Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ f2bc7e7f

History | View | Annotate | Download (73.8 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4
#if !defined(CONFIG_USER_ONLY)
5
#include "softmmu_exec.h"
6
#endif /* !defined(CONFIG_USER_ONLY) */
7

    
8
//#define DEBUG_MMU
9
//#define DEBUG_MXCC
10
//#define DEBUG_UNALIGNED
11
//#define DEBUG_UNASSIGNED
12
//#define DEBUG_ASI
13

    
14
#ifdef DEBUG_MMU
15
#define DPRINTF_MMU(fmt, args...) \
16
do { printf("MMU: " fmt , ##args); } while (0)
17
#else
18
#define DPRINTF_MMU(fmt, args...) do {} while (0)
19
#endif
20

    
21
#ifdef DEBUG_MXCC
22
#define DPRINTF_MXCC(fmt, args...) \
23
do { printf("MXCC: " fmt , ##args); } while (0)
24
#else
25
#define DPRINTF_MXCC(fmt, args...) do {} while (0)
26
#endif
27

    
28
#ifdef DEBUG_ASI
29
#define DPRINTF_ASI(fmt, args...) \
30
do { printf("ASI: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF_ASI(fmt, args...) do {} while (0)
33
#endif
34

    
35
#ifdef TARGET_ABI32
36
#define ABI32_MASK(addr) do { (addr) &= 0xffffffffULL; } while (0)
37
#else
38
#define ABI32_MASK(addr) do {} while (0)
39
#endif
40

    
41
void raise_exception(int tt)
42
{
43
    env->exception_index = tt;
44
    cpu_loop_exit();
45
}
46

    
47
void helper_trap(target_ulong nb_trap)
48
{
49
    env->exception_index = TT_TRAP + (nb_trap & 0x7f);
50
    cpu_loop_exit();
51
}
52

    
53
void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
54
{
55
    if (do_trap) {
56
        env->exception_index = TT_TRAP + (nb_trap & 0x7f);
57
        cpu_loop_exit();
58
    }
59
}
60

    
61
void helper_check_align(target_ulong addr, uint32_t align)
62
{
63
    if (addr & align) {
64
#ifdef DEBUG_UNALIGNED
65
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
66
           "\n", addr, env->pc);
67
#endif
68
        raise_exception(TT_UNALIGNED);
69
    }
70
}
71

    
72
#define F_HELPER(name, p) void helper_f##name##p(void)
73

    
74
#define F_BINOP(name)                                           \
75
    F_HELPER(name, s)                                           \
76
    {                                                           \
77
        FT0 = float32_ ## name (FT0, FT1, &env->fp_status);     \
78
    }                                                           \
79
    F_HELPER(name, d)                                           \
80
    {                                                           \
81
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
82
    }                                                           \
83
    F_HELPER(name, q)                                           \
84
    {                                                           \
85
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
86
    }
87

    
88
F_BINOP(add);
89
F_BINOP(sub);
90
F_BINOP(mul);
91
F_BINOP(div);
92
#undef F_BINOP
93

    
94
void helper_fsmuld(void)
95
{
96
    DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
97
                      float32_to_float64(FT1, &env->fp_status),
98
                      &env->fp_status);
99
}
100

    
101
void helper_fdmulq(void)
102
{
103
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
104
                       float64_to_float128(DT1, &env->fp_status),
105
                       &env->fp_status);
106
}
107

    
108
F_HELPER(neg, s)
109
{
110
    FT0 = float32_chs(FT1);
111
}
112

    
113
#ifdef TARGET_SPARC64
114
F_HELPER(neg, d)
115
{
116
    DT0 = float64_chs(DT1);
117
}
118

    
119
F_HELPER(neg, q)
120
{
121
    QT0 = float128_chs(QT1);
122
}
123
#endif
124

    
125
/* Integer to float conversion.  */
126
F_HELPER(ito, s)
127
{
128
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
129
}
130

    
131
F_HELPER(ito, d)
132
{
133
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
134
}
135

    
136
F_HELPER(ito, q)
137
{
138
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
139
}
140

    
141
#ifdef TARGET_SPARC64
142
F_HELPER(xto, s)
143
{
144
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
145
}
146

    
147
F_HELPER(xto, d)
148
{
149
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
150
}
151

    
152
F_HELPER(xto, q)
153
{
154
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
155
}
156
#endif
157
#undef F_HELPER
158

    
159
/* floating point conversion */
160
void helper_fdtos(void)
161
{
162
    FT0 = float64_to_float32(DT1, &env->fp_status);
163
}
164

    
165
void helper_fstod(void)
166
{
167
    DT0 = float32_to_float64(FT1, &env->fp_status);
168
}
169

    
170
void helper_fqtos(void)
171
{
172
    FT0 = float128_to_float32(QT1, &env->fp_status);
173
}
174

    
175
void helper_fstoq(void)
176
{
177
    QT0 = float32_to_float128(FT1, &env->fp_status);
178
}
179

    
180
void helper_fqtod(void)
181
{
182
    DT0 = float128_to_float64(QT1, &env->fp_status);
183
}
184

    
185
void helper_fdtoq(void)
186
{
187
    QT0 = float64_to_float128(DT1, &env->fp_status);
188
}
189

    
190
/* Float to integer conversion.  */
191
void helper_fstoi(void)
192
{
193
    *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
194
}
195

    
196
void helper_fdtoi(void)
197
{
198
    *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
199
}
200

    
201
void helper_fqtoi(void)
202
{
203
    *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
204
}
205

    
206
#ifdef TARGET_SPARC64
207
void helper_fstox(void)
208
{
209
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
210
}
211

    
212
void helper_fdtox(void)
213
{
214
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
215
}
216

    
217
void helper_fqtox(void)
218
{
219
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
220
}
221

    
222
void helper_faligndata(void)
223
{
224
    uint64_t tmp;
225

    
226
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
227
    tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
228
    *((uint64_t *)&DT0) = tmp;
229
}
230

    
231
void helper_movl_FT0_0(void)
232
{
233
    *((uint32_t *)&FT0) = 0;
234
}
235

    
236
void helper_movl_DT0_0(void)
237
{
238
    *((uint64_t *)&DT0) = 0;
239
}
240

    
241
void helper_movl_FT0_1(void)
242
{
243
    *((uint32_t *)&FT0) = 0xffffffff;
244
}
245

    
246
void helper_movl_DT0_1(void)
247
{
248
    *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
249
}
250

    
251
void helper_fnot(void)
252
{
253
    *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
254
}
255

    
256
void helper_fnots(void)
257
{
258
    *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
259
}
260

    
261
void helper_fnor(void)
262
{
263
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
264
}
265

    
266
void helper_fnors(void)
267
{
268
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
269
}
270

    
271
void helper_for(void)
272
{
273
    *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
274
}
275

    
276
void helper_fors(void)
277
{
278
    *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
279
}
280

    
281
void helper_fxor(void)
282
{
283
    *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
284
}
285

    
286
void helper_fxors(void)
287
{
288
    *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
289
}
290

    
291
void helper_fand(void)
292
{
293
    *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
294
}
295

    
296
void helper_fands(void)
297
{
298
    *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
299
}
300

    
301
void helper_fornot(void)
302
{
303
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
304
}
305

    
306
void helper_fornots(void)
307
{
308
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
309
}
310

    
311
void helper_fandnot(void)
312
{
313
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
314
}
315

    
316
void helper_fandnots(void)
317
{
318
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
319
}
320

    
321
void helper_fnand(void)
322
{
323
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
324
}
325

    
326
void helper_fnands(void)
327
{
328
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
329
}
330

    
331
void helper_fxnor(void)
332
{
333
    *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
334
}
335

    
336
void helper_fxnors(void)
337
{
338
    *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
339
}
340

    
341
#ifdef WORDS_BIGENDIAN
342
#define VIS_B64(n) b[7 - (n)]
343
#define VIS_W64(n) w[3 - (n)]
344
#define VIS_SW64(n) sw[3 - (n)]
345
#define VIS_L64(n) l[1 - (n)]
346
#define VIS_B32(n) b[3 - (n)]
347
#define VIS_W32(n) w[1 - (n)]
348
#else
349
#define VIS_B64(n) b[n]
350
#define VIS_W64(n) w[n]
351
#define VIS_SW64(n) sw[n]
352
#define VIS_L64(n) l[n]
353
#define VIS_B32(n) b[n]
354
#define VIS_W32(n) w[n]
355
#endif
356

    
357
typedef union {
358
    uint8_t b[8];
359
    uint16_t w[4];
360
    int16_t sw[4];
361
    uint32_t l[2];
362
    float64 d;
363
} vis64;
364

    
365
typedef union {
366
    uint8_t b[4];
367
    uint16_t w[2];
368
    uint32_t l;
369
    float32 f;
370
} vis32;
371

    
372
void helper_fpmerge(void)
373
{
374
    vis64 s, d;
375

    
376
    s.d = DT0;
377
    d.d = DT1;
378

    
379
    // Reverse calculation order to handle overlap
380
    d.VIS_B64(7) = s.VIS_B64(3);
381
    d.VIS_B64(6) = d.VIS_B64(3);
382
    d.VIS_B64(5) = s.VIS_B64(2);
383
    d.VIS_B64(4) = d.VIS_B64(2);
384
    d.VIS_B64(3) = s.VIS_B64(1);
385
    d.VIS_B64(2) = d.VIS_B64(1);
386
    d.VIS_B64(1) = s.VIS_B64(0);
387
    //d.VIS_B64(0) = d.VIS_B64(0);
388

    
389
    DT0 = d.d;
390
}
391

    
392
void helper_fmul8x16(void)
393
{
394
    vis64 s, d;
395
    uint32_t tmp;
396

    
397
    s.d = DT0;
398
    d.d = DT1;
399

    
400
#define PMUL(r)                                                 \
401
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
402
    if ((tmp & 0xff) > 0x7f)                                    \
403
        tmp += 0x100;                                           \
404
    d.VIS_W64(r) = tmp >> 8;
405

