Statistics
| Branch: | Revision:

root / tests / test-i386.c @ f34f1fed

History | View | Annotate | Download (70.2 kB)

1
/*
2
 *  x86 CPU test
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#define _GNU_SOURCE
20
#include <stdlib.h>
21
#include <stdio.h>
22
#include <string.h>
23
#include <inttypes.h>
24
#include <math.h>
25
#include <signal.h>
26
#include <setjmp.h>
27
#include <errno.h>
28
#include <sys/ucontext.h>
29
#include <sys/mman.h>
30

    
31
#if !defined(__x86_64__)
32
//#define TEST_VM86
33
#define TEST_SEGS
34
#endif
35
//#define LINUX_VM86_IOPL_FIX
36
//#define TEST_P4_FLAGS
37
#ifdef __SSE__
38
#define TEST_SSE
39
#define TEST_CMOV  1
40
#define TEST_FCOMI 1
41
#else
42
#undef TEST_SSE
43
#define TEST_CMOV  1
44
#define TEST_FCOMI 1
45
#endif
46

    
47
#if defined(__x86_64__)
48
#define FMT64X "%016lx"
49
#define FMTLX "%016lx"
50
#define X86_64_ONLY(x) x
51
#else
52
#define FMT64X "%016" PRIx64
53
#define FMTLX "%08lx"
54
#define X86_64_ONLY(x)
55
#endif
56

    
57
#ifdef TEST_VM86
58
#include <asm/vm86.h>
59
#endif
60

    
61
#define xglue(x, y) x ## y
62
#define glue(x, y) xglue(x, y)
63
#define stringify(s)        tostring(s)
64
#define tostring(s)        #s
65

    
66
#define CC_C           0x0001
67
#define CC_P         0x0004
68
#define CC_A        0x0010
69
#define CC_Z        0x0040
70
#define CC_S    0x0080
71
#define CC_O    0x0800
72

    
73
#define __init_call        __attribute__ ((unused,__section__ ("initcall")))
74

    
75
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
76

    
77
#if defined(__x86_64__)
78
static inline long i2l(long v)
79
{
80
    return v | ((v ^ 0xabcd) << 32);
81
}
82
#else
83
static inline long i2l(long v)
84
{
85
    return v;
86
}
87
#endif
88

    
89
#define OP add
90
#include "test-i386.h"
91

    
92
#define OP sub
93
#include "test-i386.h"
94

    
95
#define OP xor
96
#include "test-i386.h"
97

    
98
#define OP and
99
#include "test-i386.h"
100

    
101
#define OP or
102
#include "test-i386.h"
103

    
104
#define OP cmp
105
#include "test-i386.h"
106

    
107
#define OP adc
108
#define OP_CC
109
#include "test-i386.h"
110

    
111
#define OP sbb
112
#define OP_CC
113
#include "test-i386.h"
114

    
115
#define OP inc
116
#define OP_CC
117
#define OP1
118
#include "test-i386.h"
119

    
120
#define OP dec
121
#define OP_CC
122
#define OP1
123
#include "test-i386.h"
124

    
125
#define OP neg
126
#define OP_CC
127
#define OP1
128
#include "test-i386.h"
129

    
130
#define OP not
131
#define OP_CC
132
#define OP1
133
#include "test-i386.h"
134

    
135
#undef CC_MASK
136
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
137

    
138
#define OP shl
139
#include "test-i386-shift.h"
140

    
141
#define OP shr
142
#include "test-i386-shift.h"
143

    
144
#define OP sar
145
#include "test-i386-shift.h"
146

    
147
#define OP rol
148
#include "test-i386-shift.h"
149

    
150
#define OP ror
151
#include "test-i386-shift.h"
152

    
153
#define OP rcr
154
#define OP_CC
155
#include "test-i386-shift.h"
156

    
157
#define OP rcl
158
#define OP_CC
159
#include "test-i386-shift.h"
160

    
161
#define OP shld
162
#define OP_SHIFTD
163
#define OP_NOBYTE
164
#include "test-i386-shift.h"
165

    
166
#define OP shrd
167
#define OP_SHIFTD
168
#define OP_NOBYTE
169
#include "test-i386-shift.h"
170

    
171
/* XXX: should be more precise ? */
172
#undef CC_MASK
173
#define CC_MASK (CC_C)
174

    
175
#define OP bt
176
#define OP_NOBYTE
177
#include "test-i386-shift.h"
178

    
179
#define OP bts
180
#define OP_NOBYTE
181
#include "test-i386-shift.h"
182

    
183
#define OP btr
184
#define OP_NOBYTE
185
#include "test-i386-shift.h"
186

    
187
#define OP btc
188
#define OP_NOBYTE
189
#include "test-i386-shift.h"
190

    
191
/* lea test (modrm support) */
192
#define TEST_LEAQ(STR)\
193
{\
194
    asm("lea " STR ", %0"\
195
        : "=r" (res)\
196
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
197
    printf("lea %s = " FMTLX "\n", STR, res);\
198
}
199

    
200
#define TEST_LEA(STR)\
201
{\
202
    asm("lea " STR ", %0"\
203
        : "=r" (res)\
204
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
205
    printf("lea %s = " FMTLX "\n", STR, res);\
206
}
207

    
208
#define TEST_LEA16(STR)\
209
{\
210
    asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
211
        : "=wq" (res)\
212
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
213
    printf("lea %s = %08lx\n", STR, res);\
214
}
215

    
216

    
217
void test_lea(void)
218
{
219
    long eax, ebx, ecx, edx, esi, edi, res;
220
    eax = i2l(0x0001);
221
    ebx = i2l(0x0002);
222
    ecx = i2l(0x0004);
223
    edx = i2l(0x0008);
224
    esi = i2l(0x0010);
225
    edi = i2l(0x0020);
226

    
227
    TEST_LEA("0x4000");
228

    
229
    TEST_LEA("(%%eax)");
230
    TEST_LEA("(%%ebx)");
231
    TEST_LEA("(%%ecx)");
232
    TEST_LEA("(%%edx)");
233
    TEST_LEA("(%%esi)");
234
    TEST_LEA("(%%edi)");
235

    
236
    TEST_LEA("0x40(%%eax)");
237
    TEST_LEA("0x40(%%ebx)");
238
    TEST_LEA("0x40(%%ecx)");
239
    TEST_LEA("0x40(%%edx)");
240
    TEST_LEA("0x40(%%esi)");
241
    TEST_LEA("0x40(%%edi)");
242

    
243
    TEST_LEA("0x4000(%%eax)");
244
    TEST_LEA("0x4000(%%ebx)");
245
    TEST_LEA("0x4000(%%ecx)");
246
    TEST_LEA("0x4000(%%edx)");
247
    TEST_LEA("0x4000(%%esi)");
248
    TEST_LEA("0x4000(%%edi)");
249

    
250
    TEST_LEA("(%%eax, %%ecx)");
251
    TEST_LEA("(%%ebx, %%edx)");
252
    TEST_LEA("(%%ecx, %%ecx)");
253
    TEST_LEA("(%%edx, %%ecx)");
254
    TEST_LEA("(%%esi, %%ecx)");
255
    TEST_LEA("(%%edi, %%ecx)");
256

    
257
    TEST_LEA("0x40(%%eax, %%ecx)");
258
    TEST_LEA("0x4000(%%ebx, %%edx)");
259

    
260
    TEST_LEA("(%%ecx, %%ecx, 2)");
261
    TEST_LEA("(%%edx, %%ecx, 4)");
262
    TEST_LEA("(%%esi, %%ecx, 8)");
263

    
264
    TEST_LEA("(,%%eax, 2)");
265
    TEST_LEA("(,%%ebx, 4)");
266
    TEST_LEA("(,%%ecx, 8)");
267

    
268
    TEST_LEA("0x40(,%%eax, 2)");
269
    TEST_LEA("0x40(,%%ebx, 4)");
270
    TEST_LEA("0x40(,%%ecx, 8)");
271

    
272

    
273
    TEST_LEA("-10(%%ecx, %%ecx, 2)");
274
    TEST_LEA("-10(%%edx, %%ecx, 4)");
275
    TEST_LEA("-10(%%esi, %%ecx, 8)");
276

    
277
    TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
278
    TEST_LEA("0x4000(%%edx, %%ecx, 4)");
279
    TEST_LEA("0x4000(%%esi, %%ecx, 8)");
280

    
281
#if defined(__x86_64__)
282
    TEST_LEAQ("0x4000");
283
    TEST_LEAQ("0x4000(%%rip)");
284

    
285
    TEST_LEAQ("(%%rax)");
286
    TEST_LEAQ("(%%rbx)");
287
    TEST_LEAQ("(%%rcx)");
288
    TEST_LEAQ("(%%rdx)");
289
    TEST_LEAQ("(%%rsi)");
290
    TEST_LEAQ("(%%rdi)");
291

    
292
    TEST_LEAQ("0x40(%%rax)");
293
    TEST_LEAQ("0x40(%%rbx)");
294
    TEST_LEAQ("0x40(%%rcx)");
295
    TEST_LEAQ("0x40(%%rdx)");
296
    TEST_LEAQ("0x40(%%rsi)");
297
    TEST_LEAQ("0x40(%%rdi)");
298

    
299
    TEST_LEAQ("0x4000(%%rax)");
300
    TEST_LEAQ("0x4000(%%rbx)");
301
    TEST_LEAQ("0x4000(%%rcx)");
302
    TEST_LEAQ("0x4000(%%rdx)");
303
    TEST_LEAQ("0x4000(%%rsi)");
304
    TEST_LEAQ("0x4000(%%rdi)");
305

    
306
    TEST_LEAQ("(%%rax, %%rcx)");
307
    TEST_LEAQ("(%%rbx, %%rdx)");
308
    TEST_LEAQ("(%%rcx, %%rcx)");
309
    TEST_LEAQ("(%%rdx, %%rcx)");
310
    TEST_LEAQ("(%%rsi, %%rcx)");
311
    TEST_LEAQ("(%%rdi, %%rcx)");
312

    
313
    TEST_LEAQ("0x40(%%rax, %%rcx)");
314
    TEST_LEAQ("0x4000(%%rbx, %%rdx)");
315

    
316
    TEST_LEAQ("(%%rcx, %%rcx, 2)");
317
    TEST_LEAQ("(%%rdx, %%rcx, 4)");
318
    TEST_LEAQ("(%%rsi, %%rcx, 8)");
319

    
320
    TEST_LEAQ("(,%%rax, 2)");
321
    TEST_LEAQ("(,%%rbx, 4)");
322
    TEST_LEAQ("(,%%rcx, 8)");
323

    
324
    TEST_LEAQ("0x40(,%%rax, 2)");
325
    TEST_LEAQ("0x40(,%%rbx, 4)");
326
    TEST_LEAQ("0x40(,%%rcx, 8)");
327

    
328

    
329
    TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
330
    TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
331
    TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
332

    
333
    TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
334
    TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
335
    TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
336
#else
337
    /* limited 16 bit addressing test */
338
    TEST_LEA16("0x4000");
339
    TEST_LEA16("(%%bx)");
340
    TEST_LEA16("(%%si)");
341
    TEST_LEA16("(%%di)");
342
    TEST_LEA16("0x40(%%bx)");
343
    TEST_LEA16("0x40(%%si)");
344
    TEST_LEA16("0x40(%%di)");
345
    TEST_LEA16("0x4000(%%bx)");
346
    TEST_LEA16("0x4000(%%si)");
347
    TEST_LEA16("(%%bx,%%si)");
348
    TEST_LEA16("(%%bx,%%di)");
349
    TEST_LEA16("0x40(%%bx,%%si)");
350
    TEST_LEA16("0x40(%%bx,%%di)");
351
    TEST_LEA16("0x4000(%%bx,%%si)");
352
    TEST_LEA16("0x4000(%%bx,%%di)");
353
#endif
354
}
355

