Statistics
| Branch: | Revision:

root / hw / block / nvme.c @ f3c507ad

History | View | Annotate | Download (24 kB)

1
/*
2
 * QEMU NVM Express Controller
3
 *
4
 * Copyright (c) 2012, Intel Corporation
5
 *
6
 * Written by Keith Busch <keith.busch@intel.com>
7
 *
8
 * This code is licensed under the GNU GPL v2 or later.
9
 */
10

    
11
/**
12
 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13
 *
14
 *  http://www.nvmexpress.org/resources/
15
 */
16

    
17
/**
18
 * Usage: add options:
19
 *      -drive file=<file>,if=none,id=<drive_id>
20
 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21
 */
22

    
23
#include <hw/block/block.h>
24
#include <hw/hw.h>
25
#include <hw/pci/msix.h>
26
#include <hw/pci/pci.h>
27

    
28
#include "nvme.h"
29

    
30
static void nvme_process_sq(void *opaque);
31

    
32
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
33
{
34
    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
35
}
36

    
37
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
38
{
39
    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
40
}
41

    
42
static void nvme_inc_cq_tail(NvmeCQueue *cq)
43
{
44
    cq->tail++;
45
    if (cq->tail >= cq->size) {
46
        cq->tail = 0;
47
        cq->phase = !cq->phase;
48
    }
49
}
50

    
51
static void nvme_inc_sq_head(NvmeSQueue *sq)
52
{
53
    sq->head = (sq->head + 1) % sq->size;
54
}
55

    
56
static uint8_t nvme_cq_full(NvmeCQueue *cq)
57
{
58
    return (cq->tail + 1) % cq->size == cq->head;
59
}
60

    
61
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
62
{
63
    return sq->head == sq->tail;
64
}
65

    
66
static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
67
{
68
    if (cq->irq_enabled) {
69
        if (msix_enabled(&(n->parent_obj))) {
70
            msix_notify(&(n->parent_obj), cq->vector);
71
        } else {
72
            qemu_irq_pulse(n->parent_obj.irq[0]);
73
        }
74
    }
75
}
76

    
77
static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
78
    uint32_t len, NvmeCtrl *n)
79
{
80
    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
81
    trans_len = MIN(len, trans_len);
82
    int num_prps = (len >> n->page_bits) + 1;
83

    
84
    if (!prp1) {
85
        return NVME_INVALID_FIELD | NVME_DNR;
86
    }
87

    
88
    qemu_sglist_init(qsg, num_prps, pci_dma_context(&n->parent_obj));
89
    qemu_sglist_add(qsg, prp1, trans_len);
90
    len -= trans_len;
91
    if (len) {
92
        if (!prp2) {
93
            goto unmap;
94
        }
95
        if (len > n->page_size) {
96
            uint64_t prp_list[n->max_prp_ents];
97
            uint32_t nents, prp_trans;
98
            int i = 0;
99

    
100
            nents = (len + n->page_size - 1) >> n->page_bits;
101
            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
102
            pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
103
            while (len != 0) {
104
                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
105

    
106
                if (i == n->max_prp_ents - 1 && len > n->page_size) {
107
                    if (!prp_ent || prp_ent & (n->page_size - 1)) {
108
                        goto unmap;
109
                    }
110

    
111
                    i = 0;
112
                    nents = (len + n->page_size - 1) >> n->page_bits;
113
                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
114
                    pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
115
                        prp_trans);
116
                    prp_ent = le64_to_cpu(prp_list[i]);
117
                }
118

    
119
                if (!prp_ent || prp_ent & (n->page_size - 1)) {
120
                    goto unmap;
121
                }
122

    
123
                trans_len = MIN(len, n->page_size);
124
                qemu_sglist_add(qsg, prp_ent, trans_len);
125
                len -= trans_len;
126
                i++;
127
            }
128
        } else {
129
            if (prp2 & (n->page_size - 1)) {
130
                goto unmap;
131
            }
132
            qemu_sglist_add(qsg, prp2, len);
133
        }
134
    }
135
    return NVME_SUCCESS;
136

    
137
 unmap:
138
    qemu_sglist_destroy(qsg);
139
    return NVME_INVALID_FIELD | NVME_DNR;
140
}
141