    
406
    PMUL(0);
407
    PMUL(1);
408
    PMUL(2);
409
    PMUL(3);
410
#undef PMUL
411

    
412
    DT0 = d.d;
413
}
414

    
415
void helper_fmul8x16al(void)
416
{
417
    vis64 s, d;
418
    uint32_t tmp;
419

    
420
    s.d = DT0;
421
    d.d = DT1;
422

    
423
#define PMUL(r)                                                 \
424
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
425
    if ((tmp & 0xff) > 0x7f)                                    \
426
        tmp += 0x100;                                           \
427
    d.VIS_W64(r) = tmp >> 8;
428

    
429
    PMUL(0);
430
    PMUL(1);
431
    PMUL(2);
432
    PMUL(3);
433
#undef PMUL
434

    
435
    DT0 = d.d;
436
}
437

    
438
void helper_fmul8x16au(void)
439
{
440
    vis64 s, d;
441
    uint32_t tmp;
442

    
443
    s.d = DT0;
444
    d.d = DT1;
445

    
446
#define PMUL(r)                                                 \
447
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
448
    if ((tmp & 0xff) > 0x7f)                                    \
449
        tmp += 0x100;                                           \
450
    d.VIS_W64(r) = tmp >> 8;
451

    
452
    PMUL(0);
453
    PMUL(1);
454
    PMUL(2);
455
    PMUL(3);
456
#undef PMUL
457

    
458
    DT0 = d.d;
459
}
460

    
461
void helper_fmul8sux16(void)
462
{
463
    vis64 s, d;
464
    uint32_t tmp;
465

    
466
    s.d = DT0;
467
    d.d = DT1;
468

    
469
#define PMUL(r)                                                         \
470
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
471
    if ((tmp & 0xff) > 0x7f)                                            \
472
        tmp += 0x100;                                                   \
473
    d.VIS_W64(r) = tmp >> 8;
474

    
475
    PMUL(0);
476
    PMUL(1);
477
    PMUL(2);
478
    PMUL(3);
479
#undef PMUL
480

    
481
    DT0 = d.d;
482
}
483

    
484
void helper_fmul8ulx16(void)
485
{
486
    vis64 s, d;
487
    uint32_t tmp;
488

    
489
    s.d = DT0;
490
    d.d = DT1;
491

    
492
#define PMUL(r)                                                         \
493
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
494
    if ((tmp & 0xff) > 0x7f)                                            \
495
        tmp += 0x100;                                                   \
496
    d.VIS_W64(r) = tmp >> 8;
497

    
498
    PMUL(0);
499
    PMUL(1);
500
    PMUL(2);
501
    PMUL(3);
502
#undef PMUL
503

    
504
    DT0 = d.d;
505
}
506

    
507
void helper_fmuld8sux16(void)
508
{
509
    vis64 s, d;
510
    uint32_t tmp;
511

    
512
    s.d = DT0;
513
    d.d = DT1;
514

    
515
#define PMUL(r)                                                         \
516
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
517
    if ((tmp & 0xff) > 0x7f)                                            \
518
        tmp += 0x100;                                                   \
519
    d.VIS_L64(r) = tmp;
520

    
521
    // Reverse calculation order to handle overlap
522
    PMUL(1);
523
    PMUL(0);
524
#undef PMUL
525

    
526
    DT0 = d.d;
527
}
528

    
529
void helper_fmuld8ulx16(void)
530
{
531
    vis64 s, d;
532
    uint32_t tmp;
533

    
534
    s.d = DT0;
535
    d.d = DT1;
536

    
537
#define PMUL(r)                                                         \
538
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
539
    if ((tmp & 0xff) > 0x7f)                                            \
540
        tmp += 0x100;                                                   \
541
    d.VIS_L64(r) = tmp;
542

    
543
    // Reverse calculation order to handle overlap
544
    PMUL(1);
545
    PMUL(0);
546
#undef PMUL
547

    
548
    DT0 = d.d;
549
}
550

    
551
void helper_fexpand(void)
552
{
553
    vis32 s;
554
    vis64 d;
555

    
556
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
557
    d.d = DT1;
558
    d.VIS_L64(0) = s.VIS_W32(0) << 4;
559
    d.VIS_L64(1) = s.VIS_W32(1) << 4;
560
    d.VIS_L64(2) = s.VIS_W32(2) << 4;
561
    d.VIS_L64(3) = s.VIS_W32(3) << 4;
562

    
563
    DT0 = d.d;
564
}
565

    
566
#define VIS_HELPER(name, F)                             \
567
    void name##16(void)                                 \
568
    {                                                   \
569
        vis64 s, d;                                     \
570
                                                        \
571
        s.d = DT0;                                      \
572
        d.d = DT1;                                      \
573
                                                        \
574
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
575
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
576
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
577
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
578
                                                        \
579
        DT0 = d.d;                                      \
580
    }                                                   \
581
                                                        \
582
    void name##16s(void)                                \
583
    {                                                   \
584
        vis32 s, d;                                     \
585
                                                        \
586
        s.f = FT0;                                      \
587
        d.f = FT1;                                      \
588
                                                        \
589
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
590
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
591
                                                        \
592
        FT0 = d.f;                                      \
593
    }                                                   \
594
                                                        \
595
    void name##32(void)                                 \
596
    {                                                   \
597
        vis64 s, d;                                     \
598
                                                        \
599
        s.d = DT0;                                      \
600
        d.d = DT1;                                      \
601
                                                        \
602
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
603
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
604
                                                        \
605
        DT0 = d.d;                                      \
606
    }                                                   \
607
                                                        \
608
    void name##32s(void)                                \
609
    {                                                   \
610
        vis32 s, d;                                     \
611
                                                        \
612
        s.f = FT0;                                      \
613
        d.f = FT1;                                      \
614
                                                        \
615
        d.l = F(d.l, s.l);                              \
616
                                                        \
617
        FT0 = d.f;                                      \
618
    }
619

    
620
#define FADD(a, b) ((a) + (b))
621
#define FSUB(a, b) ((a) - (b))
622
VIS_HELPER(helper_fpadd, FADD)
623
VIS_HELPER(helper_fpsub, FSUB)
624

    
625
#define VIS_CMPHELPER(name, F)                                        \
626
    void name##16(void)                                           \
627
    {                                                             \
628
        vis64 s, d;                                               \
629
                                                                  \
630
        s.d = DT0;                                                \
631
        d.d = DT1;                                                \
632
                                                                  \
633
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
634
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
635
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
636
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
637
                                                                  \
638
        DT0 = d.d;                                                \
639
    }                                                             \
640
                                                                  \
641
    void name##32(void)                                           \
642
    {                                                             \
643
        vis64 s, d;                                               \
644
                                                                  \
645
        s.d = DT0;                                                \
646
        d.d = DT1;                                                \
647
                                                                  \
648
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
649
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
650
                                                                  \
651
        DT0 = d.d;                                                \
652
    }
653

    
654
#define FCMPGT(a, b) ((a) > (b))
655
#define FCMPEQ(a, b) ((a) == (b))
656
#define FCMPLE(a, b) ((a) <= (b))
657
#define FCMPNE(a, b) ((a) != (b))
658

    
659
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
660
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
661
VIS_CMPHELPER(helper_fcmple, FCMPLE)
662
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
663
#endif
664

    
665
void helper_check_ieee_exceptions(void)
666
{
667
    target_ulong status;
668

    
669
    status = get_float_exception_flags(&env->fp_status);
670
    if (status) {
671
        /* Copy IEEE 754 flags into FSR */
672
        if (status & float_flag_invalid)
673
            env->fsr |= FSR_NVC;
674
        if (status & float_flag_overflow)
675
            env->fsr |= FSR_OFC;
676
        if (status & float_flag_underflow)
677
            env->fsr |= FSR_UFC;
678
        if (status & float_flag_divbyzero)
679
            env->fsr |= FSR_DZC;
680
        if (status & float_flag_inexact)
681
            env->fsr |= FSR_NXC;
682

    
683
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
684
            /* Unmasked exception, generate a trap */
685
            env->fsr |= FSR_FTT_IEEE_EXCP;
686
            raise_exception(TT_FP_EXCP);
687
        } else {
688
            /* Accumulate exceptions */
689
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
690
        }
691
    }
692
}
693

    
694
void helper_clear_float_exceptions(void)
695
{
696
    set_float_exception_flags(0, &env->fp_status);
697
}
698

    
699
void helper_fabss(void)
700
{
701
    FT0 = float32_abs(FT1);
702
}
703

    
704
#ifdef TARGET_SPARC64
705
void helper_fabsd(void)
706
{
707
    DT0 = float64_abs(DT1);
708
}
709

    
710
void helper_fabsq(void)
711
{
712
    QT0 = float128_abs(QT1);
713
}
714
#endif
715

    
716
void helper_fsqrts(void)
717
{
718
    FT0 = float32_sqrt(FT1, &env->fp_status);
719
}
720

    
721
void helper_fsqrtd(void)
722
{
723
    DT0 = float64_sqrt(DT1, &env->fp_status);
724
}
725

    
726
void helper_fsqrtq(void)
727
{
728
    QT0 = float128_sqrt(QT1, &env->fp_status);
729
}
730

    
731
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
732
    void glue(helper_, name) (void)                                     \
733
    {                                                                   \
734
        target_ulong new_fsr;                                           \
735
                                                                        \
736
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
737
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
738
        case float_relation_unordered:                                  \
739
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
740
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
741
                env->fsr |= new_fsr;                                    \
742
                env->fsr |= FSR_NVC;                                    \
743
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
744
                raise_exception(TT_FP_EXCP);                            \
745
            } else {                                                    \
746
                env->fsr |= FSR_NVA;                                    \
747
            }                                                           \
748
            break;                                                      \
749
        case float_relation_less:                                       \
750
            new_fsr = FSR_FCC0 << FS;                                   \
751
            break;                                                      \
752
        case float_relation_greater:                                    \
753
            new_fsr = FSR_FCC1 << FS;                                   \
754
            break;                                                      \
755
        default:                                                        \
756
            new_fsr = 0;                                                \
757
            break;                                                      \
758
        }                                                               \
759
        env->fsr |= new_fsr;                                            \
760
    }
761

    
762
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
763
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
764