    
356
#define TEST_JCC(JCC, v1, v2)\
357
{\
358
    int res;\
359
    asm("movl $1, %0\n\t"\
360
        "cmpl %2, %1\n\t"\
361
        "j" JCC " 1f\n\t"\
362
        "movl $0, %0\n\t"\
363
        "1:\n\t"\
364
        : "=r" (res)\
365
        : "r" (v1), "r" (v2));\
366
    printf("%-10s %d\n", "j" JCC, res);\
367
\
368
    asm("movl $0, %0\n\t"\
369
        "cmpl %2, %1\n\t"\
370
        "set" JCC " %b0\n\t"\
371
        : "=r" (res)\
372
        : "r" (v1), "r" (v2));\
373
    printf("%-10s %d\n", "set" JCC, res);\
374
 if (TEST_CMOV) {\
375
    long val = i2l(1);\
376
    long res = i2l(0x12345678);\
377
X86_64_ONLY(\
378
    asm("cmpl %2, %1\n\t"\
379
        "cmov" JCC "q %3, %0\n\t"\
380
        : "=r" (res)\
381
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
382
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
383
    asm("cmpl %2, %1\n\t"\
384
        "cmov" JCC "l %k3, %k0\n\t"\
385
        : "=r" (res)\
386
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
387
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
388
    asm("cmpl %2, %1\n\t"\
389
        "cmov" JCC "w %w3, %w0\n\t"\
390
        : "=r" (res)\
391
        : "r" (v1), "r" (v2), "r" (1), "0" (res));\
392
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
393
 } \
394
}
395

    
396
/* various jump tests */
397
void test_jcc(void)
398
{
399
    TEST_JCC("ne", 1, 1);
400
    TEST_JCC("ne", 1, 0);
401

    
402
    TEST_JCC("e", 1, 1);
403
    TEST_JCC("e", 1, 0);
404

    
405
    TEST_JCC("l", 1, 1);
406
    TEST_JCC("l", 1, 0);
407
    TEST_JCC("l", 1, -1);
408

    
409
    TEST_JCC("le", 1, 1);
410
    TEST_JCC("le", 1, 0);
411
    TEST_JCC("le", 1, -1);
412

    
413
    TEST_JCC("ge", 1, 1);
414
    TEST_JCC("ge", 1, 0);
415
    TEST_JCC("ge", -1, 1);
416

    
417
    TEST_JCC("g", 1, 1);
418
    TEST_JCC("g", 1, 0);
419
    TEST_JCC("g", 1, -1);
420

    
421
    TEST_JCC("b", 1, 1);
422
    TEST_JCC("b", 1, 0);
423
    TEST_JCC("b", 1, -1);
424

    
425
    TEST_JCC("be", 1, 1);
426
    TEST_JCC("be", 1, 0);
427
    TEST_JCC("be", 1, -1);
428

    
429
    TEST_JCC("ae", 1, 1);
430
    TEST_JCC("ae", 1, 0);
431
    TEST_JCC("ae", 1, -1);
432

    
433
    TEST_JCC("a", 1, 1);
434
    TEST_JCC("a", 1, 0);
435
    TEST_JCC("a", 1, -1);
436

    
437

    
438
    TEST_JCC("p", 1, 1);
439
    TEST_JCC("p", 1, 0);
440

    
441
    TEST_JCC("np", 1, 1);
442
    TEST_JCC("np", 1, 0);
443

    
444
    TEST_JCC("o", 0x7fffffff, 0);
445
    TEST_JCC("o", 0x7fffffff, -1);
446

    
447
    TEST_JCC("no", 0x7fffffff, 0);
448
    TEST_JCC("no", 0x7fffffff, -1);
449

    
450
    TEST_JCC("s", 0, 1);
451
    TEST_JCC("s", 0, -1);
452
    TEST_JCC("s", 0, 0);
453

    
454
    TEST_JCC("ns", 0, 1);
455
    TEST_JCC("ns", 0, -1);
456
    TEST_JCC("ns", 0, 0);
457
}
458

    
459
#define TEST_LOOP(insn) \
460
{\
461
    for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
462
        ecx = ecx_vals[i];\
463
        for(zf = 0; zf < 2; zf++) {\
464
    asm("test %2, %2\n\t"\
465
        "movl $1, %0\n\t"\
466
          insn " 1f\n\t" \
467
        "movl $0, %0\n\t"\
468
        "1:\n\t"\
469
        : "=a" (res)\
470
        : "c" (ecx), "b" (!zf)); \
471
    printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res);      \
472
        }\
473
   }\
474
}
475

    
476
void test_loop(void)
477
{
478
    long ecx, zf;
479
    const long ecx_vals[] = {
480
        0,
481
        1,
482
        0x10000,
483
        0x10001,
484
#if defined(__x86_64__)
485
        0x100000000L,
486
        0x100000001L,
487
#endif
488
    };
489
    int i, res;
490

    
491
#if !defined(__x86_64__)
492
    TEST_LOOP("jcxz");
493
    TEST_LOOP("loopw");
494
    TEST_LOOP("loopzw");
495
    TEST_LOOP("loopnzw");
496
#endif
497

    
498
    TEST_LOOP("jecxz");
499
    TEST_LOOP("loopl");
500
    TEST_LOOP("loopzl");
501
    TEST_LOOP("loopnzl");
502
}
503

    
504
#undef CC_MASK
505
#ifdef TEST_P4_FLAGS
506
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
507
#else
508
#define CC_MASK (CC_O | CC_C)
509
#endif
510

    
511
#define OP mul
512
#include "test-i386-muldiv.h"
513

    
514
#define OP imul
515
#include "test-i386-muldiv.h"
516

    
517
void test_imulw2(long op0, long op1)
518
{
519
    long res, s1, s0, flags;
520
    s0 = op0;
521
    s1 = op1;
522
    res = s0;
523
    flags = 0;
524
    asm volatile ("push %4\n\t"
525
         "popf\n\t"
526
         "imulw %w2, %w0\n\t"
527
         "pushf\n\t"
528
         "pop %1\n\t"
529
         : "=q" (res), "=g" (flags)
530
         : "q" (s1), "0" (res), "1" (flags));
531
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
532
           "imulw", s0, s1, res, flags & CC_MASK);
533
}
534

    
535
void test_imull2(long op0, long op1)
536
{
537
    long res, s1, s0, flags;
538
    s0 = op0;
539
    s1 = op1;
540
    res = s0;
541
    flags = 0;
542
    asm volatile ("push %4\n\t"
543
         "popf\n\t"
544
         "imull %k2, %k0\n\t"
545
         "pushf\n\t"
546
         "pop %1\n\t"
547
         : "=q" (res), "=g" (flags)
548
         : "q" (s1), "0" (res), "1" (flags));
549
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
550
           "imull", s0, s1, res, flags & CC_MASK);
551
}
552

    
553
#if defined(__x86_64__)
554
void test_imulq2(long op0, long op1)
555
{
556
    long res, s1, s0, flags;
557
    s0 = op0;
558
    s1 = op1;
559
    res = s0;
560
    flags = 0;
561
    asm volatile ("push %4\n\t"
562
         "popf\n\t"
563
         "imulq %2, %0\n\t"
564
         "pushf\n\t"
565
         "pop %1\n\t"
566
         : "=q" (res), "=g" (flags)
567
         : "q" (s1), "0" (res), "1" (flags));
568
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
569
           "imulq", s0, s1, res, flags & CC_MASK);
570
}
571
#endif
572

    
573
#define TEST_IMUL_IM(size, rsize, op0, op1)\
574
{\
575
    long res, flags, s1;\
576
    flags = 0;\
577
    res = 0;\
578
    s1 = op1;\
579
    asm volatile ("push %3\n\t"\
580
         "popf\n\t"\
581
         "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
582
         "pushf\n\t"\
583
         "pop %1\n\t"\
584
         : "=r" (res), "=g" (flags)\
585
         : "r" (s1), "1" (flags), "0" (res));\
586
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
587
           "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
588
}
589

    
590

    
591
#undef CC_MASK
592
#define CC_MASK (0)
593

    
594
#define OP div
595
#include "test-i386-muldiv.h"
596

    
597
#define OP idiv
598
#include "test-i386-muldiv.h"
599

    
600
void test_mul(void)
601
{
602
    test_imulb(0x1234561d, 4);
603
    test_imulb(3, -4);
604
    test_imulb(0x80, 0x80);
605
    test_imulb(0x10, 0x10);
606

    
607
    test_imulw(0, 0x1234001d, 45);
608
    test_imulw(0, 23, -45);
609
    test_imulw(0, 0x8000, 0x8000);
610
    test_imulw(0, 0x100, 0x100);
611

    
612
    test_imull(0, 0x1234001d, 45);
613
    test_imull(0, 23, -45);
614
    test_imull(0, 0x80000000, 0x80000000);
615
    test_imull(0, 0x10000, 0x10000);
616

    
617
    test_mulb(0x1234561d, 4);
618
    test_mulb(3, -4);
619
    test_mulb(0x80, 0x80);
620
    test_mulb(0x10, 0x10);
621

    
622
    test_mulw(0, 0x1234001d, 45);
623
    test_mulw(0, 23, -45);
624
    test_mulw(0, 0x8000, 0x8000);
625
    test_mulw(0, 0x100, 0x100);
626

    
627
    test_mull(0, 0x1234001d, 45);
628
    test_mull(0, 23, -45);
629
    test_mull(0, 0x80000000, 0x80000000);
630
    test_mull(0, 0x10000, 0x10000);
631

    
632
    test_imulw2(0x1234001d, 45);
633
    test_imulw2(23, -45);
634
    test_imulw2(0x8000, 0x8000);
635
    test_imulw2(0x100, 0x100);
636

    
637
    test_imull2(0x1234001d, 45);
638
    test_imull2(23, -45);
639
    test_imull2(0x80000000, 0x80000000);
640
    test_imull2(0x10000, 0x10000);
641

    
642
    TEST_IMUL_IM("w", "w", 45, 0x1234);
643
    TEST_IMUL_IM("w", "w", -45, 23);
644
    TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
645
    TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
646

    
647
    TEST_IMUL_IM("l", "k", 45, 0x1234);
648
    TEST_IMUL_IM("l", "k", -45, 23);
649
    TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
650
    TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
651

    
652
    test_idivb(0x12341678, 0x127e);
653
    test_idivb(0x43210123, -5);
654
    test_idivb(0x12340004, -1);
655

    
656
    test_idivw(0, 0x12345678, 12347);
657
    test_idivw(0, -23223, -45);
658
    test_idivw(0, 0x12348000, -1);
659
    test_idivw(0x12343, 0x12345678, 0x81238567);
660

    
661
    test_idivl(0, 0x12345678, 12347);
662
    test_idivl(0, -233223, -45);
663
    test_idivl(0, 0x80000000, -1);
664
    test_idivl(0x12343, 0x12345678, 0x81234567);
665

    
666
    test_divb(0x12341678, 0x127e);
667
    test_divb(0x43210123, -5);
668
    test_divb(0x12340004, -1);
669

    
670
    test_divw(0, 0x12345678, 12347);
671
    test_divw(0, -23223, -45);
672
    test_divw(0, 0x12348000, -1);
673
    test_divw(0x12343, 0x12345678, 0x81238567);
674

    
675
    test_divl(0, 0x12345678, 12347);
676
    test_divl(0, -233223, -45);
677
    test_divl(0, 0x80000000, -1);
678
    test_divl(0x12343, 0x12345678, 0x81234567);
679

    
680
#if defined(__x86_64__)
681
    test_imulq(0, 0x1234001d1234001d, 45);
682
    test_imulq(0, 23, -45);
683
    test_imulq(0, 0x8000000000000000, 0x8000000000000000);
684
    test_imulq(0, 0x100000000, 0x100000000);
685

    
686
    test_mulq(0, 0x1234001d1234001d, 45);
687
    test_mulq(0, 23, -45);
688
    test_mulq(0, 0x8000000000000000, 0x8000000000000000);
689
    test_mulq(0, 0x100000000, 0x100000000);
690

    
691
    test_imulq2(0x1234001d1234001d, 45);
692
    test_imulq2(23, -45);
693
    test_imulq2(0x8000000000000000, 0x8000000000000000);
694
    test_imulq2(0x100000000, 0x100000000);
695

    
696
    TEST_IMUL_IM("q", "", 45, 0x12341234);
697
    TEST_IMUL_IM("q", "", -45, 23);
698
    TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
699
    TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
700