    
142
static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
143
    uint64_t prp1, uint64_t prp2)
144
{
145
    QEMUSGList qsg;
146

    
147
    if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
148
        return NVME_INVALID_FIELD | NVME_DNR;
149
    }
150
    if (dma_buf_read(ptr, len, &qsg)) {
151
        qemu_sglist_destroy(&qsg);
152
        return NVME_INVALID_FIELD | NVME_DNR;
153
    }
154
    return NVME_SUCCESS;
155
}
156

    
157
static void nvme_post_cqes(void *opaque)
158
{
159
    NvmeCQueue *cq = opaque;
160
    NvmeCtrl *n = cq->ctrl;
161
    NvmeRequest *req, *next;
162

    
163
    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
164
        NvmeSQueue *sq;
165
        hwaddr addr;
166

    
167
        if (nvme_cq_full(cq)) {
168
            break;
169
        }
170

    
171
        QTAILQ_REMOVE(&cq->req_list, req, entry);
172
        sq = req->sq;
173
        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
174
        req->cqe.sq_id = cpu_to_le16(sq->sqid);
175
        req->cqe.sq_head = cpu_to_le16(sq->head);
176
        addr = cq->dma_addr + cq->tail * n->cqe_size;
177
        nvme_inc_cq_tail(cq);
178
        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
179
            sizeof(req->cqe));
180
        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
181
    }
182
    nvme_isr_notify(n, cq);
183
}
184

    
185
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
186
{
187
    assert(cq->cqid == req->sq->cqid);
188
    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
189
    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
190
    qemu_mod_timer(cq->timer, qemu_get_clock_ns(vm_clock) + 500);
191
}
192

    
193
static void nvme_rw_cb(void *opaque, int ret)
194
{
195
    NvmeRequest *req = opaque;
196
    NvmeSQueue *sq = req->sq;
197
    NvmeCtrl *n = sq->ctrl;
198
    NvmeCQueue *cq = n->cq[sq->cqid];
199

    
200
    bdrv_acct_done(n->conf.bs, &req->acct);
201
    if (!ret) {
202
        req->status = NVME_SUCCESS;
203
    } else {
204
        req->status = NVME_INTERNAL_DEV_ERROR;
205
    }
206

    
207
    qemu_sglist_destroy(&req->qsg);
208
    nvme_enqueue_req_completion(cq, req);
209
}
210

    
211
static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
212
    NvmeRequest *req)
213
{
214
    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
215
    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
216
    uint64_t slba = le64_to_cpu(rw->slba);
217
    uint64_t prp1 = le64_to_cpu(rw->prp1);
218
    uint64_t prp2 = le64_to_cpu(rw->prp2);
219

    
220
    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
221
    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
222
    uint64_t data_size = nlb << data_shift;
223
    uint64_t aio_slba  = slba << (data_shift - BDRV_SECTOR_BITS);
224
    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
225

    
226
    if ((slba + nlb) > ns->id_ns.nsze) {
227
        return NVME_LBA_RANGE | NVME_DNR;
228
    }
229
    if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
230
        return NVME_INVALID_FIELD | NVME_DNR;
231
    }
232
    assert((nlb << data_shift) == req->qsg.size);
233

    
234
    dma_acct_start(n->conf.bs, &req->acct, &req->qsg, is_write ?
235
        BDRV_ACCT_WRITE : BDRV_ACCT_READ);
236
    req->aiocb = is_write ?
237
        dma_bdrv_write(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req) :
238
        dma_bdrv_read(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req);
239

    
240
    return NVME_NO_COMPLETE;
241
}
242

    
243
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
244
{
245
    NvmeNamespace *ns;
246
    uint32_t nsid = le32_to_cpu(cmd->nsid);
247

    
248
    if (nsid == 0 || nsid > n->num_namespaces) {
249
        return NVME_INVALID_NSID | NVME_DNR;
250
    }
251

    
252
    ns = &n->namespaces[nsid - 1];
253
    switch (cmd->opcode) {
254
    case NVME_CMD_FLUSH:
255
        return NVME_SUCCESS;
256
    case NVME_CMD_WRITE:
257
    case NVME_CMD_READ:
258
        return nvme_rw(n, ns, cmd, req);
259
    default:
260
        return NVME_INVALID_OPCODE | NVME_DNR;
261
    }
262
}
263