    
765
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
766
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
767

    
768
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
769
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
770

    
771
#ifdef TARGET_SPARC64
772
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
773
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
774
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
775

    
776
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
777
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
778
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
779

    
780
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
781
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
782
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
783

    
784
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
785
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
786
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
787

    
788
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
789
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
790
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
791

    
792
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
793
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
794
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
795
#endif
796

    
797
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
798
    defined(DEBUG_MXCC)
799
static void dump_mxcc(CPUState *env)
800
{
801
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
802
           env->mxccdata[0], env->mxccdata[1],
803
           env->mxccdata[2], env->mxccdata[3]);
804
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
805
           "          %016llx %016llx %016llx %016llx\n",
806
           env->mxccregs[0], env->mxccregs[1],
807
           env->mxccregs[2], env->mxccregs[3],
808
           env->mxccregs[4], env->mxccregs[5],
809
           env->mxccregs[6], env->mxccregs[7]);
810
}
811
#endif
812

    
813
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
814
    && defined(DEBUG_ASI)
815
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
816
                     uint64_t r1)
817
{
818
    switch (size)
819
    {
820
    case 1:
821
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
822
                    addr, asi, r1 & 0xff);
823
        break;
824
    case 2:
825
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
826
                    addr, asi, r1 & 0xffff);
827
        break;
828
    case 4:
829
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
830
                    addr, asi, r1 & 0xffffffff);
831
        break;
832
    case 8:
833
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
834
                    addr, asi, r1);
835
        break;
836
    }
837
}
838
#endif
839

    
840
#ifndef TARGET_SPARC64
841
#ifndef CONFIG_USER_ONLY
842
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
843
{
844
    uint64_t ret = 0;
845
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
846
    uint32_t last_addr = addr;
847
#endif
848

    
849
    helper_check_align(addr, size - 1);
850
    switch (asi) {
851
    case 2: /* SuperSparc MXCC registers */
852
        switch (addr) {
853
        case 0x01c00a00: /* MXCC control register */
854
            if (size == 8)
855
                ret = env->mxccregs[3];
856
            else
857
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
858
                             size);
859
            break;
860
        case 0x01c00a04: /* MXCC control register */
861
            if (size == 4)
862
                ret = env->mxccregs[3];
863
            else
864
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
865
                             size);
866
            break;
867
        case 0x01c00c00: /* Module reset register */
868
            if (size == 8) {
869
                ret = env->mxccregs[5];
870
                // should we do something here?
871
            } else
872
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
873
                             size);
874
            break;
875
        case 0x01c00f00: /* MBus port address register */
876
            if (size == 8)
877
                ret = env->mxccregs[7];
878
            else
879
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
880
                             size);
881
            break;
882
        default:
883
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
884
                         size);
885
            break;
886
        }
887
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
888
                     "addr = %08x -> ret = %08x,"
889
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
890
#ifdef DEBUG_MXCC
891
        dump_mxcc(env);
892
#endif
893
        break;
894
    case 3: /* MMU probe */
895
        {
896
            int mmulev;
897

    
898
            mmulev = (addr >> 8) & 15;
899
            if (mmulev > 4)
900
                ret = 0;
901
            else
902
                ret = mmu_probe(env, addr, mmulev);
903
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
904
                        addr, mmulev, ret);
905
        }
906
        break;
907
    case 4: /* read MMU regs */
908
        {
909
            int reg = (addr >> 8) & 0x1f;
910

    
911
            ret = env->mmuregs[reg];
912
            if (reg == 3) /* Fault status cleared on read */
913
                env->mmuregs[3] = 0;
914
            else if (reg == 0x13) /* Fault status read */
915
                ret = env->mmuregs[3];
916
            else if (reg == 0x14) /* Fault address read */
917
                ret = env->mmuregs[4];
918
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
919
        }
920
        break;
921
    case 5: // Turbosparc ITLB Diagnostic
922
    case 6: // Turbosparc DTLB Diagnostic
923
    case 7: // Turbosparc IOTLB Diagnostic
924
        break;
925
    case 9: /* Supervisor code access */
926
        switch(size) {
927
        case 1:
928
            ret = ldub_code(addr);
929
            break;
930
        case 2:
931
            ret = lduw_code(addr);
932
            break;
933
        default:
934
        case 4:
935
            ret = ldl_code(addr);
936
            break;
937
        case 8:
938
            ret = ldq_code(addr);
939
            break;
940
        }
941
        break;
942
    case 0xa: /* User data access */
943
        switch(size) {
944
        case 1:
945
            ret = ldub_user(addr);
946
            break;
947
        case 2:
948
            ret = lduw_user(addr);
949
            break;
950
        default:
951
        case 4:
952
            ret = ldl_user(addr);
953
            break;
954
        case 8:
955
            ret = ldq_user(addr);
956
            break;
957
        }
958
        break;
959
    case 0xb: /* Supervisor data access */
960
        switch(size) {
961
        case 1:
962
            ret = ldub_kernel(addr);
963
            break;
964
        case 2:
965
            ret = lduw_kernel(addr);
966
            break;
967
        default:
968
        case 4:
969
            ret = ldl_kernel(addr);
970
            break;
971
        case 8:
972
            ret = ldq_kernel(addr);
973
            break;
974
        }
975
        break;
976
    case 0xc: /* I-cache tag */
977
    case 0xd: /* I-cache data */
978
    case 0xe: /* D-cache tag */
979
    case 0xf: /* D-cache data */
980
        break;
981
    case 0x20: /* MMU passthrough */
982
        switch(size) {
983
        case 1:
984
            ret = ldub_phys(addr);
985
            break;
986
        case 2:
987
            ret = lduw_phys(addr);
988
            break;
989
        default:
990
        case 4:
991
            ret = ldl_phys(addr);
992
            break;
993
        case 8:
994
            ret = ldq_phys(addr);
995
            break;
996
        }
997
        break;
998
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
999
        switch(size) {
1000
        case 1:
1001
            ret = ldub_phys((target_phys_addr_t)addr
1002
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1003
            break;
1004
        case 2:
1005
            ret = lduw_phys((target_phys_addr_t)addr
1006
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1007
            break;
1008
        default:
1009
        case 4:
1010
            ret = ldl_phys((target_phys_addr_t)addr
1011
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1012
            break;
1013
        case 8:
1014
            ret = ldq_phys((target_phys_addr_t)addr
1015
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1016
            break;
1017
        }
1018
        break;
1019
    case 0x30: // Turbosparc secondary cache diagnostic
1020
    case 0x31: // Turbosparc RAM snoop
1021
    case 0x32: // Turbosparc page table descriptor diagnostic
1022
    case 0x39: /* data cache diagnostic register */
1023
        ret = 0;
1024
        break;
1025
    case 8: /* User code access, XXX */
1026
    default:
1027
        do_unassigned_access(addr, 0, 0, asi);
1028
        ret = 0;
1029
        break;
1030
    }
1031
    if (sign) {
1032
        switch(size) {
1033
        case 1:
1034
            ret = (int8_t) ret;
1035
            break;
1036
        case 2:
1037
            ret = (int16_t) ret;
1038
            break;
1039
        case 4:
1040
            ret = (int32_t) ret;
1041
            break;
1042
        default:
1043
            break;
1044
        }
1045
    }
1046
#ifdef DEBUG_ASI
1047
    dump_asi("read ", last_addr, asi, size, ret);
1048
#endif
1049
    return ret;
1050
}
1051

    
1052
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1053
{
1054
    helper_check_align(addr, size - 1);
1055
    switch(asi) {
1056
    case 2: /* SuperSparc MXCC registers */
1057
        switch (addr) {
1058
        case 0x01c00000: /* MXCC stream data register 0 */
1059
            if (size == 8)
1060
                env->mxccdata[0] = val;
1061
            else
1062
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1063
                             size);
1064
            break;
1065
        case 0x01c00008: /* MXCC stream data register 1 */
1066
            if (size == 8)
1067
                env->mxccdata[1] = val;
1068
            else
1069
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1070
                             size);
1071
            break;
1072
        case 0x01c00010: /* MXCC stream data register 2 */
1073
            if (size == 8)
1074
                env->mxccdata[2] = val;
1075
            else
1076
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1077
                             size);
1078
            break;
1079
        case 0x01c00018: /* MXCC stream data register 3 */
1080
            if (size == 8)
1081
                env->mxccdata[3] = val;
1082
            else
1083
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1084
                             size);
1085
            break;
1086
        case 0x01c00100: /* MXCC stream source */
1087
            if (size == 8)
1088
                env->mxccregs[0] = val;
1089
            else
1090
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1091
                             size);
1092
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1093
                                        0);
1094
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1095
                                        8);
1096
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1097
                                        16);
1098
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1099
                                        24);
1100
            break;
1101
        case 0x01c00200: /* MXCC stream destination */
1102
            if (size == 8)
1103
                env->mxccregs[1] = val;
1104
            else
1105
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1106
                             size);
1107
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1108
                     env->mxccdata[0]);
1109
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1110
                     env->mxccdata[1]);
1111
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1112
                     env->mxccdata[2]);
1113
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1114
                     env->mxccdata[3]);
1115
            break;
1116
        case 0x01c00a00: /* MXCC control register */
1117
            if (size == 8)
1118
                env->mxccregs[3] = val;
1119
            else
1120
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1121
                             size);
1122
            break;
1123
        case 0x01c00a04: /* MXCC control register */
1124
            if (size == 4)
1125
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1126
                    | val;
1127
            else
1128
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1129
                             size);
1130
            break;
1131
        case 0x01c00e00: /* MXCC error register  */
1132
            // writing a 1 bit clears the error
1133
            if (size == 8)
1134
                env->mxccregs[6] &= ~val;
1135
            else
1136
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1137
                             size);
1138
            break;
1139
        case 0x01c00f00: /* MBus port address register */
1140
            if (size == 8)
1141
                env->mxccregs[7] = val;
1142
            else
1143
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1144
                             size);
1145
            break;
1146
        default:
1147
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1148
                         size);
1149
            break;
1150
        }
1151
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1152
                     size, addr, val);
1153
#ifdef DEBUG_MXCC
1154
        dump_mxcc(env);
1155
#endif
1156
        break;
1157
    case 3: /* MMU flush */
1158
        {
1159
            int mmulev;
1160