    
701
    test_idivq(0, 0x12345678abcdef, 12347);
702
    test_idivq(0, -233223, -45);
703
    test_idivq(0, 0x8000000000000000, -1);
704
    test_idivq(0x12343, 0x12345678, 0x81234567);
705

    
706
    test_divq(0, 0x12345678abcdef, 12347);
707
    test_divq(0, -233223, -45);
708
    test_divq(0, 0x8000000000000000, -1);
709
    test_divq(0x12343, 0x12345678, 0x81234567);
710
#endif
711
}
712

    
713
#define TEST_BSX(op, size, op0)\
714
{\
715
    long res, val, resz;\
716
    val = op0;\
717
    asm("xor %1, %1\n"\
718
        "mov $0x12345678, %0\n"\
719
        #op " %" size "2, %" size "0 ; setz %b1" \
720
        : "=&r" (res), "=&q" (resz)\
721
        : "r" (val));\
722
    printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
723
}
724

    
725
void test_bsx(void)
726
{
727
    TEST_BSX(bsrw, "w", 0);
728
    TEST_BSX(bsrw, "w", 0x12340128);
729
    TEST_BSX(bsfw, "w", 0);
730
    TEST_BSX(bsfw, "w", 0x12340128);
731
    TEST_BSX(bsrl, "k", 0);
732
    TEST_BSX(bsrl, "k", 0x00340128);
733
    TEST_BSX(bsfl, "k", 0);
734
    TEST_BSX(bsfl, "k", 0x00340128);
735
#if defined(__x86_64__)
736
    TEST_BSX(bsrq, "", 0);
737
    TEST_BSX(bsrq, "", 0x003401281234);
738
    TEST_BSX(bsfq, "", 0);
739
    TEST_BSX(bsfq, "", 0x003401281234);
740
#endif
741
}
742

    
743
/**********************************************/
744

    
745
union float64u {
746
    double d;
747
    uint64_t l;
748
};
749

    
750
union float64u q_nan = { .l = 0xFFF8000000000000LL };
751
union float64u s_nan = { .l = 0xFFF0000000000000LL };
752

    
753
void test_fops(double a, double b)
754
{
755
    printf("a=%f b=%f a+b=%f\n", a, b, a + b);
756
    printf("a=%f b=%f a-b=%f\n", a, b, a - b);
757
    printf("a=%f b=%f a*b=%f\n", a, b, a * b);
758
    printf("a=%f b=%f a/b=%f\n", a, b, a / b);
759
    printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
760
    printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
761
    printf("a=%f sin(a)=%f\n", a, sin(a));
762
    printf("a=%f cos(a)=%f\n", a, cos(a));
763
    printf("a=%f tan(a)=%f\n", a, tan(a));
764
    printf("a=%f log(a)=%f\n", a, log(a));
765
    printf("a=%f exp(a)=%f\n", a, exp(a));
766
    printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
767
    /* just to test some op combining */
768
    printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
769
    printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
770
    printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
771

    
772
}
773

    
774
void fpu_clear_exceptions(void)
775
{
776
    struct __attribute__((packed)) {
777
        uint16_t fpuc;
778
        uint16_t dummy1;
779
        uint16_t fpus;
780
        uint16_t dummy2;
781
        uint16_t fptag;
782
        uint16_t dummy3;
783
        uint32_t ignored[4];
784
        long double fpregs[8];
785
    } float_env32;
786

    
787
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
788
    float_env32.fpus &= ~0x7f;
789
    asm volatile ("fldenv %0\n" : : "m" (float_env32));
790
}
791

    
792
/* XXX: display exception bits when supported */
793
#define FPUS_EMASK 0x0000
794
//#define FPUS_EMASK 0x007f
795

    
796
void test_fcmp(double a, double b)
797
{
798
    long eflags, fpus;
799

    
800
    fpu_clear_exceptions();
801
    asm("fcom %2\n"
802
        "fstsw %%ax\n"
803
        : "=a" (fpus)
804
        : "t" (a), "u" (b));
805
    printf("fcom(%f %f)=%04lx \n",
806
           a, b, fpus & (0x4500 | FPUS_EMASK));
807
    fpu_clear_exceptions();
808
    asm("fucom %2\n"
809
        "fstsw %%ax\n"
810
        : "=a" (fpus)
811
        : "t" (a), "u" (b));
812
    printf("fucom(%f %f)=%04lx\n",
813
           a, b, fpus & (0x4500 | FPUS_EMASK));
814
    if (TEST_FCOMI) {
815
        /* test f(u)comi instruction */
816
        fpu_clear_exceptions();
817
        asm("fcomi %3, %2\n"
818
            "fstsw %%ax\n"
819
            "pushf\n"
820
            "pop %0\n"
821
            : "=r" (eflags), "=a" (fpus)
822
            : "t" (a), "u" (b));
823
        printf("fcomi(%f %f)=%04lx %02lx\n",
824
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
825
        fpu_clear_exceptions();
826
        asm("fucomi %3, %2\n"
827
            "fstsw %%ax\n"
828
            "pushf\n"
829
            "pop %0\n"
830
            : "=r" (eflags), "=a" (fpus)
831
            : "t" (a), "u" (b));
832
        printf("fucomi(%f %f)=%04lx %02lx\n",
833
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
834
    }
835
    fpu_clear_exceptions();
836
    asm volatile("fxam\n"
837
                 "fstsw %%ax\n"
838
                 : "=a" (fpus)
839
                 : "t" (a));
840
    printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
841
    fpu_clear_exceptions();
842
}
843

    
844
void test_fcvt(double a)
845
{
846
    float fa;
847
    long double la;
848
    int16_t fpuc;
849
    int i;
850
    int64_t lla;
851
    int ia;
852
    int16_t wa;
853
    double ra;
854

    
855
    fa = a;
856
    la = a;
857
    printf("(float)%f = %f\n", a, fa);
858
    printf("(long double)%f = %Lf\n", a, la);
859
    printf("a=" FMT64X "\n", *(uint64_t *)&a);
860
    printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
861
           *(unsigned short *)((char *)(&la) + 8));
862

    
863
    /* test all roundings */
864
    asm volatile ("fstcw %0" : "=m" (fpuc));
865
    for(i=0;i<4;i++) {
866
        uint16_t val16;
867
        val16 = (fpuc & ~0x0c00) | (i << 10);
868
        asm volatile ("fldcw %0" : : "m" (val16));
869
        asm volatile ("fist %0" : "=m" (wa) : "t" (a));
870
        asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
871
        asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
872
        asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
873
        asm volatile ("fldcw %0" : : "m" (fpuc));
874
        printf("(short)a = %d\n", wa);
875
        printf("(int)a = %d\n", ia);
876
        printf("(int64_t)a = " FMT64X "\n", lla);
877
        printf("rint(a) = %f\n", ra);
878
    }
879
}
880

    
881
#define TEST(N) \
882
    asm("fld" #N : "=t" (a)); \
883
    printf("fld" #N "= %f\n", a);
884

    
885
void test_fconst(void)
886
{
887
    double a;
888
    TEST(1);
889
    TEST(l2t);
890
    TEST(l2e);
891
    TEST(pi);
892
    TEST(lg2);
893
    TEST(ln2);
894
    TEST(z);
895
}
896

    
897
void test_fbcd(double a)
898
{
899
    unsigned short bcd[5];
900
    double b;
901

    
902
    asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
903
    asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
904
    printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
905
           a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
906
}
907

    
908
#define TEST_ENV(env, save, restore)\
909
{\
910
    memset((env), 0xaa, sizeof(*(env)));\
911
    for(i=0;i<5;i++)\
912
        asm volatile ("fldl %0" : : "m" (dtab[i]));\
913
    asm volatile (save " %0\n" : : "m" (*(env)));\
914
    asm volatile (restore " %0\n": : "m" (*(env)));\
915
    for(i=0;i<5;i++)\
916
        asm volatile ("fstpl %0" : "=m" (rtab[i]));\
917
    for(i=0;i<5;i++)\
918
        printf("res[%d]=%f\n", i, rtab[i]);\
919
    printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
920
           (env)->fpuc,\
921
           (env)->fpus & 0xff00,\
922
           (env)->fptag);\
923
}
924

    
925
void test_fenv(void)
926
{
927
    struct __attribute__((packed)) {
928
        uint16_t fpuc;
929
        uint16_t dummy1;
930
        uint16_t fpus;
931
        uint16_t dummy2;
932
        uint16_t fptag;
933
        uint16_t dummy3;
934
        uint32_t ignored[4];
935
        long double fpregs[8];
936
    } float_env32;
937
    struct __attribute__((packed)) {
938
        uint16_t fpuc;
939
        uint16_t fpus;
940
        uint16_t fptag;
941
        uint16_t ignored[4];
942
        long double fpregs[8];
943
    } float_env16;
944
    double dtab[8];
945
    double rtab[8];
946
    int i;
947

    
948
    for(i=0;i<8;i++)
949
        dtab[i] = i + 1;
950

    
951
    TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
952
    TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
953
    TEST_ENV(&float_env32, "fnstenv", "fldenv");
954
    TEST_ENV(&float_env32, "fnsave", "frstor");
955

    
956
    /* test for ffree */
957
    for(i=0;i<5;i++)
958
        asm volatile ("fldl %0" : : "m" (dtab[i]));
959
    asm volatile("ffree %st(2)");
960
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
961
    asm volatile ("fninit");
962
    printf("fptag=%04x\n", float_env32.fptag);
963
}
964

    
965

    
966
#define TEST_FCMOV(a, b, eflags, CC)\
967
{\
968
    double res;\
969
    asm("push %3\n"\
970
        "popf\n"\
971
        "fcmov" CC " %2, %0\n"\
972
        : "=t" (res)\
973
        : "0" (a), "u" (b), "g" (eflags));\
974
    printf("fcmov%s eflags=0x%04lx-> %f\n", \
975
           CC, (long)eflags, res);\
976
}
977

    
978
void test_fcmov(void)
979
{
980
    double a, b;
981
    long eflags, i;
982

    
983
    a = 1.0;
984
    b = 2.0;
985
    for(i = 0; i < 4; i++) {
986
        eflags = 0;
987
        if (i & 1)
988
            eflags |= CC_C;
989
        if (i & 2)
990
            eflags |= CC_Z;
991
        TEST_FCMOV(a, b, eflags, "b");
992
        TEST_FCMOV(a, b, eflags, "e");
993
        TEST_FCMOV(a, b, eflags, "be");
994
        TEST_FCMOV(a, b, eflags, "nb");
995
        TEST_FCMOV(a, b, eflags, "ne");
996
        TEST_FCMOV(a, b, eflags, "nbe");
997
    }
998
    TEST_FCMOV(a, b, 0, "u");
999
    TEST_FCMOV(a, b, CC_P, "u");
1000
    TEST_FCMOV(a, b, 0, "nu");
1001
    TEST_FCMOV(a, b, CC_P, "nu");
1002
}
1003

    
1004
void test_floats(void)
1005
{
1006
    test_fops(2, 3);
1007
    test_fops(1.4, -5);
1008
    test_fcmp(2, -1);
1009
    test_fcmp(2, 2);
1010
    test_fcmp(2, 3);
1011
    test_fcmp(2, q_nan.d);
1012
    test_fcmp(q_nan.d, -1);
1013
    test_fcmp(-1.0/0.0, -1);
1014
    test_fcmp(1.0/0.0, -1);
1015
    test_fcvt(0.5);
1016
    test_fcvt(-0.5);
1017
    test_fcvt(1.0/7.0);
1018
    test_fcvt(-1.0/9.0);
1019
    test_fcvt(32768);
1020
    test_fcvt(-1e20);
1021
    test_fcvt(-1.0/0.0);
1022
    test_fcvt(1.0/0.0);
1023
    test_fcvt(q_nan.d);
1024
    test_fconst();
1025
    test_fbcd(1234567890123456.0);
1026
    test_fbcd(-123451234567890.0);
1027
    test_fenv();
1028
    if (TEST_CMOV) {
1029
        test_fcmov();
1030
    }
1031
}
1032

    
1033
/**********************************************/
1034
#if !defined(__x86_64__)
1035