    
264
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
265
{
266
    n->sq[sq->sqid] = NULL;
267
    qemu_del_timer(sq->timer);
268
    qemu_free_timer(sq->timer);
269
    g_free(sq->io_req);
270
    if (sq->sqid) {
271
        g_free(sq);
272
    }
273
}
274

    
275
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
276
{
277
    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
278
    NvmeRequest *req, *next;
279
    NvmeSQueue *sq;
280
    NvmeCQueue *cq;
281
    uint16_t qid = le16_to_cpu(c->qid);
282

    
283
    if (!qid || nvme_check_sqid(n, qid)) {
284
        return NVME_INVALID_QID | NVME_DNR;
285
    }
286

    
287
    sq = n->sq[qid];
288
    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
289
        req = QTAILQ_FIRST(&sq->out_req_list);
290
        assert(req->aiocb);
291
        bdrv_aio_cancel(req->aiocb);
292
    }
293
    if (!nvme_check_cqid(n, sq->cqid)) {
294
        cq = n->cq[sq->cqid];
295
        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
296

    
297
        nvme_post_cqes(cq);
298
        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
299
            if (req->sq == sq) {
300
                QTAILQ_REMOVE(&cq->req_list, req, entry);
301
                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
302
            }
303
        }
304
    }
305

    
306
    nvme_free_sq(sq, n);
307
    return NVME_SUCCESS;
308
}
309

    
310
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
311
    uint16_t sqid, uint16_t cqid, uint16_t size)
312
{
313
    int i;
314
    NvmeCQueue *cq;
315

    
316
    sq->ctrl = n;
317
    sq->dma_addr = dma_addr;
318
    sq->sqid = sqid;
319
    sq->size = size;
320
    sq->cqid = cqid;
321
    sq->head = sq->tail = 0;
322
    sq->io_req = g_malloc(sq->size * sizeof(*sq->io_req));
323

    
324
    QTAILQ_INIT(&sq->req_list);
325
    QTAILQ_INIT(&sq->out_req_list);
326
    for (i = 0; i < sq->size; i++) {
327
        sq->io_req[i].sq = sq;
328
        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
329
    }
330
    sq->timer = qemu_new_timer_ns(vm_clock, nvme_process_sq, sq);
331

    
332
    assert(n->cq[cqid]);
333
    cq = n->cq[cqid];
334
    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
335
    n->sq[sqid] = sq;
336
}
337

    
338
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
339
{
340
    NvmeSQueue *sq;
341
    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
342

    
343
    uint16_t cqid = le16_to_cpu(c->cqid);
344
    uint16_t sqid = le16_to_cpu(c->sqid);
345
    uint16_t qsize = le16_to_cpu(c->qsize);
346
    uint16_t qflags = le16_to_cpu(c->sq_flags);
347
    uint64_t prp1 = le64_to_cpu(c->prp1);
348

    
349
    if (!cqid || nvme_check_cqid(n, cqid)) {
350
        return NVME_INVALID_CQID | NVME_DNR;
351
    }
352
    if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
353
        return NVME_INVALID_QID | NVME_DNR;
354
    }
355
    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
356
        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
357
    }
358
    if (!prp1 || prp1 & (n->page_size - 1)) {
359
        return NVME_INVALID_FIELD | NVME_DNR;
360
    }
361
    if (!(NVME_SQ_FLAGS_PC(qflags))) {
362
        return NVME_INVALID_FIELD | NVME_DNR;
363
    }
364
    sq = g_malloc0(sizeof(*sq));
365
    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
366
    return NVME_SUCCESS;
367
}
368

    
369
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
370
{
371
    n->cq[cq->cqid] = NULL;
372
    qemu_del_timer(cq->timer);
373
    qemu_free_timer(cq->timer);
374
    msix_vector_unuse(&n->parent_obj, cq->vector);
375
    if (cq->cqid) {
376
        g_free(cq);
377
    }
378
}
379

    
380
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
381
{
382
    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
383
    NvmeCQueue *cq;
384
    uint16_t qid = le16_to_cpu(c->qid);
385

    
386
    if (!qid || nvme_check_cqid(n, qid)) {
387
        return NVME_INVALID_CQID | NVME_DNR;
388
    }
389