    
1161
            mmulev = (addr >> 8) & 15;
1162
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1163
            switch (mmulev) {
1164
            case 0: // flush page
1165
                tlb_flush_page(env, addr & 0xfffff000);
1166
                break;
1167
            case 1: // flush segment (256k)
1168
            case 2: // flush region (16M)
1169
            case 3: // flush context (4G)
1170
            case 4: // flush entire
1171
                tlb_flush(env, 1);
1172
                break;
1173
            default:
1174
                break;
1175
            }
1176
#ifdef DEBUG_MMU
1177
            dump_mmu(env);
1178
#endif
1179
        }
1180
        break;
1181
    case 4: /* write MMU regs */
1182
        {
1183
            int reg = (addr >> 8) & 0x1f;
1184
            uint32_t oldreg;
1185

    
1186
            oldreg = env->mmuregs[reg];
1187
            switch(reg) {
1188
            case 0: // Control Register
1189
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1190
                                    (val & 0x00ffffff);
1191
                // Mappings generated during no-fault mode or MMU
1192
                // disabled mode are invalid in normal mode
1193
                if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
1194
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
1195
                    tlb_flush(env, 1);
1196
                break;
1197
            case 1: // Context Table Pointer Register
1198
                env->mmuregs[reg] = val & env->mmu_ctpr_mask;
1199
                break;
1200
            case 2: // Context Register
1201
                env->mmuregs[reg] = val & env->mmu_cxr_mask;
1202
                if (oldreg != env->mmuregs[reg]) {
1203
                    /* we flush when the MMU context changes because
1204
                       QEMU has no MMU context support */
1205
                    tlb_flush(env, 1);
1206
                }
1207
                break;
1208
            case 3: // Synchronous Fault Status Register with Clear
1209
            case 4: // Synchronous Fault Address Register
1210
                break;
1211
            case 0x10: // TLB Replacement Control Register
1212
                env->mmuregs[reg] = val & env->mmu_trcr_mask;
1213
                break;
1214
            case 0x13: // Synchronous Fault Status Register with Read and Clear
1215
                env->mmuregs[3] = val & env->mmu_sfsr_mask;
1216
                break;
1217
            case 0x14: // Synchronous Fault Address Register
1218
                env->mmuregs[4] = val;
1219
                break;
1220
            default:
1221
                env->mmuregs[reg] = val;
1222
                break;
1223
            }
1224
            if (oldreg != env->mmuregs[reg]) {
1225
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1226
                            reg, oldreg, env->mmuregs[reg]);
1227
            }
1228
#ifdef DEBUG_MMU
1229
            dump_mmu(env);
1230
#endif
1231
        }
1232
        break;
1233
    case 5: // Turbosparc ITLB Diagnostic
1234
    case 6: // Turbosparc DTLB Diagnostic
1235
    case 7: // Turbosparc IOTLB Diagnostic
1236
        break;
1237
    case 0xa: /* User data access */
1238
        switch(size) {
1239
        case 1:
1240
            stb_user(addr, val);
1241
            break;
1242
        case 2:
1243
            stw_user(addr, val);
1244
            break;
1245
        default:
1246
        case 4:
1247
            stl_user(addr, val);
1248
            break;
1249
        case 8:
1250
            stq_user(addr, val);
1251
            break;
1252
        }
1253
        break;
1254
    case 0xb: /* Supervisor data access */
1255
        switch(size) {
1256
        case 1:
1257
            stb_kernel(addr, val);
1258
            break;
1259
        case 2:
1260
            stw_kernel(addr, val);
1261
            break;
1262
        default:
1263
        case 4:
1264
            stl_kernel(addr, val);
1265
            break;
1266
        case 8:
1267
            stq_kernel(addr, val);
1268
            break;
1269
        }
1270
        break;
1271
    case 0xc: /* I-cache tag */
1272
    case 0xd: /* I-cache data */
1273
    case 0xe: /* D-cache tag */
1274
    case 0xf: /* D-cache data */
1275
    case 0x10: /* I/D-cache flush page */
1276
    case 0x11: /* I/D-cache flush segment */
1277
    case 0x12: /* I/D-cache flush region */
1278
    case 0x13: /* I/D-cache flush context */
1279
    case 0x14: /* I/D-cache flush user */
1280
        break;
1281
    case 0x17: /* Block copy, sta access */
1282
        {
1283
            // val = src
1284
            // addr = dst
1285
            // copy 32 bytes
1286
            unsigned int i;
1287
            uint32_t src = val & ~3, dst = addr & ~3, temp;
1288

    
1289
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1290
                temp = ldl_kernel(src);
1291
                stl_kernel(dst, temp);
1292
            }
1293
        }
1294
        break;
1295
    case 0x1f: /* Block fill, stda access */
1296
        {
1297
            // addr = dst
1298
            // fill 32 bytes with val
1299
            unsigned int i;
1300
            uint32_t dst = addr & 7;
1301

    
1302
            for (i = 0; i < 32; i += 8, dst += 8)
1303
                stq_kernel(dst, val);
1304
        }
1305
        break;
1306
    case 0x20: /* MMU passthrough */
1307
        {
1308
            switch(size) {
1309
            case 1:
1310
                stb_phys(addr, val);
1311
                break;
1312
            case 2:
1313
                stw_phys(addr, val);
1314
                break;
1315
            case 4:
1316
            default:
1317
                stl_phys(addr, val);
1318
                break;
1319
            case 8:
1320
                stq_phys(addr, val);
1321
                break;
1322
            }
1323
        }
1324
        break;
1325
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1326
        {
1327
            switch(size) {
1328
            case 1:
1329
                stb_phys((target_phys_addr_t)addr
1330
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1331
                break;
1332
            case 2:
1333
                stw_phys((target_phys_addr_t)addr
1334
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1335
                break;
1336
            case 4:
1337
            default:
1338
                stl_phys((target_phys_addr_t)addr
1339
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1340
                break;
1341
            case 8:
1342
                stq_phys((target_phys_addr_t)addr
1343
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1344
                break;
1345
            }
1346
        }
1347
        break;
1348
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1349
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
1350
               // Turbosparc snoop RAM
1351
    case 0x32: // store buffer control or Turbosparc page table
1352
               // descriptor diagnostic
1353
    case 0x36: /* I-cache flash clear */
1354
    case 0x37: /* D-cache flash clear */
1355
    case 0x38: /* breakpoint diagnostics */
1356
    case 0x4c: /* breakpoint action */
1357
        break;
1358
    case 8: /* User code access, XXX */
1359
    case 9: /* Supervisor code access, XXX */
1360
    default:
1361
        do_unassigned_access(addr, 1, 0, asi);
1362
        break;
1363
    }
1364
#ifdef DEBUG_ASI
1365
    dump_asi("write", addr, asi, size, val);
1366
#endif
1367
}
1368

    
1369
#endif /* CONFIG_USER_ONLY */
1370
#else /* TARGET_SPARC64 */
1371

    
1372
#ifdef CONFIG_USER_ONLY
1373
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1374
{
1375
    uint64_t ret = 0;
1376
#if defined(DEBUG_ASI)
1377
    target_ulong last_addr = addr;
1378
#endif
1379

    
1380
    if (asi < 0x80)
1381
        raise_exception(TT_PRIV_ACT);
1382

    
1383
    helper_check_align(addr, size - 1);
1384
    ABI32_MASK(addr);
1385

    
1386
    switch (asi) {
1387
    case 0x80: // Primary
1388
    case 0x82: // Primary no-fault
1389
    case 0x88: // Primary LE
1390
    case 0x8a: // Primary no-fault LE
1391
        {
1392
            switch(size) {
1393
            case 1:
1394
                ret = ldub_raw(addr);
1395
                break;
1396
            case 2:
1397
                ret = lduw_raw(addr);
1398
                break;
1399
            case 4:
1400
                ret = ldl_raw(addr);
1401
                break;
1402
            default:
1403
            case 8:
1404
                ret = ldq_raw(addr);
1405
                break;
1406
            }
1407
        }
1408
        break;
1409
    case 0x81: // Secondary
1410
    case 0x83: // Secondary no-fault
1411
    case 0x89: // Secondary LE
1412
    case 0x8b: // Secondary no-fault LE
1413
        // XXX
1414
        break;
1415
    default:
1416
        break;
1417
    }
1418

    
1419
    /* Convert from little endian */
1420
    switch (asi) {
1421
    case 0x88: // Primary LE
1422
    case 0x89: // Secondary LE
1423
    case 0x8a: // Primary no-fault LE
1424
    case 0x8b: // Secondary no-fault LE
1425
        switch(size) {
1426
        case 2:
1427
            ret = bswap16(ret);
1428
            break;
1429
        case 4:
1430
            ret = bswap32(ret);
1431
            break;
1432
        case 8:
1433
            ret = bswap64(ret);
1434
            break;
1435
        default:
1436
            break;
1437
        }
1438
    default:
1439
        break;
1440
    }
1441

    
1442
    /* Convert to signed number */
1443
    if (sign) {
1444
        switch(size) {
1445
        case 1:
1446
            ret = (int8_t) ret;
1447
            break;
1448
        case 2:
1449
            ret = (int16_t) ret;
1450
            break;
1451
        case 4:
1452
            ret = (int32_t) ret;
1453
            break;
1454
        default:
1455
            break;
1456
        }
1457
    }
1458
#ifdef DEBUG_ASI
1459
    dump_asi("read ", last_addr, asi, size, ret);
1460
#endif
1461
    return ret;
1462
}
1463

    
1464
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1465
{
1466
#ifdef DEBUG_ASI
1467
    dump_asi("write", addr, asi, size, val);
1468
#endif
1469
    if (asi < 0x80)
1470
        raise_exception(TT_PRIV_ACT);
1471