    
1036
#define TEST_BCD(op, op0, cc_in, cc_mask)\
1037
{\
1038
    int res, flags;\
1039
    res = op0;\
1040
    flags = cc_in;\
1041
    asm ("push %3\n\t"\
1042
         "popf\n\t"\
1043
         #op "\n\t"\
1044
         "pushf\n\t"\
1045
         "pop %1\n\t"\
1046
        : "=a" (res), "=g" (flags)\
1047
        : "0" (res), "1" (flags));\
1048
    printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
1049
           #op, op0, res, cc_in, flags & cc_mask);\
1050
}
1051

    
1052
void test_bcd(void)
1053
{
1054
    TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1055
    TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1056
    TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1057
    TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1058
    TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1059
    TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1060
    TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1061
    TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1062
    TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1063
    TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1064
    TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1065
    TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1066
    TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1067

    
1068
    TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1069
    TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1070
    TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1071
    TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1072
    TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1073
    TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1074
    TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1075
    TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1076
    TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1077
    TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1078
    TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1079
    TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1080
    TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1081

    
1082
    TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
1083
    TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
1084
    TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
1085
    TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
1086
    TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
1087
    TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
1088
    TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
1089
    TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
1090

    
1091
    TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
1092
    TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
1093
    TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
1094
    TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
1095
    TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
1096
    TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
1097
    TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
1098
    TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
1099

    
1100
    TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1101
    TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1102
}
1103
#endif
1104

    
1105
#define TEST_XCHG(op, size, opconst)\
1106
{\
1107
    long op0, op1;\
1108
    op0 = i2l(0x12345678);\
1109
    op1 = i2l(0xfbca7654);\
1110
    asm(#op " %" size "0, %" size "1" \
1111
        : "=q" (op0), opconst (op1) \
1112
        : "0" (op0));\
1113
    printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
1114
           #op, op0, op1);\
1115
}
1116

    
1117
#define TEST_CMPXCHG(op, size, opconst, eax)\
1118
{\
1119
    long op0, op1, op2;\
1120
    op0 = i2l(0x12345678);\
1121
    op1 = i2l(0xfbca7654);\
1122
    op2 = i2l(eax);\
1123
    asm(#op " %" size "0, %" size "1" \
1124
        : "=q" (op0), opconst (op1) \
1125
        : "0" (op0), "a" (op2));\
1126
    printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
1127
           #op, op2, op0, op1);\
1128
}
1129

    
1130
void test_xchg(void)
1131
{
1132
#if defined(__x86_64__)
1133
    TEST_XCHG(xchgq, "", "+q");
1134
#endif
1135
    TEST_XCHG(xchgl, "k", "+q");
1136
    TEST_XCHG(xchgw, "w", "+q");
1137
    TEST_XCHG(xchgb, "b", "+q");
1138

    
1139
#if defined(__x86_64__)
1140
    TEST_XCHG(xchgq, "", "=m");
1141
#endif
1142
    TEST_XCHG(xchgl, "k", "+m");
1143
    TEST_XCHG(xchgw, "w", "+m");
1144
    TEST_XCHG(xchgb, "b", "+m");
1145

    
1146
#if defined(__x86_64__)
1147
    TEST_XCHG(xaddq, "", "+q");
1148
#endif
1149
    TEST_XCHG(xaddl, "k", "+q");
1150
    TEST_XCHG(xaddw, "w", "+q");
1151
    TEST_XCHG(xaddb, "b", "+q");
1152

    
1153
    {
1154
        int res;
1155
        res = 0x12345678;
1156
        asm("xaddl %1, %0" : "=r" (res) : "0" (res));
1157
        printf("xaddl same res=%08x\n", res);
1158
    }
1159

    
1160
#if defined(__x86_64__)
1161
    TEST_XCHG(xaddq, "", "+m");
1162
#endif
1163
    TEST_XCHG(xaddl, "k", "+m");
1164
    TEST_XCHG(xaddw, "w", "+m");
1165
    TEST_XCHG(xaddb, "b", "+m");
1166

    
1167
#if defined(__x86_64__)
1168
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
1169
#endif
1170
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
1171
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
1172
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
1173

    
1174
#if defined(__x86_64__)
1175
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
1176
#endif
1177
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
1178
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
1179
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
1180

    
1181
#if defined(__x86_64__)
1182
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
1183
#endif
1184
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
1185
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
1186
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
1187

    
1188
#if defined(__x86_64__)
1189
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
1190
#endif
1191
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
1192
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
1193
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
1194

    
1195
    {
1196
        uint64_t op0, op1, op2;
1197
        long eax, edx;
1198
        long i, eflags;
1199

    
1200
        for(i = 0; i < 2; i++) {
1201
            op0 = 0x123456789abcdLL;
1202
            eax = i2l(op0 & 0xffffffff);
1203
            edx = i2l(op0 >> 32);
1204
            if (i == 0)
1205
                op1 = 0xfbca765423456LL;
1206
            else
1207
                op1 = op0;
1208
            op2 = 0x6532432432434LL;
1209
            asm("cmpxchg8b %2\n"
1210
                "pushf\n"
1211
                "pop %3\n"
1212
                : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
1213
                : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
1214
            printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
1215
                   eax, edx, op1, eflags & CC_Z);
1216
        }
1217
    }
1218
}
1219

    
1220
#ifdef TEST_SEGS
1221
/**********************************************/
1222
/* segmentation tests */
1223

    
1224
#include <sys/syscall.h>
1225
#include <unistd.h>
1226
#include <asm/ldt.h>
1227
#include <linux/version.h>
1228

    
1229
static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
1230
{
1231
    return syscall(__NR_modify_ldt, func, ptr, bytecount);
1232
}
1233

    
1234
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
1235
#define modify_ldt_ldt_s user_desc
1236
#endif
1237

    
1238
#define MK_SEL(n) (((n) << 3) | 7)
1239

    
1240
uint8_t seg_data1[4096];
1241
uint8_t seg_data2[4096];
1242

    
1243
#define TEST_LR(op, size, seg, mask)\
1244
{\
1245
    int res, res2;\
1246
    uint16_t mseg = seg;\
1247
    res = 0x12345678;\
1248
    asm (op " %" size "2, %" size "0\n" \
1249
         "movl $0, %1\n"\
1250
         "jnz 1f\n"\
1251
         "movl $1, %1\n"\
1252
         "1:\n"\
1253
         : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
1254
    printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
1255
}
1256

    
1257
#define TEST_ARPL(op, size, op1, op2)\
1258
{\
1259
    long a, b, c;                               \
1260
    a = (op1);                                  \
1261
    b = (op2);                                  \
1262
    asm volatile(op " %" size "3, %" size "0\n"\
1263
                 "movl $0,%1\n"\
1264
                 "jnz 1f\n"\
1265
                 "movl $1,%1\n"\
1266
                 "1:\n"\
1267
                 : "=r" (a), "=r" (c) : "0" (a), "r" (b));    \
1268
    printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
1269
           (long)(op1), (long)(op2), a, c);\
1270
}
1271

    
1272
/* NOTE: we use Linux modify_ldt syscall */
1273
void test_segs(void)
1274
{
1275
    struct modify_ldt_ldt_s ldt;
1276
    long long ldt_table[3];
1277
    int res, res2;
1278
    char tmp;
1279
    struct {
1280
        uint32_t offset;
1281
        uint16_t seg;
1282
    } __attribute__((packed)) segoff;
1283

    
1284
    ldt.entry_number = 1;
1285
    ldt.base_addr = (unsigned long)&seg_data1;
1286
    ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1287
    ldt.seg_32bit = 1;
1288
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1289
    ldt.read_exec_only = 0;
1290
    ldt.limit_in_pages = 1;
1291
    ldt.seg_not_present = 0;
1292
    ldt.useable = 1;
1293
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1294

    
1295
    ldt.entry_number = 2;
1296
    ldt.base_addr = (unsigned long)&seg_data2;
1297
    ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
1298
    ldt.seg_32bit = 1;
1299
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1300
    ldt.read_exec_only = 0;
1301
    ldt.limit_in_pages = 1;
1302
    ldt.seg_not_present = 0;
1303
    ldt.useable = 1;
1304
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1305

    
1306
    modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
1307
#if 0
1308
    {
1309
        int i;
1310
        for(i=0;i<3;i++)
1311
            printf("%d: %016Lx\n", i, ldt_table[i]);
1312
    }
1313
#endif
1314
    /* do some tests with fs or gs */
1315
    asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1316

    
1317
    seg_data1[1] = 0xaa;
1318
    seg_data2[1] = 0x55;
1319

    
1320
    asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
1321
    printf("FS[1] = %02x\n", res);
1322

    
1323
    asm volatile ("pushl %%gs\n"
1324
                  "movl %1, %%gs\n"
1325
                  "gs movzbl 0x1, %0\n"
1326
                  "popl %%gs\n"
1327
                  : "=r" (res)
1328
                  : "r" (MK_SEL(2)));
1329
    printf("GS[1] = %02x\n", res);
1330

    
1331
    /* tests with ds/ss (implicit segment case) */
1332
    tmp = 0xa5;
1333
    asm volatile ("pushl %%ebp\n\t"
1334
                  "pushl %%ds\n\t"
1335
                  "movl %2, %%ds\n\t"
1336
                  "movl %3, %%ebp\n\t"
1337
                  "movzbl 0x1, %0\n\t"
1338
                  "movzbl (%%ebp), %1\n\t"
1339
                  "popl %%ds\n\t"
1340
                  "popl %%ebp\n\t"
1341
                  : "=r" (res), "=r" (res2)
1342
                  : "r" (MK_SEL(1)), "r" (&tmp));
1343
    printf("DS[1] = %02x\n", res);
1344
    printf("SS[tmp] = %02x\n", res2);
1345

    
1346
    segoff.seg = MK_SEL(2);
1347
    segoff.offset = 0xabcdef12;
1348
    asm volatile("lfs %2, %0\n\t"
1349
                 "movl %%fs, %1\n\t"
1350
                 : "=r" (res), "=g" (res2)
1351
                 : "m" (segoff));
1352
    printf("FS:reg = %04x:%08x\n", res2, res);
1353

    
1354
    TEST_LR("larw", "w", MK_SEL(2), 0x0100);
1355
    TEST_LR("larl", "", MK_SEL(2), 0x0100);
1356
    TEST_LR("lslw", "w", MK_SEL(2), 0);
1357
    TEST_LR("lsll", "", MK_SEL(2), 0);
1358

    
1359
    TEST_LR("larw", "w", 0xfff8, 0);
1360
    TEST_LR("larl", "", 0xfff8, 0);
1361
    TEST_LR("lslw", "w", 0xfff8, 0);
1362
    TEST_LR("lsll", "", 0xfff8, 0);
1363

    
1364
    TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
1365
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
1366
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
1367
}
1368

    
1369
/* 16 bit code test */
1370
extern char code16_start, code16_end;
1371
extern char code16_func1;
1372
extern char code16_func2;
1373
extern char code16_func3;
1374

    
1375
void test_code16(void)
1376
{
1377
    struct modify_ldt_ldt_s ldt;
1378
    int res, res2;
1379

    
1380
    /* build a code segment */
1381
    ldt.entry_number = 1;
1382
    ldt.base_addr = (unsigned long)&code16_start;
1383
    ldt.limit = &code16_end - &code16_start;
1384
    ldt.seg_32bit = 0;
1385
    ldt.contents = MODIFY_LDT_CONTENTS_CODE;
1386
    ldt.read_exec_only = 0;
1387
    ldt.limit_in_pages = 0;
1388
    ldt.seg_not_present = 0;
1389
    ldt.useable = 1;
1390
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1391

    
1392
    /* call the first function */
1393
    asm volatile ("lcall %1, %2"
1394
                  : "=a" (res)
1395
                  : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
1396
    printf("func1() = 0x%08x\n", res);
1397
    asm volatile ("lcall %2, %3"
1398
                  : "=a" (res), "=c" (res2)
1399
                  : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
1400
    printf("func2() = 0x%08x spdec=%d\n", res, res2);
1401
    asm volatile ("lcall %1, %2"
1402
                  : "=a" (res)
1403
                  : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
1404
    printf("func3() = 0x%08x\n", res);
1405
}
1406
#endif
1407