    
390
    cq = n->cq[qid];
391
    if (!QTAILQ_EMPTY(&cq->sq_list)) {
392
        return NVME_INVALID_QUEUE_DEL;
393
    }
394
    nvme_free_cq(cq, n);
395
    return NVME_SUCCESS;
396
}
397

    
398
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
399
    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
400
{
401
    cq->ctrl = n;
402
    cq->cqid = cqid;
403
    cq->size = size;
404
    cq->dma_addr = dma_addr;
405
    cq->phase = 1;
406
    cq->irq_enabled = irq_enabled;
407
    cq->vector = vector;
408
    cq->head = cq->tail = 0;
409
    QTAILQ_INIT(&cq->req_list);
410
    QTAILQ_INIT(&cq->sq_list);
411
    msix_vector_use(&n->parent_obj, cq->vector);
412
    n->cq[cqid] = cq;
413
    cq->timer = qemu_new_timer_ns(vm_clock, nvme_post_cqes, cq);
414
}
415

    
416
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
417
{
418
    NvmeCQueue *cq;
419
    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
420
    uint16_t cqid = le16_to_cpu(c->cqid);
421
    uint16_t vector = le16_to_cpu(c->irq_vector);
422
    uint16_t qsize = le16_to_cpu(c->qsize);
423
    uint16_t qflags = le16_to_cpu(c->cq_flags);
424
    uint64_t prp1 = le64_to_cpu(c->prp1);
425

    
426
    if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
427
        return NVME_INVALID_CQID | NVME_DNR;
428
    }
429
    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
430
        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
431
    }
432
    if (!prp1) {
433
        return NVME_INVALID_FIELD | NVME_DNR;
434
    }
435
    if (vector > n->num_queues) {
436
        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
437
    }
438
    if (!(NVME_CQ_FLAGS_PC(qflags))) {
439
        return NVME_INVALID_FIELD | NVME_DNR;
440
    }
441

    
442
    cq = g_malloc0(sizeof(*cq));
443
    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
444
        NVME_CQ_FLAGS_IEN(qflags));
445
    return NVME_SUCCESS;
446
}
447

    
448
static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
449
{
450
    NvmeNamespace *ns;
451
    NvmeIdentify *c = (NvmeIdentify *)cmd;
452
    uint32_t cns  = le32_to_cpu(c->cns);
453
    uint32_t nsid = le32_to_cpu(c->nsid);
454
    uint64_t prp1 = le64_to_cpu(c->prp1);
455
    uint64_t prp2 = le64_to_cpu(c->prp2);
456

    
457
    if (cns) {
458
        return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
459
            prp1, prp2);
460
    }
461
    if (nsid == 0 || nsid > n->num_namespaces) {
462
        return NVME_INVALID_NSID | NVME_DNR;
463
    }
464

    
465
    ns = &n->namespaces[nsid - 1];
466
    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
467
        prp1, prp2);
468
}
469

    
470
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
471
{
472
    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
473

    
474
    switch (dw10) {
475
    case NVME_NUMBER_OF_QUEUES:
476
        req->cqe.result = cpu_to_le32(n->num_queues);
477
        break;
478
    default:
479
        return NVME_INVALID_FIELD | NVME_DNR;
480
    }
481
    return NVME_SUCCESS;
482
}
483

    
484
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
485
{
486
    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
487

    
488
    switch (dw10) {
489
    case NVME_NUMBER_OF_QUEUES:
490
        req->cqe.result = cpu_to_le32(n->num_queues);
491
        break;
492
    default:
493
        return NVME_INVALID_FIELD | NVME_DNR;
494
    }
495
    return NVME_SUCCESS;
496
}
497

    
498
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
499
{
500
    switch (cmd->opcode) {
501
    case NVME_ADM_CMD_DELETE_SQ:
502
        return nvme_del_sq(n, cmd);
503
    case NVME_ADM_CMD_CREATE_SQ:
504
        return nvme_create_sq(n, cmd);
505
    case NVME_ADM_CMD_DELETE_CQ:
506
        return nvme_del_cq(n, cmd);
507
    case NVME_ADM_CMD_CREATE_CQ:
508
        return nvme_create_cq(n, cmd);
509
    case NVME_ADM_CMD_IDENTIFY:
510
        return nvme_identify(n, cmd);
511
    case NVME_ADM_CMD_SET_FEATURES:
512
        return nvme_set_feature(n, cmd, req);
513
    case NVME_ADM_CMD_GET_FEATURES:
514
        return nvme_get_feature(n, cmd, req);
515
    default:
516
        return NVME_INVALID_OPCODE | NVME_DNR;
517
    }
518
}
519