    
1472
    helper_check_align(addr, size - 1);
1473
    ABI32_MASK(addr);
1474

    
1475
    /* Convert to little endian */
1476
    switch (asi) {
1477
    case 0x88: // Primary LE
1478
    case 0x89: // Secondary LE
1479
        switch(size) {
1480
        case 2:
1481
            addr = bswap16(addr);
1482
            break;
1483
        case 4:
1484
            addr = bswap32(addr);
1485
            break;
1486
        case 8:
1487
            addr = bswap64(addr);
1488
            break;
1489
        default:
1490
            break;
1491
        }
1492
    default:
1493
        break;
1494
    }
1495

    
1496
    switch(asi) {
1497
    case 0x80: // Primary
1498
    case 0x88: // Primary LE
1499
        {
1500
            switch(size) {
1501
            case 1:
1502
                stb_raw(addr, val);
1503
                break;
1504
            case 2:
1505
                stw_raw(addr, val);
1506
                break;
1507
            case 4:
1508
                stl_raw(addr, val);
1509
                break;
1510
            case 8:
1511
            default:
1512
                stq_raw(addr, val);
1513
                break;
1514
            }
1515
        }
1516
        break;
1517
    case 0x81: // Secondary
1518
    case 0x89: // Secondary LE
1519
        // XXX
1520
        return;
1521

    
1522
    case 0x82: // Primary no-fault, RO
1523
    case 0x83: // Secondary no-fault, RO
1524
    case 0x8a: // Primary no-fault LE, RO
1525
    case 0x8b: // Secondary no-fault LE, RO
1526
    default:
1527
        do_unassigned_access(addr, 1, 0, 1);
1528
        return;
1529
    }
1530
}
1531

    
1532
#else /* CONFIG_USER_ONLY */
1533

    
1534
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1535
{
1536
    uint64_t ret = 0;
1537
#if defined(DEBUG_ASI)
1538
    target_ulong last_addr = addr;
1539
#endif
1540

    
1541
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1542
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1543
        raise_exception(TT_PRIV_ACT);
1544

    
1545
    helper_check_align(addr, size - 1);
1546
    switch (asi) {
1547
    case 0x10: // As if user primary
1548
    case 0x18: // As if user primary LE
1549
    case 0x80: // Primary
1550
    case 0x82: // Primary no-fault
1551
    case 0x88: // Primary LE
1552
    case 0x8a: // Primary no-fault LE
1553
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1554
            if (env->hpstate & HS_PRIV) {
1555
                switch(size) {
1556
                case 1:
1557
                    ret = ldub_hypv(addr);
1558
                    break;
1559
                case 2:
1560
                    ret = lduw_hypv(addr);
1561
                    break;
1562
                case 4:
1563
                    ret = ldl_hypv(addr);
1564
                    break;
1565
                default:
1566
                case 8:
1567
                    ret = ldq_hypv(addr);
1568
                    break;
1569
                }
1570
            } else {
1571
                switch(size) {
1572
                case 1:
1573
                    ret = ldub_kernel(addr);
1574
                    break;
1575
                case 2:
1576
                    ret = lduw_kernel(addr);
1577
                    break;
1578
                case 4:
1579
                    ret = ldl_kernel(addr);
1580
                    break;
1581
                default:
1582
                case 8:
1583
                    ret = ldq_kernel(addr);
1584
                    break;
1585
                }
1586
            }
1587
        } else {
1588
            switch(size) {
1589
            case 1:
1590
                ret = ldub_user(addr);
1591
                break;
1592
            case 2:
1593
                ret = lduw_user(addr);
1594
                break;
1595
            case 4:
1596
                ret = ldl_user(addr);
1597
                break;
1598
            default:
1599
            case 8:
1600
                ret = ldq_user(addr);
1601
                break;
1602
            }
1603
        }
1604
        break;
1605
    case 0x14: // Bypass
1606
    case 0x15: // Bypass, non-cacheable
1607
    case 0x1c: // Bypass LE
1608
    case 0x1d: // Bypass, non-cacheable LE
1609
        {
1610
            switch(size) {
1611
            case 1:
1612
                ret = ldub_phys(addr);
1613
                break;
1614
            case 2:
1615
                ret = lduw_phys(addr);
1616
                break;
1617
            case 4:
1618
                ret = ldl_phys(addr);
1619
                break;
1620
            default:
1621
            case 8:
1622
                ret = ldq_phys(addr);
1623
                break;
1624
            }
1625
            break;
1626
        }
1627
    case 0x04: // Nucleus
1628
    case 0x0c: // Nucleus Little Endian (LE)
1629
    case 0x11: // As if user secondary
1630
    case 0x19: // As if user secondary LE
1631
    case 0x24: // Nucleus quad LDD 128 bit atomic
1632
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1633
    case 0x4a: // UPA config
1634
    case 0x81: // Secondary
1635
    case 0x83: // Secondary no-fault
1636
    case 0x89: // Secondary LE
1637
    case 0x8b: // Secondary no-fault LE
1638
        // XXX
1639
        break;
1640
    case 0x45: // LSU
1641
        ret = env->lsu;
1642
        break;
1643
    case 0x50: // I-MMU regs
1644
        {
1645
            int reg = (addr >> 3) & 0xf;
1646

    
1647
            ret = env->immuregs[reg];
1648
            break;
1649
        }
1650
    case 0x51: // I-MMU 8k TSB pointer
1651
    case 0x52: // I-MMU 64k TSB pointer
1652
    case 0x55: // I-MMU data access
1653
        // XXX
1654
        break;
1655
    case 0x56: // I-MMU tag read
1656
        {
1657
            unsigned int i;
1658

    
1659
            for (i = 0; i < 64; i++) {
1660
                // Valid, ctx match, vaddr match
1661
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1662
                    env->itlb_tag[i] == addr) {
1663
                    ret = env->itlb_tag[i];
1664
                    break;
1665
                }
1666
            }
1667
            break;
1668
        }
1669
    case 0x58: // D-MMU regs
1670
        {
1671
            int reg = (addr >> 3) & 0xf;
1672

    
1673
            ret = env->dmmuregs[reg];
1674
            break;
1675
        }
1676
    case 0x5e: // D-MMU tag read
1677
        {
1678
            unsigned int i;
1679

    
1680
            for (i = 0; i < 64; i++) {
1681
                // Valid, ctx match, vaddr match
1682
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1683
                    env->dtlb_tag[i] == addr) {
1684
                    ret = env->dtlb_tag[i];
1685
                    break;
1686
                }
1687
            }
1688
            break;
1689
        }
1690
    case 0x59: // D-MMU 8k TSB pointer
1691
    case 0x5a: // D-MMU 64k TSB pointer
1692
    case 0x5b: // D-MMU data pointer
1693
    case 0x5d: // D-MMU data access
1694
    case 0x48: // Interrupt dispatch, RO
1695
    case 0x49: // Interrupt data receive
1696
    case 0x7f: // Incoming interrupt vector, RO
1697
        // XXX
1698
        break;
1699
    case 0x54: // I-MMU data in, WO
1700
    case 0x57: // I-MMU demap, WO
1701
    case 0x5c: // D-MMU data in, WO
1702
    case 0x5f: // D-MMU demap, WO
1703
    case 0x77: // Interrupt vector, WO
1704
    default:
1705
        do_unassigned_access(addr, 0, 0, 1);
1706
        ret = 0;
1707
        break;
1708
    }
1709

    
1710
    /* Convert from little endian */
1711
    switch (asi) {
1712
    case 0x0c: // Nucleus Little Endian (LE)
1713
    case 0x18: // As if user primary LE
1714
    case 0x19: // As if user secondary LE
1715
    case 0x1c: // Bypass LE
1716
    case 0x1d: // Bypass, non-cacheable LE
1717
    case 0x88: // Primary LE
1718
    case 0x89: // Secondary LE
1719
    case 0x8a: // Primary no-fault LE
1720
    case 0x8b: // Secondary no-fault LE
1721
        switch(size) {
1722
        case 2:
1723
            ret = bswap16(ret);
1724
            break;
1725
        case 4:
1726
            ret = bswap32(ret);
1727
            break;
1728
        case 8:
1729
            ret = bswap64(ret);
1730
            break;
1731
        default:
1732
            break;
1733
        }
1734
    default:
1735
        break;
1736
    }
1737

    
1738
    /* Convert to signed number */
1739
    if (sign) {
1740
        switch(size) {
1741
        case 1:
1742
            ret = (int8_t) ret;
1743
            break;
1744
        case 2:
1745
            ret = (int16_t) ret;
1746
            break;
1747
        case 4:
1748
            ret = (int32_t) ret;
1749
            break;
1750
        default:
1751
            break;
1752
        }
1753
    }
1754
#ifdef DEBUG_ASI
1755
    dump_asi("read ", last_addr, asi, size, ret);
1756
#endif
1757
    return ret;
1758
}
1759

    
1760
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1761
{
1762
#ifdef DEBUG_ASI
1763
    dump_asi("write", addr, asi, size, val);
1764
#endif
1765
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1766
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1767
        raise_exception(TT_PRIV_ACT);
1768

    
1769
    helper_check_align(addr, size - 1);
1770
    /* Convert to little endian */
1771
    switch (asi) {
1772
    case 0x0c: // Nucleus Little Endian (LE)
1773
    case 0x18: // As if user primary LE
1774
    case 0x19: // As if user secondary LE
1775
    case 0x1c: // Bypass LE
1776
    case 0x1d: // Bypass, non-cacheable LE
1777
    case 0x88: // Primary LE
1778
    case 0x89: // Secondary LE
1779
        switch(size) {
1780
        case 2:
1781
            addr = bswap16(addr);
1782
            break;
1783
        case 4:
1784
            addr = bswap32(addr);
1785
            break;
1786
        case 8:
1787
            addr = bswap64(addr);
1788
            break;
1789
        default:
1790
            break;
1791
        }
1792
    default:
1793
        break;
1794
    }
1795