    
1408
#if defined(__x86_64__)
1409
asm(".globl func_lret\n"
1410
    "func_lret:\n"
1411
    "movl $0x87654641, %eax\n"
1412
    "lretq\n");
1413
#else
1414
asm(".globl func_lret\n"
1415
    "func_lret:\n"
1416
    "movl $0x87654321, %eax\n"
1417
    "lret\n"
1418

    
1419
    ".globl func_iret\n"
1420
    "func_iret:\n"
1421
    "movl $0xabcd4321, %eax\n"
1422
    "iret\n");
1423
#endif
1424

    
1425
extern char func_lret;
1426
extern char func_iret;
1427

    
1428
void test_misc(void)
1429
{
1430
    char table[256];
1431
    long res, i;
1432

    
1433
    for(i=0;i<256;i++) table[i] = 256 - i;
1434
    res = 0x12345678;
1435
    asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
1436
    printf("xlat: EAX=" FMTLX "\n", res);
1437

    
1438
#if defined(__x86_64__)
1439
#if 0
1440
    {
1441
        /* XXX: see if Intel Core2 and AMD64 behavior really
1442
           differ. Here we implemented the Intel way which is not
1443
           compatible yet with QEMU. */
1444
        static struct __attribute__((packed)) {
1445
            uint64_t offset;
1446
            uint16_t seg;
1447
        } desc;
1448
        long cs_sel;
1449

1450
        asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
1451

1452
        asm volatile ("push %1\n"
1453
                      "call func_lret\n"
1454
                      : "=a" (res)
1455
                      : "r" (cs_sel) : "memory", "cc");
1456
        printf("func_lret=" FMTLX "\n", res);
1457

1458
        desc.offset = (long)&func_lret;
1459
        desc.seg = cs_sel;
1460

1461
        asm volatile ("xor %%rax, %%rax\n"
1462
                      "rex64 lcall *(%%rcx)\n"
1463
                      : "=a" (res)
1464
                      : "c" (&desc)
1465
                      : "memory", "cc");
1466
        printf("func_lret2=" FMTLX "\n", res);
1467

1468
        asm volatile ("push %2\n"
1469
                      "mov $ 1f, %%rax\n"
1470
                      "push %%rax\n"
1471
                      "rex64 ljmp *(%%rcx)\n"
1472
                      "1:\n"
1473
                      : "=a" (res)
1474
                      : "c" (&desc), "b" (cs_sel)
1475
                      : "memory", "cc");
1476
        printf("func_lret3=" FMTLX "\n", res);
1477
    }
1478
#endif
1479
#else
1480
    asm volatile ("push %%cs ; call %1"
1481
                  : "=a" (res)
1482
                  : "m" (func_lret): "memory", "cc");
1483
    printf("func_lret=" FMTLX "\n", res);
1484

    
1485
    asm volatile ("pushf ; push %%cs ; call %1"
1486
                  : "=a" (res)
1487
                  : "m" (func_iret): "memory", "cc");
1488
    printf("func_iret=" FMTLX "\n", res);
1489
#endif
1490

    
1491
#if defined(__x86_64__)
1492
    /* specific popl test */
1493
    asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
1494
                  : "=g" (res));
1495
    printf("popl esp=" FMTLX "\n", res);
1496
#else
1497
    /* specific popl test */
1498
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
1499
                  : "=g" (res));
1500
    printf("popl esp=" FMTLX "\n", res);
1501

    
1502
    /* specific popw test */
1503
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
1504
                  : "=g" (res));
1505
    printf("popw esp=" FMTLX "\n", res);
1506
#endif
1507
}
1508

    
1509
uint8_t str_buffer[4096];
1510

    
1511
#define TEST_STRING1(OP, size, DF, REP)\
1512
{\
1513
    long esi, edi, eax, ecx, eflags;\
1514
\
1515
    esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
1516
    edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
1517
    eax = i2l(0x12345678);\
1518
    ecx = 17;\
1519
\
1520
    asm volatile ("push $0\n\t"\
1521
                  "popf\n\t"\
1522
                  DF "\n\t"\
1523
                  REP #OP size "\n\t"\
1524
                  "cld\n\t"\
1525
                  "pushf\n\t"\
1526
                  "pop %4\n\t"\
1527
                  : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
1528
                  : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
1529
    printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
1530
           REP #OP size, esi, edi, eax, ecx,\
1531
           (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
1532
}
1533

    
1534
#define TEST_STRING(OP, REP)\
1535
    TEST_STRING1(OP, "b", "", REP);\
1536
    TEST_STRING1(OP, "w", "", REP);\
1537
    TEST_STRING1(OP, "l", "", REP);\
1538
    X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
1539
    TEST_STRING1(OP, "b", "std", REP);\
1540
    TEST_STRING1(OP, "w", "std", REP);\
1541
    TEST_STRING1(OP, "l", "std", REP);\
1542
    X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
1543

    
1544
void test_string(void)
1545
{
1546
    int i;
1547
    for(i = 0;i < sizeof(str_buffer); i++)
1548
        str_buffer[i] = i + 0x56;
1549
   TEST_STRING(stos, "");
1550
   TEST_STRING(stos, "rep ");
1551
   TEST_STRING(lods, ""); /* to verify stos */
1552
   TEST_STRING(lods, "rep ");
1553
   TEST_STRING(movs, "");
1554
   TEST_STRING(movs, "rep ");
1555
   TEST_STRING(lods, ""); /* to verify stos */
1556

    
1557
   /* XXX: better tests */
1558
   TEST_STRING(scas, "");
1559
   TEST_STRING(scas, "repz ");
1560
   TEST_STRING(scas, "repnz ");
1561
   TEST_STRING(cmps, "");
1562
   TEST_STRING(cmps, "repz ");
1563
   TEST_STRING(cmps, "repnz ");
1564
}
1565

    
1566
#ifdef TEST_VM86
1567
/* VM86 test */
1568

    
1569
static inline void set_bit(uint8_t *a, unsigned int bit)
1570
{
1571
    a[bit / 8] |= (1 << (bit % 8));
1572
}
1573

    
1574
static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
1575
{
1576
    return (uint8_t *)((seg << 4) + (reg & 0xffff));
1577
}
1578

    
1579
static inline void pushw(struct vm86_regs *r, int val)
1580
{
1581
    r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
1582
    *(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
1583
}
1584

    
1585
static inline int vm86(int func, struct vm86plus_struct *v86)
1586
{
1587
    return syscall(__NR_vm86, func, v86);
1588
}
1589

    
1590
extern char vm86_code_start;
1591
extern char vm86_code_end;
1592

    
1593
#define VM86_CODE_CS 0x100
1594
#define VM86_CODE_IP 0x100
1595

    
1596
void test_vm86(void)
1597
{
1598
    struct vm86plus_struct ctx;
1599
    struct vm86_regs *r;
1600
    uint8_t *vm86_mem;
1601
    int seg, ret;
1602

    
1603
    vm86_mem = mmap((void *)0x00000000, 0x110000,
1604
                    PROT_WRITE | PROT_READ | PROT_EXEC,
1605
                    MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
1606
    if (vm86_mem == MAP_FAILED) {
1607
        printf("ERROR: could not map vm86 memory");
1608
        return;
1609
    }
1610
    memset(&ctx, 0, sizeof(ctx));
1611

    
1612
    /* init basic registers */
1613
    r = &ctx.regs;
1614
    r->eip = VM86_CODE_IP;
1615
    r->esp = 0xfffe;
1616
    seg = VM86_CODE_CS;
1617
    r->cs = seg;
1618
    r->ss = seg;
1619
    r->ds = seg;
1620
    r->es = seg;
1621
    r->fs = seg;
1622
    r->gs = seg;
1623
    r->eflags = VIF_MASK;
1624

    
1625
    /* move code to proper address. We use the same layout as a .com
1626
       dos program. */
1627
    memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
1628
           &vm86_code_start, &vm86_code_end - &vm86_code_start);
1629

    
1630
    /* mark int 0x21 as being emulated */
1631
    set_bit((uint8_t *)&ctx.int_revectored, 0x21);
1632

    
1633
    for(;;) {
1634
        ret = vm86(VM86_ENTER, &ctx);
1635
        switch(VM86_TYPE(ret)) {
1636
        case VM86_INTx:
1637
            {
1638
                int int_num, ah, v;
1639

    
1640
                int_num = VM86_ARG(ret);
1641
                if (int_num != 0x21)
1642
                    goto unknown_int;
1643
                ah = (r->eax >> 8) & 0xff;
1644
                switch(ah) {
1645
                case 0x00: /* exit */
1646
                    goto the_end;
1647
                case 0x02: /* write char */
1648
                    {
1649
                        uint8_t c = r->edx;
1650
                        putchar(c);
1651
                    }
1652
                    break;
1653
                case 0x09: /* write string */
1654
                    {
1655
                        uint8_t c, *ptr;
1656
                        ptr = seg_to_linear(r->ds, r->edx);
1657
                        for(;;) {
1658
                            c = *ptr++;
1659
                            if (c == '$')
1660
                                break;
1661
                            putchar(c);
1662
                        }
1663
                        r->eax = (r->eax & ~0xff) | '$';
1664
                    }
1665
                    break;
1666
                case 0xff: /* extension: write eflags number in edx */
1667
                    v = (int)r->edx;
1668
#ifndef LINUX_VM86_IOPL_FIX
1669
                    v &= ~0x3000;
1670
#endif
1671
                    printf("%08x\n", v);
1672
                    break;
1673
                default:
1674
                unknown_int:
1675
                    printf("unsupported int 0x%02x\n", int_num);
1676
                    goto the_end;
1677
                }
1678
            }
1679
            break;
1680
        case VM86_SIGNAL:
1681
            /* a signal came, we just ignore that */
1682
            break;
1683
        case VM86_STI:
1684
            break;
1685
        default:
1686
            printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
1687
            goto the_end;
1688
        }
1689
    }
1690
 the_end:
1691
    printf("VM86 end\n");
1692
    munmap(vm86_mem, 0x110000);
1693
}
1694
#endif
1695

    
1696
/* exception tests */
1697
#if defined(__i386__) && !defined(REG_EAX)
1698
#define REG_EAX EAX
1699
#define REG_EBX EBX
1700
#define REG_ECX ECX
1701
#define REG_EDX EDX
1702
#define REG_ESI ESI
1703
#define REG_EDI EDI
1704
#define REG_EBP EBP
1705
#define REG_ESP ESP
1706
#define REG_EIP EIP
1707
#define REG_EFL EFL
1708
#define REG_TRAPNO TRAPNO
1709
#define REG_ERR ERR
1710
#endif
1711

    
1712
#if defined(__x86_64__)
1713
#define REG_EIP REG_RIP
1714
#endif
1715

    
1716
jmp_buf jmp_env;
1717
int v1;
1718
int tab[2];
1719

    
1720
void sig_handler(int sig, siginfo_t *info, void *puc)
1721
{
1722
    struct ucontext *uc = puc;
1723

    
1724
    printf("si_signo=%d si_errno=%d si_code=%d",
1725
           info->si_signo, info->si_errno, info->si_code);
1726
    printf(" si_addr=0x%08lx",
1727
           (unsigned long)info->si_addr);
1728
    printf("\n");
1729

    
1730
    printf("trapno=" FMTLX " err=" FMTLX,
1731
           (long)uc->uc_mcontext.gregs[REG_TRAPNO],
1732
           (long)uc->uc_mcontext.gregs[REG_ERR]);
1733
    printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
1734
    printf("\n");
1735
    longjmp(jmp_env, 1);
1736
}
1737

    
1738
void test_exceptions(void)
1739
{
1740
    struct sigaction act;
1741
    volatile int val;
1742

    
1743
    act.sa_sigaction = sig_handler;
1744
    sigemptyset(&act.sa_mask);
1745
    act.sa_flags = SA_SIGINFO | SA_NODEFER;
1746
    sigaction(SIGFPE, &act, NULL);
1747
    sigaction(SIGILL, &act, NULL);
1748
    sigaction(SIGSEGV, &act, NULL);
1749
    sigaction(SIGBUS, &act, NULL);
1750
    sigaction(SIGTRAP, &act, NULL);
1751

