because more registers will be free for
420 c896fe29 bellard
the generated code.
421 c896fe29 bellard
422 c896fe29 bellard
The exception model is the same as the dyngen one.
423 0a6b7b78 bellard
424 0a6b7b78 bellard
6) Recommended coding rules for best performance
425 0a6b7b78 bellard
426 0a6b7b78 bellard
- Use globals to represent the parts of the QEMU CPU state which are
427 0a6b7b78 bellard
  often modified, e.g. the integer registers and the condition
428 0a6b7b78 bellard
  codes. TCG will be able to use host registers to store them.
429 0a6b7b78 bellard
430 0a6b7b78 bellard
- Avoid globals stored in fixed registers. They must be used only to
431 0a6b7b78 bellard
  store the pointer to the CPU state and possibly to store a pointer
432 0a6b7b78 bellard
  to a register window. The other uses are to ensure backward
433 0a6b7b78 bellard
  compatibility with dyngen during the porting a new target to TCG.
434 0a6b7b78 bellard
435 0a6b7b78 bellard
- Use temporaries. Use local temporaries only when really needed,
436 0a6b7b78 bellard
  e.g. when you need to use a value after a jump. Local temporaries
437 0a6b7b78 bellard
  introduce a performance hit in the current TCG implementation: their
438 0a6b7b78 bellard
  content is saved to memory at end of each basic block.
439 0a6b7b78 bellard
440 0a6b7b78 bellard
- Free temporaries and local temporaries when they are no longer used
441 0a6b7b78 bellard
  (tcg_temp_free). Since tcg_const_x() also creates a temporary, you
442 0a6b7b78 bellard
  should free it after it is used. Freeing temporaries does not yield
443 0a6b7b78 bellard
  a better generated code, but it reduces the memory usage of TCG and
444 0a6b7b78 bellard
  the speed of the translation.
445 0a6b7b78 bellard
446 0a6b7b78 bellard
- Don't hesitate to use helpers for complicated or seldom used target
447 0a6b7b78 bellard
  intructions. There is little performance advantage in using TCG to
448 0a6b7b78 bellard
  implement target instructions taking more than about twenty TCG
449 0a6b7b78 bellard
  instructions.
450 0a6b7b78 bellard
451 0a6b7b78 bellard
- Use the 'discard' instruction if you know that TCG won't be able to
452 0a6b7b78 bellard
  prove that a given global is "dead" at a given program point. The
453 0a6b7b78 bellard
  x86 target uses it to improve the condition codes optimisation.