    
1796
    switch(asi) {
1797
    case 0x10: // As if user primary
1798
    case 0x18: // As if user primary LE
1799
    case 0x80: // Primary
1800
    case 0x88: // Primary LE
1801
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1802
            if (env->hpstate & HS_PRIV) {
1803
                switch(size) {
1804
                case 1:
1805
                    stb_hypv(addr, val);
1806
                    break;
1807
                case 2:
1808
                    stw_hypv(addr, val);
1809
                    break;
1810
                case 4:
1811
                    stl_hypv(addr, val);
1812
                    break;
1813
                case 8:
1814
                default:
1815
                    stq_hypv(addr, val);
1816
                    break;
1817
                }
1818
            } else {
1819
                switch(size) {
1820
                case 1:
1821
                    stb_kernel(addr, val);
1822
                    break;
1823
                case 2:
1824
                    stw_kernel(addr, val);
1825
                    break;
1826
                case 4:
1827
                    stl_kernel(addr, val);
1828
                    break;
1829
                case 8:
1830
                default:
1831
                    stq_kernel(addr, val);
1832
                    break;
1833
                }
1834
            }
1835
        } else {
1836
            switch(size) {
1837
            case 1:
1838
                stb_user(addr, val);
1839
                break;
1840
            case 2:
1841
                stw_user(addr, val);
1842
                break;
1843
            case 4:
1844
                stl_user(addr, val);
1845
                break;
1846
            case 8:
1847
            default:
1848
                stq_user(addr, val);
1849
                break;
1850
            }
1851
        }
1852
        break;
1853
    case 0x14: // Bypass
1854
    case 0x15: // Bypass, non-cacheable
1855
    case 0x1c: // Bypass LE
1856
    case 0x1d: // Bypass, non-cacheable LE
1857
        {
1858
            switch(size) {
1859
            case 1:
1860
                stb_phys(addr, val);
1861
                break;
1862
            case 2:
1863
                stw_phys(addr, val);
1864
                break;
1865
            case 4:
1866
                stl_phys(addr, val);
1867
                break;
1868
            case 8:
1869
            default:
1870
                stq_phys(addr, val);
1871
                break;
1872
            }
1873
        }
1874
        return;
1875
    case 0x04: // Nucleus
1876
    case 0x0c: // Nucleus Little Endian (LE)
1877
    case 0x11: // As if user secondary
1878
    case 0x19: // As if user secondary LE
1879
    case 0x24: // Nucleus quad LDD 128 bit atomic
1880
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1881
    case 0x4a: // UPA config
1882
    case 0x81: // Secondary
1883
    case 0x89: // Secondary LE
1884
        // XXX
1885
        return;
1886
    case 0x45: // LSU
1887
        {
1888
            uint64_t oldreg;
1889

    
1890
            oldreg = env->lsu;
1891
            env->lsu = val & (DMMU_E | IMMU_E);
1892
            // Mappings generated during D/I MMU disabled mode are
1893
            // invalid in normal mode
1894
            if (oldreg != env->lsu) {
1895
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1896
                            oldreg, env->lsu);
1897
#ifdef DEBUG_MMU
1898
                dump_mmu(env);
1899
#endif
1900
                tlb_flush(env, 1);
1901
            }
1902
            return;
1903
        }
1904
    case 0x50: // I-MMU regs
1905
        {
1906
            int reg = (addr >> 3) & 0xf;
1907
            uint64_t oldreg;
1908

    
1909
            oldreg = env->immuregs[reg];
1910
            switch(reg) {
1911
            case 0: // RO
1912
            case 4:
1913
                return;
1914
            case 1: // Not in I-MMU
1915
            case 2:
1916
            case 7:
1917
            case 8:
1918
                return;
1919
            case 3: // SFSR
1920
                if ((val & 1) == 0)
1921
                    val = 0; // Clear SFSR
1922
                break;
1923
            case 5: // TSB access
1924
            case 6: // Tag access
1925
            default:
1926
                break;
1927
            }
1928
            env->immuregs[reg] = val;
1929
            if (oldreg != env->immuregs[reg]) {
1930
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1931
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1932
            }
1933
#ifdef DEBUG_MMU
1934
            dump_mmu(env);
1935
#endif
1936
            return;
1937
        }
1938
    case 0x54: // I-MMU data in
1939
        {
1940
            unsigned int i;
1941

    
1942
            // Try finding an invalid entry
1943
            for (i = 0; i < 64; i++) {
1944
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1945
                    env->itlb_tag[i] = env->immuregs[6];
1946
                    env->itlb_tte[i] = val;
1947
                    return;
1948
                }
1949
            }
1950
            // Try finding an unlocked entry
1951
            for (i = 0; i < 64; i++) {
1952
                if ((env->itlb_tte[i] & 0x40) == 0) {
1953
                    env->itlb_tag[i] = env->immuregs[6];
1954
                    env->itlb_tte[i] = val;
1955
                    return;
1956
                }
1957
            }
1958
            // error state?
1959
            return;
1960
        }
1961
    case 0x55: // I-MMU data access
1962
        {
1963
            unsigned int i = (addr >> 3) & 0x3f;
1964

    
1965
            env->itlb_tag[i] = env->immuregs[6];
1966
            env->itlb_tte[i] = val;
1967
            return;
1968
        }
1969
    case 0x57: // I-MMU demap
1970
        // XXX
1971
        return;
1972
    case 0x58: // D-MMU regs
1973
        {
1974
            int reg = (addr >> 3) & 0xf;
1975
            uint64_t oldreg;
1976

    
1977
            oldreg = env->dmmuregs[reg];
1978
            switch(reg) {
1979
            case 0: // RO
1980
            case 4:
1981
                return;
1982
            case 3: // SFSR
1983
                if ((val & 1) == 0) {
1984
                    val = 0; // Clear SFSR, Fault address
1985
                    env->dmmuregs[4] = 0;
1986
                }
1987
                env->dmmuregs[reg] = val;
1988
                break;
1989
            case 1: // Primary context
1990
            case 2: // Secondary context
1991
            case 5: // TSB access
1992
            case 6: // Tag access
1993
            case 7: // Virtual Watchpoint
1994
            case 8: // Physical Watchpoint
1995
            default:
1996
                break;
1997
            }
1998
            env->dmmuregs[reg] = val;
1999
            if (oldreg != env->dmmuregs[reg]) {
2000
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2001
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2002
            }
2003
#ifdef DEBUG_MMU
2004
            dump_mmu(env);
2005
#endif
2006
            return;
2007
        }
2008
    case 0x5c: // D-MMU data in
2009
        {
2010
            unsigned int i;
2011

    
2012
            // Try finding an invalid entry
2013
            for (i = 0; i < 64; i++) {
2014
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2015
                    env->dtlb_tag[i] = env->dmmuregs[6];
2016
                    env->dtlb_tte[i] = val;
2017
                    return;
2018
                }
2019
            }
2020
            // Try finding an unlocked entry
2021
            for (i = 0; i < 64; i++) {
2022
                if ((env->dtlb_tte[i] & 0x40) == 0) {
2023
                    env->dtlb_tag[i] = env->dmmuregs[6];
2024
                    env->dtlb_tte[i] = val;
2025
                    return;
2026
                }
2027
            }
2028
            // error state?
2029
            return;
2030
        }
2031
    case 0x5d: // D-MMU data access
2032
        {
2033
            unsigned int i = (addr >> 3) & 0x3f;
2034

    
2035
            env->dtlb_tag[i] = env->dmmuregs[6];
2036
            env->dtlb_tte[i] = val;
2037
            return;
2038
        }
2039
    case 0x5f: // D-MMU demap
2040
    case 0x49: // Interrupt data receive
2041
        // XXX
2042
        return;
2043
    case 0x51: // I-MMU 8k TSB pointer, RO
2044
    case 0x52: // I-MMU 64k TSB pointer, RO
2045
    case 0x56: // I-MMU tag read, RO
2046
    case 0x59: // D-MMU 8k TSB pointer, RO
2047
    case 0x5a: // D-MMU 64k TSB pointer, RO
2048
    case 0x5b: // D-MMU data pointer, RO
2049
    case 0x5e: // D-MMU tag read, RO
2050
    case 0x48: // Interrupt dispatch, RO
2051
    case 0x7f: // Incoming interrupt vector, RO
2052
    case 0x82: // Primary no-fault, RO
2053
    case 0x83: // Secondary no-fault, RO
2054
    case 0x8a: // Primary no-fault LE, RO
2055
    case 0x8b: // Secondary no-fault LE, RO
2056
    default:
2057
        do_unassigned_access(addr, 1, 0, 1);
2058
        return;
2059
    }
2060
}
2061
#endif /* CONFIG_USER_ONLY */
2062

    
2063
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2064
{
2065
    unsigned int i;
2066
    target_ulong val;
2067

    
2068
    helper_check_align(addr, 3);
2069
    switch (asi) {
2070
    case 0xf0: // Block load primary
2071
    case 0xf1: // Block load secondary
2072
    case 0xf8: // Block load primary LE
2073
    case 0xf9: // Block load secondary LE
2074
        if (rd & 7) {
2075
            raise_exception(TT_ILL_INSN);
2076
            return;
2077
        }
2078
        helper_check_align(addr, 0x3f);
2079
        for (i = 0; i < 16; i++) {
2080
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2081
                                                         0);
2082
            addr += 4;
2083
        }
2084

    
2085
        return;
2086
    default:
2087
        break;
2088
    }
2089

    
2090
    val = helper_ld_asi(addr, asi, size, 0);
2091
    switch(size) {
2092
    default:
2093
    case 4:
2094
        *((uint32_t *)&FT0) = val;
2095
        break;
2096
    case 8:
2097
        *((int64_t *)&DT0) = val;
2098
        break;
2099
    case 16:
2100
        // XXX
2101
        break;
2102
    }
2103
}
2104

    
2105
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2106
{
2107
    unsigned int i;
2108
    target_ulong val = 0;
2109

    
2110
    helper_check_align(addr, 3);
2111
    switch (asi) {
2112
    case 0xf0: // Block store primary
2113
    case 0xf1: // Block store secondary
2114
    case 0xf8: // Block store primary LE
2115
    case 0xf9: // Block store secondary LE
2116
        if (rd & 7) {
2117
            raise_exception(TT_ILL_INSN);
2118
            return;
2119
        }
2120
        helper_check_align(addr, 0x3f);
2121
        for (i = 0; i < 16; i++) {
2122
            val = *(uint32_t *)&env->fpr[rd++];
2123
            helper_st_asi(addr, val, asi & 0x8f, 4);
2124
            addr += 4;
2125
        }
2126