    
1752
    /* test division by zero reporting */
1753
    printf("DIVZ exception:\n");
1754
    if (setjmp(jmp_env) == 0) {
1755
        /* now divide by zero */
1756
        v1 = 0;
1757
        v1 = 2 / v1;
1758
    }
1759

    
1760
#if !defined(__x86_64__)
1761
    printf("BOUND exception:\n");
1762
    if (setjmp(jmp_env) == 0) {
1763
        /* bound exception */
1764
        tab[0] = 1;
1765
        tab[1] = 10;
1766
        asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
1767
    }
1768
#endif
1769

    
1770
#ifdef TEST_SEGS
1771
    printf("segment exceptions:\n");
1772
    if (setjmp(jmp_env) == 0) {
1773
        /* load an invalid segment */
1774
        asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
1775
    }
1776
    if (setjmp(jmp_env) == 0) {
1777
        /* null data segment is valid */
1778
        asm volatile ("movl %0, %%fs" : : "r" (3));
1779
        /* null stack segment */
1780
        asm volatile ("movl %0, %%ss" : : "r" (3));
1781
    }
1782

    
1783
    {
1784
        struct modify_ldt_ldt_s ldt;
1785
        ldt.entry_number = 1;
1786
        ldt.base_addr = (unsigned long)&seg_data1;
1787
        ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1788
        ldt.seg_32bit = 1;
1789
        ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1790
        ldt.read_exec_only = 0;
1791
        ldt.limit_in_pages = 1;
1792
        ldt.seg_not_present = 1;
1793
        ldt.useable = 1;
1794
        modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1795

    
1796
        if (setjmp(jmp_env) == 0) {
1797
            /* segment not present */
1798
            asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1799
        }
1800
    }
1801
#endif
1802

    
1803
    /* test SEGV reporting */
1804
    printf("PF exception:\n");
1805
    if (setjmp(jmp_env) == 0) {
1806
        val = 1;
1807
        /* we add a nop to test a weird PC retrieval case */
1808
        asm volatile ("nop");
1809
        /* now store in an invalid address */
1810
        *(char *)0x1234 = 1;
1811
    }
1812

    
1813
    /* test SEGV reporting */
1814
    printf("PF exception:\n");
1815
    if (setjmp(jmp_env) == 0) {
1816
        val = 1;
1817
        /* read from an invalid address */
1818
        v1 = *(char *)0x1234;
1819
    }
1820

    
1821
    /* test illegal instruction reporting */
1822
    printf("UD2 exception:\n");
1823
    if (setjmp(jmp_env) == 0) {
1824
        /* now execute an invalid instruction */
1825
        asm volatile("ud2");
1826
    }
1827
    printf("lock nop exception:\n");
1828
    if (setjmp(jmp_env) == 0) {
1829
        /* now execute an invalid instruction */
1830
        asm volatile("lock nop");
1831
    }
1832

    
1833
    printf("INT exception:\n");
1834
    if (setjmp(jmp_env) == 0) {
1835
        asm volatile ("int $0xfd");
1836
    }
1837
    if (setjmp(jmp_env) == 0) {
1838
        asm volatile ("int $0x01");
1839
    }
1840
    if (setjmp(jmp_env) == 0) {
1841
        asm volatile (".byte 0xcd, 0x03");
1842
    }
1843
    if (setjmp(jmp_env) == 0) {
1844
        asm volatile ("int $0x04");
1845
    }
1846
    if (setjmp(jmp_env) == 0) {
1847
        asm volatile ("int $0x05");
1848
    }
1849

    
1850
    printf("INT3 exception:\n");
1851
    if (setjmp(jmp_env) == 0) {
1852
        asm volatile ("int3");
1853
    }
1854

    
1855
    printf("CLI exception:\n");
1856
    if (setjmp(jmp_env) == 0) {
1857
        asm volatile ("cli");
1858
    }
1859

    
1860
    printf("STI exception:\n");
1861
    if (setjmp(jmp_env) == 0) {
1862
        asm volatile ("cli");
1863
    }
1864

    
1865
#if !defined(__x86_64__)
1866
    printf("INTO exception:\n");
1867
    if (setjmp(jmp_env) == 0) {
1868
        /* overflow exception */
1869
        asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
1870
    }
1871
#endif
1872

    
1873
    printf("OUTB exception:\n");
1874
    if (setjmp(jmp_env) == 0) {
1875
        asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
1876
    }
1877

    
1878
    printf("INB exception:\n");
1879
    if (setjmp(jmp_env) == 0) {
1880
        asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
1881
    }
1882

    
1883
    printf("REP OUTSB exception:\n");
1884
    if (setjmp(jmp_env) == 0) {
1885
        asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
1886
    }
1887

    
1888
    printf("REP INSB exception:\n");
1889
    if (setjmp(jmp_env) == 0) {
1890
        asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
1891
    }
1892

    
1893
    printf("HLT exception:\n");
1894
    if (setjmp(jmp_env) == 0) {
1895
        asm volatile ("hlt");
1896
    }
1897

    
1898
    printf("single step exception:\n");
1899
    val = 0;
1900
    if (setjmp(jmp_env) == 0) {
1901
        asm volatile ("pushf\n"
1902
                      "orl $0x00100, (%%esp)\n"
1903
                      "popf\n"
1904
                      "movl $0xabcd, %0\n"
1905
                      "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
1906
    }
1907
    printf("val=0x%x\n", val);
1908
}
1909

    
1910
#if !defined(__x86_64__)
1911
/* specific precise single step test */
1912
void sig_trap_handler(int sig, siginfo_t *info, void *puc)
1913
{
1914
    struct ucontext *uc = puc;
1915
    printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
1916
}
1917

    
1918
const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
1919
uint8_t sstep_buf2[4];
1920

    
1921
void test_single_step(void)
1922
{
1923
    struct sigaction act;
1924
    volatile int val;
1925
    int i;
1926

    
1927
    val = 0;
1928
    act.sa_sigaction = sig_trap_handler;
1929
    sigemptyset(&act.sa_mask);
1930
    act.sa_flags = SA_SIGINFO;
1931
    sigaction(SIGTRAP, &act, NULL);
1932
    asm volatile ("pushf\n"
1933
                  "orl $0x00100, (%%esp)\n"
1934
                  "popf\n"
1935
                  "movl $0xabcd, %0\n"
1936

    
1937
                  /* jmp test */
1938
                  "movl $3, %%ecx\n"
1939
                  "1:\n"
1940
                  "addl $1, %0\n"
1941
                  "decl %%ecx\n"
1942
                  "jnz 1b\n"
1943

    
1944
                  /* movsb: the single step should stop at each movsb iteration */
1945
                  "movl $sstep_buf1, %%esi\n"
1946
                  "movl $sstep_buf2, %%edi\n"
1947
                  "movl $0, %%ecx\n"
1948
                  "rep movsb\n"
1949
                  "movl $3, %%ecx\n"
1950
                  "rep movsb\n"
1951
                  "movl $1, %%ecx\n"
1952
                  "rep movsb\n"
1953

    
1954
                  /* cmpsb: the single step should stop at each cmpsb iteration */
1955
                  "movl $sstep_buf1, %%esi\n"
1956
                  "movl $sstep_buf2, %%edi\n"
1957
                  "movl $0, %%ecx\n"
1958
                  "rep cmpsb\n"
1959
                  "movl $4, %%ecx\n"
1960
                  "rep cmpsb\n"
1961

    
1962
                  /* getpid() syscall: single step should skip one
1963
                     instruction */
1964
                  "movl $20, %%eax\n"
1965
                  "int $0x80\n"
1966
                  "movl $0, %%eax\n"
1967

    
1968
                  /* when modifying SS, trace is not done on the next
1969
                     instruction */
1970
                  "movl %%ss, %%ecx\n"
1971
                  "movl %%ecx, %%ss\n"
1972
                  "addl $1, %0\n"
1973
                  "movl $1, %%eax\n"
1974
                  "movl %%ecx, %%ss\n"
1975
                  "jmp 1f\n"
1976
                  "addl $1, %0\n"
1977
                  "1:\n"
1978
                  "movl $1, %%eax\n"
1979
                  "pushl %%ecx\n"
1980
                  "popl %%ss\n"
1981
                  "addl $1, %0\n"
1982
                  "movl $1, %%eax\n"
1983

    
1984
                  "pushf\n"
1985
                  "andl $~0x00100, (%%esp)\n"
1986
                  "popf\n"
1987
                  : "=m" (val)
1988
                  :
1989
                  : "cc", "memory", "eax", "ecx", "esi", "edi");
1990
    printf("val=%d\n", val);
1991
    for(i = 0; i < 4; i++)
1992
        printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
1993
}
1994

    
1995
/* self modifying code test */
1996
uint8_t code[] = {
1997
    0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
1998
    0xc3, /* ret */
1999
};
2000

    
2001
asm(".section \".data\"\n"
2002
    "smc_code2:\n"
2003
    "movl 4(%esp), %eax\n"
2004
    "movl %eax, smc_patch_addr2 + 1\n"
2005
    "nop\n"
2006
    "nop\n"
2007
    "nop\n"
2008
    "nop\n"
2009
    "nop\n"
2010
    "nop\n"
2011
    "nop\n"
2012
    "nop\n"
2013
    "smc_patch_addr2:\n"
2014
    "movl $1, %eax\n"
2015
    "ret\n"
2016
    ".previous\n"
2017
    );
2018

    
2019
typedef int FuncType(void);
2020
extern int smc_code2(int);
2021
void test_self_modifying_code(void)
2022
{
2023
    int i;
2024
    printf("self modifying code:\n");
2025
    printf("func1 = 0x%x\n", ((FuncType *)code)());
2026
    for(i = 2; i <= 4; i++) {
2027
        code[1] = i;
2028
        printf("func%d = 0x%x\n", i, ((FuncType *)code)());
2029
    }
2030

    
2031
    /* more difficult test : the modified code is just after the
2032
       modifying instruction. It is forbidden in Intel specs, but it
2033
       is used by old DOS programs */
2034
    for(i = 2; i <= 4; i++) {
2035
        printf("smc_code2(%d) = %d\n", i, smc_code2(i));
2036
    }
2037
}
2038
#endif
2039

    
2040
long enter_stack[4096];
2041

    
2042
#if defined(__x86_64__)
2043
#define RSP "%%rsp"
2044
#define RBP "%%rbp"
2045
#else
2046
#define RSP "%%esp"
2047
#define RBP "%%ebp"
2048
#endif
2049

    
2050
#if !defined(__x86_64__)
2051
/* causes an infinite loop, disable it for now.  */
2052
#define TEST_ENTER(size, stack_type, level)
2053
#else
2054
#define TEST_ENTER(size, stack_type, level)\
2055
{\
2056
    long esp_save, esp_val, ebp_val, ebp_save, i;\
2057
    stack_type *ptr, *stack_end, *stack_ptr;\
2058
    memset(enter_stack, 0, sizeof(enter_stack));\
2059
    stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
2060
    ebp_val = (long)stack_ptr;\
2061
    for(i=1;i<=32;i++)\
2062
       *--stack_ptr = i;\
2063
    esp_val = (long)stack_ptr;\
2064
    asm("mov " RSP ", %[esp_save]\n"\
2065
        "mov " RBP ", %[ebp_save]\n"\
2066
        "mov %[esp_val], " RSP "\n"\
2067
        "mov %[ebp_val], " RBP "\n"\
2068
        "enter" size " $8, $" #level "\n"\
2069
        "mov " RSP ", %[esp_val]\n"\
2070
        "mov " RBP ", %[ebp_val]\n"\
2071
        "mov %[esp_save], " RSP "\n"\
2072
        "mov %[ebp_save], " RBP "\n"\
2073
        : [esp_save] "=r" (esp_save),\
2074
        [ebp_save] "=r" (ebp_save),\
2075
        [esp_val] "=r" (esp_val),\
2076
        [ebp_val] "=r" (ebp_val)\
2077
        :  "[esp_val]" (esp_val),\
2078
        "[ebp_val]" (ebp_val));\
2079
    printf("level=%d:\n", level);\
2080
    printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
2081
    printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
2082
    for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
2083
        printf(FMTLX "\n", (long)ptr[0]);\
2084
}
2085
#endif
2086