    
520
static void nvme_process_sq(void *opaque)
521
{
522
    NvmeSQueue *sq = opaque;
523
    NvmeCtrl *n = sq->ctrl;
524
    NvmeCQueue *cq = n->cq[sq->cqid];
525

    
526
    uint16_t status;
527
    hwaddr addr;
528
    NvmeCmd cmd;
529
    NvmeRequest *req;
530

    
531
    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
532
        addr = sq->dma_addr + sq->head * n->sqe_size;
533
        pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
534
        nvme_inc_sq_head(sq);
535

    
536
        req = QTAILQ_FIRST(&sq->req_list);
537
        QTAILQ_REMOVE(&sq->req_list, req, entry);
538
        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
539
        memset(&req->cqe, 0, sizeof(req->cqe));
540
        req->cqe.cid = cmd.cid;
541

    
542
        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
543
            nvme_admin_cmd(n, &cmd, req);
544
        if (status != NVME_NO_COMPLETE) {
545
            req->status = status;
546
            nvme_enqueue_req_completion(cq, req);
547
        }
548
    }
549
}
550

    
551
static void nvme_clear_ctrl(NvmeCtrl *n)
552
{
553
    int i;
554

    
555
    for (i = 0; i < n->num_queues; i++) {
556
        if (n->sq[i] != NULL) {
557
            nvme_free_sq(n->sq[i], n);
558
        }
559
    }
560
    for (i = 0; i < n->num_queues; i++) {
561
        if (n->cq[i] != NULL) {
562
            nvme_free_cq(n->cq[i], n);
563
        }
564
    }
565

    
566
    bdrv_flush(n->conf.bs);
567
    n->bar.cc = 0;
568
}
569

    
570
static int nvme_start_ctrl(NvmeCtrl *n)
571
{
572
    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
573
    uint32_t page_size = 1 << page_bits;
574

    
575
    if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
576
            n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
577
            NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
578
            NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
579
            NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
580
            NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
581
            NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
582
            NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
583
            !NVME_AQA_ASQS(n->bar.aqa) || NVME_AQA_ASQS(n->bar.aqa) > 4095 ||
584
            !NVME_AQA_ACQS(n->bar.aqa) || NVME_AQA_ACQS(n->bar.aqa) > 4095) {
585
        return -1;
586
    }
587

    
588
    n->page_bits = page_bits;
589
    n->page_size = page_size;
590
    n->max_prp_ents = n->page_size / sizeof(uint64_t);
591
    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
592
    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
593
    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
594
        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
595
    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
596
        NVME_AQA_ASQS(n->bar.aqa) + 1);
597

    
598
    return 0;
599
}
600

    
601
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
602
    unsigned size)
603
{
604
    switch (offset) {
605
    case 0xc:
606
        n->bar.intms |= data & 0xffffffff;
607
        n->bar.intmc = n->bar.intms;
608
        break;
609
    case 0x10:
610
        n->bar.intms &= ~(data & 0xffffffff);
611
        n->bar.intmc = n->bar.intms;
612
        break;
613
    case 0x14:
614
        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
615
            n->bar.cc = data;
616
            if (nvme_start_ctrl(n)) {
617
                n->bar.csts = NVME_CSTS_FAILED;
618
            } else {
619
                n->bar.csts = NVME_CSTS_READY;
620
            }
621
        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
622
            nvme_clear_ctrl(n);
623
            n->bar.csts &= ~NVME_CSTS_READY;
624
        }
625
        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
626
                nvme_clear_ctrl(n);
627
                n->bar.cc = data;
628
                n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
629
        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
630
                n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
631
                n->bar.cc = data;
632
        }
633
        break;
634
    case 0x24:
635
        n->bar.aqa = data & 0xffffffff;
636
        break;
637
    case 0x28:
638
        n->bar.asq = data;
639
        break;
640
    case 0x2c:
641
        n->bar.asq |= data << 32;
642
        break;
643
    case 0x30:
644
        n->bar.acq = data;
645
        break;
646
    case 0x34:
647
        n->bar.acq |= data << 32;
648
        break;
649
    default:
650
        break;
651
    }
652
}
653