    
2127
        return;
2128
    default:
2129
        break;
2130
    }
2131

    
2132
    switch(size) {
2133
    default:
2134
    case 4:
2135
        val = *((uint32_t *)&FT0);
2136
        break;
2137
    case 8:
2138
        val = *((int64_t *)&DT0);
2139
        break;
2140
    case 16:
2141
        // XXX
2142
        break;
2143
    }
2144
    helper_st_asi(addr, val, asi, size);
2145
}
2146

    
2147
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2148
                            target_ulong val2, uint32_t asi)
2149
{
2150
    target_ulong ret;
2151

    
2152
    val1 &= 0xffffffffUL;
2153
    ret = helper_ld_asi(addr, asi, 4, 0);
2154
    ret &= 0xffffffffUL;
2155
    if (val1 == ret)
2156
        helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2157
    return ret;
2158
}
2159

    
2160
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2161
                             target_ulong val2, uint32_t asi)
2162
{
2163
    target_ulong ret;
2164

    
2165
    ret = helper_ld_asi(addr, asi, 8, 0);
2166
    if (val1 == ret)
2167
        helper_st_asi(addr, val2, asi, 8);
2168
    return ret;
2169
}
2170
#endif /* TARGET_SPARC64 */
2171

    
2172
#ifndef TARGET_SPARC64
2173
void helper_rett(void)
2174
{
2175
    unsigned int cwp;
2176

    
2177
    if (env->psret == 1)
2178
        raise_exception(TT_ILL_INSN);
2179

    
2180
    env->psret = 1;
2181
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
2182
    if (env->wim & (1 << cwp)) {
2183
        raise_exception(TT_WIN_UNF);
2184
    }
2185
    set_cwp(cwp);
2186
    env->psrs = env->psrps;
2187
}
2188
#endif
2189

    
2190
target_ulong helper_udiv(target_ulong a, target_ulong b)
2191
{
2192
    uint64_t x0;
2193
    uint32_t x1;
2194

    
2195
    x0 = a | ((uint64_t) (env->y) << 32);
2196
    x1 = b;
2197

    
2198
    if (x1 == 0) {
2199
        raise_exception(TT_DIV_ZERO);
2200
    }
2201

    
2202
    x0 = x0 / x1;
2203
    if (x0 > 0xffffffff) {
2204
        env->cc_src2 = 1;
2205
        return 0xffffffff;
2206
    } else {
2207
        env->cc_src2 = 0;
2208
        return x0;
2209
    }
2210
}
2211

    
2212
target_ulong helper_sdiv(target_ulong a, target_ulong b)
2213
{
2214
    int64_t x0;
2215
    int32_t x1;
2216

    
2217
    x0 = a | ((int64_t) (env->y) << 32);
2218
    x1 = b;
2219

    
2220
    if (x1 == 0) {
2221
        raise_exception(TT_DIV_ZERO);
2222
    }
2223

    
2224
    x0 = x0 / x1;
2225
    if ((int32_t) x0 != x0) {
2226
        env->cc_src2 = 1;
2227
        return x0 < 0? 0x80000000: 0x7fffffff;
2228
    } else {
2229
        env->cc_src2 = 0;
2230
        return x0;
2231
    }
2232
}
2233

    
2234
uint64_t helper_pack64(target_ulong high, target_ulong low)
2235
{
2236
    return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2237
}
2238

    
2239
void helper_stdf(target_ulong addr, int mem_idx)
2240
{
2241
    helper_check_align(addr, 7);
2242
#if !defined(CONFIG_USER_ONLY)
2243
    switch (mem_idx) {
2244
    case 0:
2245
        stfq_user(addr, DT0);
2246
        break;
2247
    case 1:
2248
        stfq_kernel(addr, DT0);
2249
        break;
2250
#ifdef TARGET_SPARC64
2251
    case 2:
2252
        stfq_hypv(addr, DT0);
2253
        break;
2254
#endif
2255
    default:
2256
        break;
2257
    }
2258
#else
2259
    ABI32_MASK(addr);
2260
    stfq_raw(addr, DT0);
2261
#endif
2262
}
2263

    
2264
void helper_lddf(target_ulong addr, int mem_idx)
2265
{
2266
    helper_check_align(addr, 7);
2267
#if !defined(CONFIG_USER_ONLY)
2268
    switch (mem_idx) {
2269
    case 0:
2270
        DT0 = ldfq_user(addr);
2271
        break;
2272
    case 1:
2273
        DT0 = ldfq_kernel(addr);
2274
        break;
2275
#ifdef TARGET_SPARC64
2276
    case 2:
2277
        DT0 = ldfq_hypv(addr);
2278
        break;
2279
#endif
2280
    default:
2281
        break;
2282
    }
2283
#else
2284
    ABI32_MASK(addr);
2285
    DT0 = ldfq_raw(addr);
2286
#endif
2287
}
2288

    
2289
void helper_ldqf(target_ulong addr, int mem_idx)
2290
{
2291
    // XXX add 128 bit load
2292
    CPU_QuadU u;
2293

    
2294
    helper_check_align(addr, 7);
2295
#if !defined(CONFIG_USER_ONLY)
2296
    switch (mem_idx) {
2297
    case 0:
2298
        u.ll.upper = ldq_user(addr);
2299
        u.ll.lower = ldq_user(addr + 8);
2300
        QT0 = u.q;
2301
        break;
2302
    case 1:
2303
        u.ll.upper = ldq_kernel(addr);
2304
        u.ll.lower = ldq_kernel(addr + 8);
2305
        QT0 = u.q;
2306
        break;
2307
#ifdef TARGET_SPARC64
2308
    case 2:
2309
        u.ll.upper = ldq_hypv(addr);
2310
        u.ll.lower = ldq_hypv(addr + 8);
2311
        QT0 = u.q;
2312
        break;
2313
#endif
2314
    default:
2315
        break;
2316
    }
2317
#else
2318
    ABI32_MASK(addr);
2319
    u.ll.upper = ldq_raw(addr);
2320
    u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2321
    QT0 = u.q;
2322
#endif
2323
}
2324

    
2325
void helper_stqf(target_ulong addr, int mem_idx)
2326
{
2327
    // XXX add 128 bit store
2328
    CPU_QuadU u;
2329

    
2330
    helper_check_align(addr, 7);
2331
#if !defined(CONFIG_USER_ONLY)
2332
    switch (mem_idx) {
2333
    case 0:
2334
        u.q = QT0;
2335
        stq_user(addr, u.ll.upper);
2336
        stq_user(addr + 8, u.ll.lower);
2337
        break;
2338
    case 1:
2339
        u.q = QT0;
2340
        stq_kernel(addr, u.ll.upper);
2341
        stq_kernel(addr + 8, u.ll.lower);
2342
        break;
2343
#ifdef TARGET_SPARC64
2344
    case 2:
2345
        u.q = QT0;
2346
        stq_hypv(addr, u.ll.upper);
2347
        stq_hypv(addr + 8, u.ll.lower);
2348
        break;
2349
#endif
2350
    default:
2351
        break;
2352
    }
2353
#else
2354
    u.q = QT0;
2355
    ABI32_MASK(addr);
2356
    stq_raw(addr, u.ll.upper);
2357
    stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2358
#endif
2359
}
2360

    
2361
void helper_ldfsr(void)
2362
{
2363
    int rnd_mode;
2364

    
2365
    PUT_FSR32(env, *((uint32_t *) &FT0));
2366
    switch (env->fsr & FSR_RD_MASK) {
2367
    case FSR_RD_NEAREST:
2368
        rnd_mode = float_round_nearest_even;
2369
        break;
2370
    default:
2371
    case FSR_RD_ZERO:
2372
        rnd_mode = float_round_to_zero;
2373
        break;
2374
    case FSR_RD_POS:
2375
        rnd_mode = float_round_up;
2376
        break;
2377
    case FSR_RD_NEG:
2378
        rnd_mode = float_round_down;
2379
        break;
2380
    }
2381
    set_float_rounding_mode(rnd_mode, &env->fp_status);
2382
}
2383

    
2384
void helper_stfsr(void)
2385
{
2386
    *((uint32_t *) &FT0) = GET_FSR32(env);
2387
}
2388

    
2389
void helper_debug(void)
2390
{
2391
    env->exception_index = EXCP_DEBUG;
2392
    cpu_loop_exit();
2393
}
2394

    
2395
#ifndef TARGET_SPARC64
2396
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2397
   handling ? */
2398
void helper_save(void)
2399
{
2400
    uint32_t cwp;
2401

    
2402
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
2403
    if (env->wim & (1 << cwp)) {
2404
        raise_exception(TT_WIN_OVF);
2405
    }
2406
    set_cwp(cwp);
2407
}
2408

    
2409
void helper_restore(void)
2410
{
2411
    uint32_t cwp;
2412

    
2413
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
2414
    if (env->wim & (1 << cwp)) {
2415
        raise_exception(TT_WIN_UNF);
2416
    }
2417
    set_cwp(cwp);
2418
}
2419

    
2420
void helper_wrpsr(target_ulong new_psr)
2421
{
2422
    if ((new_psr & PSR_CWP) >= NWINDOWS)
2423
        raise_exception(TT_ILL_INSN);
2424
    else
2425
        PUT_PSR(env, new_psr);
2426
}
2427

    
2428
target_ulong helper_rdpsr(void)
2429
{
2430
    return GET_PSR(env);
2431
}
2432

    
2433
#else
2434
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2435
   handling ? */
2436
void helper_save(void)
2437
{
2438
    uint32_t cwp;
2439

    
2440
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
2441
    if (env->cansave == 0) {
2442
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2443
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2444
                                    ((env->wstate & 0x7) << 2)));
2445
    } else {
2446
        if (env->cleanwin - env->canrestore == 0) {
2447
            // XXX Clean windows without trap
2448
            raise_exception(TT_CLRWIN);
2449
        } else {
2450
            env->cansave--;
2451
            env->canrestore++;
2452
            set_cwp(cwp);
2453
        }
2454
    }
2455
}
2456