    
2087
static void test_enter(void)
2088
{
2089
#if defined(__x86_64__)
2090
    TEST_ENTER("q", uint64_t, 0);
2091
    TEST_ENTER("q", uint64_t, 1);
2092
    TEST_ENTER("q", uint64_t, 2);
2093
    TEST_ENTER("q", uint64_t, 31);
2094
#else
2095
    TEST_ENTER("l", uint32_t, 0);
2096
    TEST_ENTER("l", uint32_t, 1);
2097
    TEST_ENTER("l", uint32_t, 2);
2098
    TEST_ENTER("l", uint32_t, 31);
2099
#endif
2100

    
2101
    TEST_ENTER("w", uint16_t, 0);
2102
    TEST_ENTER("w", uint16_t, 1);
2103
    TEST_ENTER("w", uint16_t, 2);
2104
    TEST_ENTER("w", uint16_t, 31);
2105
}
2106

    
2107
#ifdef TEST_SSE
2108

    
2109
typedef int __m64 __attribute__ ((__mode__ (__V2SI__)));
2110
typedef float __m128 __attribute__ ((__mode__(__V4SF__)));
2111

    
2112
typedef union {
2113
    double d[2];
2114
    float s[4];
2115
    uint32_t l[4];
2116
    uint64_t q[2];
2117
    __m128 dq;
2118
} XMMReg;
2119

    
2120
static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
2121
    { 0x456723c698694873, 0xdc515cff944a58ec },
2122
    { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
2123
    { 0x007c62c2085427f8, 0x231be9e8cde7438d },
2124
    { 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
2125
};
2126

    
2127
#define SSE_OP(op)\
2128
{\
2129
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2130
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2131
           #op,\
2132
           a.q[1], a.q[0],\
2133
           b.q[1], b.q[0],\
2134
           r.q[1], r.q[0]);\
2135
}
2136

    
2137
#define SSE_OP2(op)\
2138
{\
2139
    int i;\
2140
    for(i=0;i<2;i++) {\
2141
    a.q[0] = test_values[2*i][0];\
2142
    a.q[1] = test_values[2*i][1];\
2143
    b.q[0] = test_values[2*i+1][0];\
2144
    b.q[1] = test_values[2*i+1][1];\
2145
    SSE_OP(op);\
2146
    }\
2147
}
2148

    
2149
#define MMX_OP2(op)\
2150
{\
2151
    int i;\
2152
    for(i=0;i<2;i++) {\
2153
    a.q[0] = test_values[2*i][0];\
2154
    b.q[0] = test_values[2*i+1][0];\
2155
    asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
2156
    printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
2157
           #op,\
2158
           a.q[0],\
2159
           b.q[0],\
2160
           r.q[0]);\
2161
    }\
2162
    SSE_OP2(op);\
2163
}
2164

    
2165
#define SHUF_OP(op, ib)\
2166
{\
2167
    a.q[0] = test_values[0][0];\
2168
    a.q[1] = test_values[0][1];\
2169
    b.q[0] = test_values[1][0];\
2170
    b.q[1] = test_values[1][1];\
2171
    asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2172
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2173
           #op,\
2174
           a.q[1], a.q[0],\
2175
           b.q[1], b.q[0],\
2176
           ib,\
2177
           r.q[1], r.q[0]);\
2178
}
2179

    
2180
#define PSHUF_OP(op, ib)\
2181
{\
2182
    int i;\
2183
    for(i=0;i<2;i++) {\
2184
    a.q[0] = test_values[2*i][0];\
2185
    a.q[1] = test_values[2*i][1];\
2186
    asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2187
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2188
           #op,\
2189
           a.q[1], a.q[0],\
2190
           ib,\
2191
           r.q[1], r.q[0]);\
2192
    }\
2193
}
2194

    
2195
#define SHIFT_IM(op, ib)\
2196
{\
2197
    int i;\
2198
    for(i=0;i<2;i++) {\
2199
    a.q[0] = test_values[2*i][0];\
2200
    a.q[1] = test_values[2*i][1];\
2201
    asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
2202
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2203
           #op,\
2204
           a.q[1], a.q[0],\
2205
           ib,\
2206
           r.q[1], r.q[0]);\
2207
    }\
2208
}
2209

    
2210
#define SHIFT_OP(op, ib)\
2211
{\
2212
    int i;\
2213
    SHIFT_IM(op, ib);\
2214
    for(i=0;i<2;i++) {\
2215
    a.q[0] = test_values[2*i][0];\
2216
    a.q[1] = test_values[2*i][1];\
2217
    b.q[0] = ib;\
2218
    b.q[1] = 0;\
2219
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2220
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2221
           #op,\
2222
           a.q[1], a.q[0],\
2223
           b.q[1], b.q[0],\
2224
           r.q[1], r.q[0]);\
2225
    }\
2226
}
2227

    
2228
#define MOVMSK(op)\
2229
{\
2230
    int i, reg;\
2231
    for(i=0;i<2;i++) {\
2232
    a.q[0] = test_values[2*i][0];\
2233
    a.q[1] = test_values[2*i][1];\
2234
    asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
2235
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2236
           #op,\
2237
           a.q[1], a.q[0],\
2238
           reg);\
2239
    }\
2240
}
2241

    
2242
#define SSE_OPS(a) \
2243
SSE_OP(a ## ps);\
2244
SSE_OP(a ## ss);
2245

    
2246
#define SSE_OPD(a) \
2247
SSE_OP(a ## pd);\
2248
SSE_OP(a ## sd);
2249

    
2250
#define SSE_COMI(op, field)\
2251
{\
2252
    unsigned int eflags;\
2253
    XMMReg a, b;\
2254
    a.field[0] = a1;\
2255
    b.field[0] = b1;\
2256
    asm volatile (#op " %2, %1\n"\
2257
        "pushf\n"\
2258
        "pop %0\n"\
2259
        : "=m" (eflags)\
2260
        : "x" (a.dq), "x" (b.dq));\
2261
    printf("%-9s: a=%f b=%f cc=%04x\n",\
2262
           #op, a1, b1,\
2263
           eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
2264
}
2265

    
2266
void test_sse_comi(double a1, double b1)
2267
{
2268
    SSE_COMI(ucomiss, s);
2269
    SSE_COMI(ucomisd, d);
2270
    SSE_COMI(comiss, s);
2271
    SSE_COMI(comisd, d);
2272
}
2273

    
2274
#define CVT_OP_XMM(op)\
2275
{\
2276
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2277
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2278
           #op,\
2279
           a.q[1], a.q[0],\
2280
           r.q[1], r.q[0]);\
2281
}
2282

    
2283
/* Force %xmm0 usage to avoid the case where both register index are 0
2284
   to test intruction decoding more extensively */
2285
#define CVT_OP_XMM2MMX(op)\
2286
{\
2287
    asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
2288
                  : "%xmm0"); \
2289
    asm volatile("emms\n"); \
2290
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
2291
           #op,\
2292
           a.q[1], a.q[0],\
2293
           r.q[0]);\
2294
}
2295

    
2296
#define CVT_OP_MMX2XMM(op)\
2297
{\
2298
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
2299
    asm volatile("emms\n"); \
2300
    printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
2301
           #op,\
2302
           a.q[0],\
2303
           r.q[1], r.q[0]);\
2304
}
2305

    
2306
#define CVT_OP_REG2XMM(op)\
2307
{\
2308
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
2309
    printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
2310
           #op,\
2311
           a.l[0],\
2312
           r.q[1], r.q[0]);\
2313
}
2314

    
2315
#define CVT_OP_XMM2REG(op)\
2316
{\
2317
    asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
2318
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2319
           #op,\
2320
           a.q[1], a.q[0],\
2321
           r.l[0]);\
2322
}
2323

    
2324
struct fpxstate {
2325
    uint16_t fpuc;
2326
    uint16_t fpus;
2327
    uint16_t fptag;
2328
    uint16_t fop;
2329
    uint32_t fpuip;
2330
    uint16_t cs_sel;
2331
    uint16_t dummy0;
2332
    uint32_t fpudp;
2333
    uint16_t ds_sel;
2334
    uint16_t dummy1;
2335
    uint32_t mxcsr;
2336
    uint32_t mxcsr_mask;
2337
    uint8_t fpregs1[8 * 16];
2338
    uint8_t xmm_regs[8 * 16];
2339
    uint8_t dummy2[224];
2340
};
2341

    
2342
static struct fpxstate fpx_state __attribute__((aligned(16)));
2343
static struct fpxstate fpx_state2 __attribute__((aligned(16)));
2344

    
2345
void test_fxsave(void)
2346
{
2347
    struct fpxstate *fp = &fpx_state;
2348
    struct fpxstate *fp2 = &fpx_state2;
2349
    int i, nb_xmm;
2350
    XMMReg a, b;
2351
    a.q[0] = test_values[0][0];
2352
    a.q[1] = test_values[0][1];
2353
    b.q[0] = test_values[1][0];
2354
    b.q[1] = test_values[1][1];
2355

    
2356
    asm("movdqa %2, %%xmm0\n"
2357
        "movdqa %3, %%xmm7\n"
2358
#if defined(__x86_64__)
2359
        "movdqa %2, %%xmm15\n"
2360
#endif
2361
        " fld1\n"
2362
        " fldpi\n"
2363
        " fldln2\n"
2364
        " fxsave %0\n"
2365
        " fxrstor %0\n"
2366
        " fxsave %1\n"
2367
        " fninit\n"
2368
        : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
2369
        : "m" (a), "m" (b));
2370
    printf("fpuc=%04x\n", fp->fpuc);
2371
    printf("fpus=%04x\n", fp->fpus);
2372
    printf("fptag=%04x\n", fp->fptag);
2373
    for(i = 0; i < 3; i++) {
2374
        printf("ST%d: " FMT64X " %04x\n",
2375
               i,
2376
               *(uint64_t *)&fp->fpregs1[i * 16],
2377
               *(uint16_t *)&fp->fpregs1[i * 16 + 8]);
2378
    }
2379
    printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
2380
#if defined(__x86_64__)
2381
    nb_xmm = 16;
2382
#else
2383
    nb_xmm = 8;
2384
#endif
2385
    for(i = 0; i < nb_xmm; i++) {
2386
        printf("xmm%d: " FMT64X "" FMT64X "\n",
2387
               i,
2388
               *(uint64_t *)&fp->xmm_regs[i * 16],
2389
               *(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
2390
    }
2391
}
2392

    
2393
void test_sse(void)
2394
{
2395
    XMMReg r, a, b;
2396
    int i;
2397

    
2398
    MMX_OP2(punpcklbw);
2399
    MMX_OP2(punpcklwd);
2400
    MMX_OP2(punpckldq);
2401
    MMX_OP2(packsswb);
2402
    MMX_OP2(pcmpgtb);
2403
    MMX_OP2(pcmpgtw);
2404
    MMX_OP2(pcmpgtd);
2405
    MMX_OP2(packuswb);
2406
    MMX_OP2(punpckhbw);
2407
    MMX_OP2(punpckhwd);
2408
    MMX_OP2(punpckhdq);
2409
    MMX_OP2(packssdw);
2410
    MMX_OP2(pcmpeqb);
2411
    MMX_OP2(pcmpeqw);
2412
    MMX_OP2(pcmpeqd);
2413

    
2414
    MMX_OP2(paddq);
2415
    MMX_OP2(pmullw);
2416
    MMX_OP2(psubusb);
2417
    MMX_OP2(psubusw);
2418
    MMX_OP2(pminub);
2419
    MMX_OP2(pand);
2420
    MMX_OP2(paddusb);
2421
    MMX_OP2(paddusw);
2422
    MMX_OP2(pmaxub);
2423
    MMX_OP2(pandn);
2424