    
654
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
655
{
656
    NvmeCtrl *n = (NvmeCtrl *)opaque;
657
    uint8_t *ptr = (uint8_t *)&n->bar;
658
    uint64_t val = 0;
659

    
660
    if (addr < sizeof(n->bar)) {
661
        memcpy(&val, ptr + addr, size);
662
    }
663
    return val;
664
}
665

    
666
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
667
{
668
    uint32_t qid;
669

    
670
    if (addr & ((1 << 2) - 1)) {
671
        return;
672
    }
673

    
674
    if (((addr - 0x1000) >> 2) & 1) {
675
        uint16_t new_head = val & 0xffff;
676
        int start_sqs;
677
        NvmeCQueue *cq;
678

    
679
        qid = (addr - (0x1000 + (1 << 2))) >> 3;
680
        if (nvme_check_cqid(n, qid)) {
681
            return;
682
        }
683

    
684
        cq = n->cq[qid];
685
        if (new_head >= cq->size) {
686
            return;
687
        }
688

    
689
        start_sqs = nvme_cq_full(cq) ? 1 : 0;
690
        cq->head = new_head;
691
        if (start_sqs) {
692
            NvmeSQueue *sq;
693
            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
694
                qemu_mod_timer(sq->timer, qemu_get_clock_ns(vm_clock) + 500);
695
            }
696
            qemu_mod_timer(cq->timer, qemu_get_clock_ns(vm_clock) + 500);
697
        }
698

    
699
        if (cq->tail != cq->head) {
700
            nvme_isr_notify(n, cq);
701
        }
702
    } else {
703
        uint16_t new_tail = val & 0xffff;
704
        NvmeSQueue *sq;
705

    
706
        qid = (addr - 0x1000) >> 3;
707
        if (nvme_check_sqid(n, qid)) {
708
            return;
709
        }
710

    
711
        sq = n->sq[qid];
712
        if (new_tail >= sq->size) {
713
            return;
714
        }
715

    
716
        sq->tail = new_tail;
717
        qemu_mod_timer(sq->timer, qemu_get_clock_ns(vm_clock) + 500);
718
    }
719
}
720

    
721
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
722
    unsigned size)
723
{
724
    NvmeCtrl *n = (NvmeCtrl *)opaque;
725
    if (addr < sizeof(n->bar)) {
726
        nvme_write_bar(n, addr, data, size);
727
    } else if (addr >= 0x1000) {
728
        nvme_process_db(n, addr, data);
729
    }
730
}
731

    
732
static const MemoryRegionOps nvme_mmio_ops = {
733
    .read = nvme_mmio_read,
734
    .write = nvme_mmio_write,
735
    .endianness = DEVICE_LITTLE_ENDIAN,
736
    .impl = {
737
        .min_access_size = 2,
738
        .max_access_size = 8,
739
    },
740
};
741

    
742
static int nvme_init(PCIDevice *pci_dev)
743
{
744
    NvmeCtrl *n = NVME(pci_dev);
745
    NvmeIdCtrl *id = &n->id_ctrl;
746

    
747
    int i;
748
    int64_t bs_size;
749
    uint8_t *pci_conf;
750

    
751
    if (!(n->conf.bs)) {
752
        return -1;
753
    }
754

    
755
    bs_size =  bdrv_getlength(n->conf.bs);
756
    if (bs_size <= 0) {
757
        return -1;
758
    }
759

    
760
    blkconf_serial(&n->conf, &n->serial);
761
    if (!n->serial) {
762
        return -1;
763
    }
764

    
765
    pci_conf = pci_dev->config;
766
    pci_conf[PCI_INTERRUPT_PIN] = 1;
767
    pci_config_set_prog_interface(pci_dev->config, 0x2);
768
    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
769
    pcie_endpoint_cap_init(&n->parent_obj, 0x80);
770

    
771
    n->num_namespaces = 1;
772
    n->num_queues = 64;
773
    n->reg_size = 1 << qemu_fls(0x1004 + 2 * (n->num_queues + 1) * 4);
774
    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
775