    
2457
void helper_restore(void)
2458
{
2459
    uint32_t cwp;
2460

    
2461
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
2462
    if (env->canrestore == 0) {
2463
        raise_exception(TT_FILL | (env->otherwin != 0 ?
2464
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2465
                                   ((env->wstate & 0x7) << 2)));
2466
    } else {
2467
        env->cansave++;
2468
        env->canrestore--;
2469
        set_cwp(cwp);
2470
    }
2471
}
2472

    
2473
void helper_flushw(void)
2474
{
2475
    if (env->cansave != NWINDOWS - 2) {
2476
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2477
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2478
                                    ((env->wstate & 0x7) << 2)));
2479
    }
2480
}
2481

    
2482
void helper_saved(void)
2483
{
2484
    env->cansave++;
2485
    if (env->otherwin == 0)
2486
        env->canrestore--;
2487
    else
2488
        env->otherwin--;
2489
}
2490

    
2491
void helper_restored(void)
2492
{
2493
    env->canrestore++;
2494
    if (env->cleanwin < NWINDOWS - 1)
2495
        env->cleanwin++;
2496
    if (env->otherwin == 0)
2497
        env->cansave--;
2498
    else
2499
        env->otherwin--;
2500
}
2501

    
2502
target_ulong helper_rdccr(void)
2503
{
2504
    return GET_CCR(env);
2505
}
2506

    
2507
void helper_wrccr(target_ulong new_ccr)
2508
{
2509
    PUT_CCR(env, new_ccr);
2510
}
2511

    
2512
// CWP handling is reversed in V9, but we still use the V8 register
2513
// order.
2514
target_ulong helper_rdcwp(void)
2515
{
2516
    return GET_CWP64(env);
2517
}
2518

    
2519
void helper_wrcwp(target_ulong new_cwp)
2520
{
2521
    PUT_CWP64(env, new_cwp);
2522
}
2523

    
2524
// This function uses non-native bit order
2525
#define GET_FIELD(X, FROM, TO)                                  \
2526
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2527

    
2528
// This function uses the order in the manuals, i.e. bit 0 is 2^0
2529
#define GET_FIELD_SP(X, FROM, TO)               \
2530
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
2531

    
2532
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2533
{
2534
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2535
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2536
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2537
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2538
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2539
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2540
        (((pixel_addr >> 55) & 1) << 4) |
2541
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2542
        GET_FIELD_SP(pixel_addr, 11, 12);
2543
}
2544

    
2545
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2546
{
2547
    uint64_t tmp;
2548

    
2549
    tmp = addr + offset;
2550
    env->gsr &= ~7ULL;
2551
    env->gsr |= tmp & 7ULL;
2552
    return tmp & ~7ULL;
2553
}
2554

    
2555
target_ulong helper_popc(target_ulong val)
2556
{
2557
    return ctpop64(val);
2558
}
2559

    
2560
static inline uint64_t *get_gregset(uint64_t pstate)
2561
{
2562
    switch (pstate) {
2563
    default:
2564
    case 0:
2565
        return env->bgregs;
2566
    case PS_AG:
2567
        return env->agregs;
2568
    case PS_MG:
2569
        return env->mgregs;
2570
    case PS_IG:
2571
        return env->igregs;
2572
    }
2573
}
2574

    
2575
void change_pstate(uint64_t new_pstate)
2576
{
2577
    uint64_t pstate_regs, new_pstate_regs;
2578
    uint64_t *src, *dst;
2579

    
2580
    pstate_regs = env->pstate & 0xc01;
2581
    new_pstate_regs = new_pstate & 0xc01;
2582
    if (new_pstate_regs != pstate_regs) {
2583
        // Switch global register bank
2584
        src = get_gregset(new_pstate_regs);
2585
        dst = get_gregset(pstate_regs);
2586
        memcpy32(dst, env->gregs);
2587
        memcpy32(env->gregs, src);
2588
    }
2589
    env->pstate = new_pstate;
2590
}
2591

    
2592
void helper_wrpstate(target_ulong new_state)
2593
{
2594
    change_pstate(new_state & 0xf3f);
2595
}
2596

    
2597
void helper_done(void)
2598
{
2599
    env->tl--;
2600
    env->tsptr = &env->ts[env->tl];
2601
    env->pc = env->tsptr->tpc;
2602
    env->npc = env->tsptr->tnpc + 4;
2603
    PUT_CCR(env, env->tsptr->tstate >> 32);
2604
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2605
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2606
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2607
}
2608

    
2609
void helper_retry(void)
2610
{
2611
    env->tl--;
2612
    env->tsptr = &env->ts[env->tl];
2613
    env->pc = env->tsptr->tpc;
2614
    env->npc = env->tsptr->tnpc;
2615
    PUT_CCR(env, env->tsptr->tstate >> 32);
2616
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2617
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2618
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2619
}
2620
#endif
2621

    
2622
void cpu_set_cwp(CPUState *env1, int new_cwp)
2623
{
2624
    /* put the modified wrap registers at their proper location */
2625
    if (env1->cwp == (NWINDOWS - 1))
2626
        memcpy32(env1->regbase, env1->regbase + NWINDOWS * 16);
2627
    env1->cwp = new_cwp;
2628
    /* put the wrap registers at their temporary location */
2629
    if (new_cwp == (NWINDOWS - 1))
2630
        memcpy32(env1->regbase + NWINDOWS * 16, env1->regbase);
2631
    env1->regwptr = env1->regbase + (new_cwp * 16);
2632
    REGWPTR = env1->regwptr;
2633
}
2634

    
2635
void set_cwp(int new_cwp)
2636
{
2637
    cpu_set_cwp(env, new_cwp);
2638
}
2639

    
2640
void helper_flush(target_ulong addr)
2641
{
2642
    addr &= ~7;
2643
    tb_invalidate_page_range(addr, addr + 8);
2644
}
2645

    
2646
#if !defined(CONFIG_USER_ONLY)
2647

    
2648
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2649
                                void *retaddr);
2650

    
2651
#define MMUSUFFIX _mmu
2652
#define ALIGNED_ONLY
2653

    
2654
#define SHIFT 0
2655
#include "softmmu_template.h"
2656

    
2657
#define SHIFT 1
2658
#include "softmmu_template.h"
2659

    
2660
#define SHIFT 2
2661
#include "softmmu_template.h"
2662

    
2663
#define SHIFT 3
2664
#include "softmmu_template.h"
2665

    
2666
/* XXX: make it generic ? */
2667
static void cpu_restore_state2(void *retaddr)
2668
{
2669
    TranslationBlock *tb;
2670
    unsigned long pc;
2671

    
2672
    if (retaddr) {
2673
        /* now we have a real cpu fault */
2674
        pc = (unsigned long)retaddr;
2675
        tb = tb_find_pc(pc);
2676
        if (tb) {
2677
            /* the PC is inside the translated code. It means that we have
2678
               a virtual CPU fault */
2679
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2680
        }
2681
    }
2682
}
2683

    
2684
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2685
                                void *retaddr)
2686
{
2687
#ifdef DEBUG_UNALIGNED
2688
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2689
           "\n", addr, env->pc);
2690
#endif
2691
    cpu_restore_state2(retaddr);
2692
    raise_exception(TT_UNALIGNED);
2693
}
2694

    
2695
/* try to fill the TLB and return an exception if error. If retaddr is
2696
   NULL, it means that the function was called in C code (i.e. not
2697
   from generated code or from helper.c) */
2698
/* XXX: fix it to restore all registers */
2699
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2700
{
2701
    int ret;
2702
    CPUState *saved_env;
2703

    
2704
    /* XXX: hack to restore env in all cases, even if not called from
2705
       generated code */
2706
    saved_env = env;
2707
    env = cpu_single_env;
2708

    
2709
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2710
    if (ret) {
2711
        cpu_restore_state2(retaddr);
2712
        cpu_loop_exit();
2713
    }
2714
    env = saved_env;
2715
}
2716

    
2717
#endif
2718

    
2719
#ifndef TARGET_SPARC64
2720
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2721
                          int is_asi)
2722
{
2723
    CPUState *saved_env;
2724

    
2725
    /* XXX: hack to restore env in all cases, even if not called from
2726
       generated code */
2727
    saved_env = env;
2728
    env = cpu_single_env;
2729
#ifdef DEBUG_UNASSIGNED
2730
    if (is_asi)
2731
        printf("Unassigned mem %s access to " TARGET_FMT_plx
2732
               " asi 0x%02x from " TARGET_FMT_lx "\n",
2733
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2734
               env->pc);
2735
    else
2736
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2737
               TARGET_FMT_lx "\n",
2738
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2739
#endif
2740
    if (env->mmuregs[3]) /* Fault status register */
2741
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
2742
    if (is_asi)
2743
        env->mmuregs[3] |= 1 << 16;
2744
    if (env->psrs)
2745
        env->mmuregs[3] |= 1 << 5;
2746
    if (is_exec)
2747
        env->mmuregs[3] |= 1 << 6;
2748
    if (is_write)
2749
        env->mmuregs[3] |= 1 << 7;
2750
    env->mmuregs[3] |= (5 << 2) | 2;
2751
    env->mmuregs[4] = addr; /* Fault address register */
2752
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2753
        if (is_exec)
2754
            raise_exception(TT_CODE_ACCESS);
2755
        else
2756
            raise_exception(TT_DATA_ACCESS);
2757
    }
2758
    env = saved_env;
2759
}
2760
#else
2761
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2762
                          int is_asi)
2763
{
2764
#ifdef DEBUG_UNASSIGNED
2765
    CPUState *saved_env;
2766

    
2767
    /* XXX: hack to restore env in all cases, even if not called from
2768
       generated code */
2769
    saved_env = env;
2770
    env = cpu_single_env;
2771
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2772
           "\n", addr, env->pc);
2773
    env = saved_env;
2774
#endif
2775
    if (is_exec)
2776
        raise_exception(TT_CODE_ACCESS);
2777
    else
2778
        raise_exception(TT_DATA_ACCESS);
2779
}
2780
#endif
2781