    
2425
    MMX_OP2(pmulhuw);
2426
    MMX_OP2(pmulhw);
2427

    
2428
    MMX_OP2(psubsb);
2429
    MMX_OP2(psubsw);
2430
    MMX_OP2(pminsw);
2431
    MMX_OP2(por);
2432
    MMX_OP2(paddsb);
2433
    MMX_OP2(paddsw);
2434
    MMX_OP2(pmaxsw);
2435
    MMX_OP2(pxor);
2436
    MMX_OP2(pmuludq);
2437
    MMX_OP2(pmaddwd);
2438
    MMX_OP2(psadbw);
2439
    MMX_OP2(psubb);
2440
    MMX_OP2(psubw);
2441
    MMX_OP2(psubd);
2442
    MMX_OP2(psubq);
2443
    MMX_OP2(paddb);
2444
    MMX_OP2(paddw);
2445
    MMX_OP2(paddd);
2446

    
2447
    MMX_OP2(pavgb);
2448
    MMX_OP2(pavgw);
2449

    
2450
    asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
2451
    printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
2452

    
2453
    asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
2454
    printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
2455

    
2456
    a.q[0] = test_values[0][0];
2457
    a.q[1] = test_values[0][1];
2458
    asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2459
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2460

    
2461
    asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2462
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2463

    
2464
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2465
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2466

    
2467
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2468
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2469

    
2470
    {
2471
        r.q[0] = -1;
2472
        r.q[1] = -1;
2473

    
2474
        a.q[0] = test_values[0][0];
2475
        a.q[1] = test_values[0][1];
2476
        b.q[0] = test_values[1][0];
2477
        b.q[1] = test_values[1][1];
2478
        asm volatile("maskmovq %1, %0" :
2479
                     : "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
2480
                     : "memory");
2481
        printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
2482
               "maskmov",
2483
               r.q[0],
2484
               a.q[0],
2485
               b.q[0]);
2486
        asm volatile("maskmovdqu %1, %0" :
2487
                     : "x" (a.dq), "x" (b.dq), "D" (&r)
2488
                     : "memory");
2489
        printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
2490
               "maskmov",
2491
               r.q[1], r.q[0],
2492
               a.q[1], a.q[0],
2493
               b.q[1], b.q[0]);
2494
    }
2495

    
2496
    asm volatile ("emms");
2497

    
2498
    SSE_OP2(punpcklqdq);
2499
    SSE_OP2(punpckhqdq);
2500
    SSE_OP2(andps);
2501
    SSE_OP2(andpd);
2502
    SSE_OP2(andnps);
2503
    SSE_OP2(andnpd);
2504
    SSE_OP2(orps);
2505
    SSE_OP2(orpd);
2506
    SSE_OP2(xorps);
2507
    SSE_OP2(xorpd);
2508

    
2509
    SSE_OP2(unpcklps);
2510
    SSE_OP2(unpcklpd);
2511
    SSE_OP2(unpckhps);
2512
    SSE_OP2(unpckhpd);
2513

    
2514
    SHUF_OP(shufps, 0x78);
2515
    SHUF_OP(shufpd, 0x02);
2516

    
2517
    PSHUF_OP(pshufd, 0x78);
2518
    PSHUF_OP(pshuflw, 0x78);
2519
    PSHUF_OP(pshufhw, 0x78);
2520

    
2521
    SHIFT_OP(psrlw, 7);
2522
    SHIFT_OP(psrlw, 16);
2523
    SHIFT_OP(psraw, 7);
2524
    SHIFT_OP(psraw, 16);
2525
    SHIFT_OP(psllw, 7);
2526
    SHIFT_OP(psllw, 16);
2527

    
2528
    SHIFT_OP(psrld, 7);
2529
    SHIFT_OP(psrld, 32);
2530
    SHIFT_OP(psrad, 7);
2531
    SHIFT_OP(psrad, 32);
2532
    SHIFT_OP(pslld, 7);
2533
    SHIFT_OP(pslld, 32);
2534

    
2535
    SHIFT_OP(psrlq, 7);
2536
    SHIFT_OP(psrlq, 32);
2537
    SHIFT_OP(psllq, 7);
2538
    SHIFT_OP(psllq, 32);
2539

    
2540
    SHIFT_IM(psrldq, 16);
2541
    SHIFT_IM(psrldq, 7);
2542
    SHIFT_IM(pslldq, 16);
2543
    SHIFT_IM(pslldq, 7);
2544

    
2545
    MOVMSK(movmskps);
2546
    MOVMSK(movmskpd);
2547

    
2548
    /* FPU specific ops */
2549

    
2550
    {
2551
        uint32_t mxcsr;
2552
        asm volatile("stmxcsr %0" : "=m" (mxcsr));
2553
        printf("mxcsr=%08x\n", mxcsr & 0x1f80);
2554
        asm volatile("ldmxcsr %0" : : "m" (mxcsr));
2555
    }
2556

    
2557
    test_sse_comi(2, -1);
2558
    test_sse_comi(2, 2);
2559
    test_sse_comi(2, 3);
2560
    test_sse_comi(2, q_nan.d);
2561
    test_sse_comi(q_nan.d, -1);
2562

    
2563
    for(i = 0; i < 2; i++) {
2564
        a.s[0] = 2.7;
2565
        a.s[1] = 3.4;
2566
        a.s[2] = 4;
2567
        a.s[3] = -6.3;
2568
        b.s[0] = 45.7;
2569
        b.s[1] = 353.4;
2570
        b.s[2] = 4;
2571
        b.s[3] = 56.3;
2572
        if (i == 1) {
2573
            a.s[0] = q_nan.d;
2574
            b.s[3] = q_nan.d;
2575
        }
2576

    
2577
        SSE_OPS(add);
2578
        SSE_OPS(mul);
2579
        SSE_OPS(sub);
2580
        SSE_OPS(min);
2581
        SSE_OPS(div);
2582
        SSE_OPS(max);
2583
        SSE_OPS(sqrt);
2584
        SSE_OPS(cmpeq);
2585
        SSE_OPS(cmplt);
2586
        SSE_OPS(cmple);
2587
        SSE_OPS(cmpunord);
2588
        SSE_OPS(cmpneq);
2589
        SSE_OPS(cmpnlt);
2590
        SSE_OPS(cmpnle);
2591
        SSE_OPS(cmpord);
2592

    
2593

    
2594
        a.d[0] = 2.7;
2595
        a.d[1] = -3.4;
2596
        b.d[0] = 45.7;
2597
        b.d[1] = -53.4;
2598
        if (i == 1) {
2599
            a.d[0] = q_nan.d;
2600
            b.d[1] = q_nan.d;
2601
        }
2602
        SSE_OPD(add);
2603
        SSE_OPD(mul);
2604
        SSE_OPD(sub);
2605
        SSE_OPD(min);
2606
        SSE_OPD(div);
2607
        SSE_OPD(max);
2608
        SSE_OPD(sqrt);
2609
        SSE_OPD(cmpeq);
2610
        SSE_OPD(cmplt);
2611
        SSE_OPD(cmple);
2612
        SSE_OPD(cmpunord);
2613
        SSE_OPD(cmpneq);
2614
        SSE_OPD(cmpnlt);
2615
        SSE_OPD(cmpnle);
2616
        SSE_OPD(cmpord);
2617
    }
2618

    
2619
    /* float to float/int */
2620
    a.s[0] = 2.7;
2621
    a.s[1] = 3.4;
2622
    a.s[2] = 4;
2623
    a.s[3] = -6.3;
2624
    CVT_OP_XMM(cvtps2pd);
2625
    CVT_OP_XMM(cvtss2sd);
2626
    CVT_OP_XMM2MMX(cvtps2pi);
2627
    CVT_OP_XMM2MMX(cvttps2pi);
2628
    CVT_OP_XMM2REG(cvtss2si);
2629
    CVT_OP_XMM2REG(cvttss2si);
2630
    CVT_OP_XMM(cvtps2dq);
2631
    CVT_OP_XMM(cvttps2dq);
2632

    
2633
    a.d[0] = 2.6;
2634
    a.d[1] = -3.4;
2635
    CVT_OP_XMM(cvtpd2ps);
2636
    CVT_OP_XMM(cvtsd2ss);
2637
    CVT_OP_XMM2MMX(cvtpd2pi);
2638
    CVT_OP_XMM2MMX(cvttpd2pi);
2639
    CVT_OP_XMM2REG(cvtsd2si);
2640
    CVT_OP_XMM2REG(cvttsd2si);
2641
    CVT_OP_XMM(cvtpd2dq);
2642
    CVT_OP_XMM(cvttpd2dq);
2643

    
2644
    /* sse/mmx moves */
2645
    CVT_OP_XMM2MMX(movdq2q);
2646
    CVT_OP_MMX2XMM(movq2dq);
2647

    
2648
    /* int to float */
2649
    a.l[0] = -6;
2650
    a.l[1] = 2;
2651
    a.l[2] = 100;
2652
    a.l[3] = -60000;
2653
    CVT_OP_MMX2XMM(cvtpi2ps);
2654
    CVT_OP_MMX2XMM(cvtpi2pd);
2655
    CVT_OP_REG2XMM(cvtsi2ss);
2656
    CVT_OP_REG2XMM(cvtsi2sd);
2657
    CVT_OP_XMM(cvtdq2ps);
2658
    CVT_OP_XMM(cvtdq2pd);
2659

    
2660
    /* XXX: test PNI insns */
2661
#if 0
2662
    SSE_OP2(movshdup);
2663
#endif
2664
    asm volatile ("emms");
2665
}
2666

    
2667
#endif
2668

    
2669
#define TEST_CONV_RAX(op)\
2670
{\
2671
    unsigned long a, r;\
2672
    a = i2l(0x8234a6f8);\
2673
    r = a;\
2674
    asm volatile(#op : "=a" (r) : "0" (r));\
2675
    printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
2676
}
2677

    
2678
#define TEST_CONV_RAX_RDX(op)\
2679
{\
2680
    unsigned long a, d, r, rh;                   \
2681
    a = i2l(0x8234a6f8);\
2682
    d = i2l(0x8345a1f2);\
2683
    r = a;\
2684
    rh = d;\
2685
    asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh));   \
2686
    printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh);  \
2687
}
2688

    
2689
void test_conv(void)
2690
{
2691
    TEST_CONV_RAX(cbw);
2692
    TEST_CONV_RAX(cwde);
2693
#if defined(__x86_64__)
2694
    TEST_CONV_RAX(cdqe);
2695
#endif
2696

    
2697
    TEST_CONV_RAX_RDX(cwd);
2698
    TEST_CONV_RAX_RDX(cdq);
2699
#if defined(__x86_64__)
2700
    TEST_CONV_RAX_RDX(cqo);
2701
#endif
2702

    
2703
    {
2704
        unsigned long a, r;
2705
        a = i2l(0x12345678);
2706
        asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
2707
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
2708
    }
2709
#if defined(__x86_64__)
2710
    {
2711
        unsigned long a, r;
2712
        a = i2l(0x12345678);
2713
        asm volatile("bswapq %0" : "=r" (r) : "0" (a));
2714
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
2715
    }
2716
#endif
2717
}
2718

    
2719
extern void *__start_initcall;
2720
extern void *__stop_initcall;
2721

    
2722

    
2723
int main(int argc, char **argv)
2724
{
2725
    void **ptr;
2726
    void (*func)(void);
2727

    
2728
    ptr = &__start_initcall;
2729
    while (ptr != &__stop_initcall) {
2730
        func = *ptr++;
2731
        func();
2732
    }
2733
    test_bsx();
2734
    test_mul();
2735
    test_jcc();
2736
    test_loop();
2737
    test_floats();
2738
#if !defined(__x86_64__)
2739
    test_bcd();
2740
#endif
2741
    test_xchg();
2742
    test_string();
2743
    test_misc();
2744
    test_lea();
2745
#ifdef TEST_SEGS
2746
    test_segs();
2747
    test_code16();
2748
#endif
2749
#ifdef TEST_VM86
2750
    test_vm86();
2751
#endif
2752
#if !defined(__x86_64__)
2753
    test_exceptions();
2754
    test_self_modifying_code();
2755
    test_single_step();
2756
#endif
2757
    test_enter();
2758
    test_conv();
2759
#ifdef TEST_SSE
2760
    test_sse();
2761
    test_fxsave();
2762
#endif
2763
    return 0;
2764
}