    
776
    n->namespaces = g_malloc0(sizeof(*n->namespaces)*n->num_namespaces);
777
    n->sq = g_malloc0(sizeof(*n->sq)*n->num_queues);
778
    n->cq = g_malloc0(sizeof(*n->cq)*n->num_queues);
779

    
780
    memory_region_init_io(&n->iomem, &nvme_mmio_ops, n, "nvme", n->reg_size);
781
    pci_register_bar(&n->parent_obj, 0,
782
        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
783
        &n->iomem);
784
    msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
785

    
786
    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
787
    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
788
    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
789
    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
790
    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
791
    id->rab = 6;
792
    id->ieee[0] = 0x00;
793
    id->ieee[1] = 0x02;
794
    id->ieee[2] = 0xb3;
795
    id->oacs = cpu_to_le16(0);
796
    id->frmw = 7 << 1;
797
    id->lpa = 1 << 0;
798
    id->sqes = (0x6 << 4) | 0x6;
799
    id->cqes = (0x4 << 4) | 0x4;
800
    id->nn = cpu_to_le32(n->num_namespaces);
801
    id->psd[0].mp = cpu_to_le16(0x9c4);
802
    id->psd[0].enlat = cpu_to_le32(0x10);
803
    id->psd[0].exlat = cpu_to_le32(0x4);
804

    
805
    n->bar.cap = 0;
806
    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
807
    NVME_CAP_SET_CQR(n->bar.cap, 1);
808
    NVME_CAP_SET_AMS(n->bar.cap, 1);
809
    NVME_CAP_SET_TO(n->bar.cap, 0xf);
810
    NVME_CAP_SET_CSS(n->bar.cap, 1);
811

    
812
    n->bar.vs = 0x00010001;
813
    n->bar.intmc = n->bar.intms = 0;
814

    
815
    for (i = 0; i < n->num_namespaces; i++) {
816
        NvmeNamespace *ns = &n->namespaces[i];
817
        NvmeIdNs *id_ns = &ns->id_ns;
818
        id_ns->nsfeat = 0;
819
        id_ns->nlbaf = 0;
820
        id_ns->flbas = 0;
821
        id_ns->mc = 0;
822
        id_ns->dpc = 0;
823
        id_ns->dps = 0;
824
        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
825
        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
826
            cpu_to_le64(n->ns_size >>
827
                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
828
    }
829
    return 0;
830
}
831

    
832
static void nvme_exit(PCIDevice *pci_dev)
833
{
834
    NvmeCtrl *n = NVME(pci_dev);
835

    
836
    nvme_clear_ctrl(n);
837
    g_free(n->namespaces);
838
    g_free(n->cq);
839
    g_free(n->sq);
840
    msix_uninit_exclusive_bar(pci_dev);
841
    memory_region_destroy(&n->iomem);
842
}
843

    
844
static Property nvme_props[] = {
845
    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
846
    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
847
    DEFINE_PROP_END_OF_LIST(),
848
};
849

    
850
static const VMStateDescription nvme_vmstate = {
851
    .name = "nvme",
852
    .unmigratable = 1,
853
};
854

    
855
static void nvme_class_init(ObjectClass *oc, void *data)
856
{
857
    DeviceClass *dc = DEVICE_CLASS(oc);
858
    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
859

    
860
    pc->init = nvme_init;
861
    pc->exit = nvme_exit;
862
    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
863
    pc->vendor_id = PCI_VENDOR_ID_INTEL;
864
    pc->device_id = 0x5845;
865
    pc->revision = 1;
866
    pc->is_express = 1;
867

    
868
    dc->desc = "Non-Volatile Memory Express";
869
    dc->props = nvme_props;
870
    dc->vmsd = &nvme_vmstate;
871
}
872

    
873
static const TypeInfo nvme_info = {
874
    .name          = "nvme",
875
    .parent        = TYPE_PCI_DEVICE,
876
    .instance_size = sizeof(NvmeCtrl),
877
    .class_init    = nvme_class_init,
878
};
879

    
880
static void nvme_register_types(void)
881
{
882
    type_register_static(&nvme_info);
883
}
884

    
885
type_init(nvme_register_types)