Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ f5049756

History | View | Annotate | Download (9.7 kB)

1 2c0262af bellard
/*
2 5fafdf24 ths
 *  i386 execution defines
3 2c0262af bellard
 *
4 2c0262af bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 2c0262af bellard
 *
6 2c0262af bellard
 * This library is free software; you can redistribute it and/or
7 2c0262af bellard
 * modify it under the terms of the GNU Lesser General Public
8 2c0262af bellard
 * License as published by the Free Software Foundation; either
9 2c0262af bellard
 * version 2 of the License, or (at your option) any later version.
10 2c0262af bellard
 *
11 2c0262af bellard
 * This library is distributed in the hope that it will be useful,
12 2c0262af bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 2c0262af bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 2c0262af bellard
 * Lesser General Public License for more details.
15 2c0262af bellard
 *
16 2c0262af bellard
 * You should have received a copy of the GNU Lesser General Public
17 2c0262af bellard
 * License along with this library; if not, write to the Free Software
18 2c0262af bellard
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 2c0262af bellard
 */
20 7d3505c5 bellard
#include "config.h"
21 2c0262af bellard
#include "dyngen-exec.h"
22 2c0262af bellard
23 14ce26e7 bellard
/* XXX: factorize this mess */
24 14ce26e7 bellard
#ifdef TARGET_X86_64
25 14ce26e7 bellard
#define TARGET_LONG_BITS 64
26 14ce26e7 bellard
#else
27 14ce26e7 bellard
#define TARGET_LONG_BITS 32
28 14ce26e7 bellard
#endif
29 14ce26e7 bellard
30 d785e6be bellard
#include "cpu-defs.h"
31 d785e6be bellard
32 2c0262af bellard
register struct CPUX86State *env asm(AREG0);
33 14ce26e7 bellard
34 79383c9c blueswir1
#include "qemu-log.h"
35 2c0262af bellard
36 2c0262af bellard
#define EAX (env->regs[R_EAX])
37 2c0262af bellard
#define ECX (env->regs[R_ECX])
38 2c0262af bellard
#define EDX (env->regs[R_EDX])
39 2c0262af bellard
#define EBX (env->regs[R_EBX])
40 2c0262af bellard
#define ESP (env->regs[R_ESP])
41 2c0262af bellard
#define EBP (env->regs[R_EBP])
42 2c0262af bellard
#define ESI (env->regs[R_ESI])
43 2c0262af bellard
#define EDI (env->regs[R_EDI])
44 1e4840bf bellard
#define EIP (env->eip)
45 2c0262af bellard
#define DF  (env->df)
46 2c0262af bellard
47 2c0262af bellard
#define CC_SRC (env->cc_src)
48 2c0262af bellard
#define CC_DST (env->cc_dst)
49 2c0262af bellard
#define CC_OP  (env->cc_op)
50 2c0262af bellard
51 2c0262af bellard
/* float macros */
52 2c0262af bellard
#define FT0    (env->ft0)
53 664e0f19 bellard
#define ST0    (env->fpregs[env->fpstt].d)
54 664e0f19 bellard
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
55 2c0262af bellard
#define ST1    ST(1)
56 2c0262af bellard
57 2c0262af bellard
#include "cpu.h"
58 2c0262af bellard
#include "exec-all.h"
59 2c0262af bellard
60 14ce26e7 bellard
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61 1ac157da bellard
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62 5fafdf24 ths
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
63 6ebbf390 j_mayer
                             int is_write, int mmu_idx, int is_softmmu);
64 2c0262af bellard
void __hidden cpu_lock(void);
65 2c0262af bellard
void __hidden cpu_unlock(void);
66 5fafdf24 ths
void do_interrupt(int intno, int is_int, int error_code,
67 14ce26e7 bellard
                  target_ulong next_eip, int is_hw);
68 5fafdf24 ths
void do_interrupt_user(int intno, int is_int, int error_code,
69 14ce26e7 bellard
                       target_ulong next_eip);
70 5fafdf24 ths
void raise_interrupt(int intno, int is_int, int error_code,
71 a8ede8ba bellard
                     int next_eip_addend);
72 2c0262af bellard
void raise_exception_err(int exception_index, int error_code);
73 2c0262af bellard
void raise_exception(int exception_index);
74 3b21e03e bellard
void do_smm_enter(void);
75 2c0262af bellard
void __hidden cpu_loop_exit(void);
76 2c0262af bellard
77 2c0262af bellard
void OPPROTO op_movl_eflags_T0(void);
78 2c0262af bellard
void OPPROTO op_movl_T0_eflags(void);
79 57fec1fe bellard
80 b6abf97d bellard
/* n must be a constant to be efficient */
81 b6abf97d bellard
static inline target_long lshift(target_long x, int n)
82 b6abf97d bellard
{
83 b6abf97d bellard
    if (n >= 0)
84 b6abf97d bellard
        return x << n;
85 b6abf97d bellard
    else
86 b6abf97d bellard
        return x >> (-n);
87 b6abf97d bellard
}
88 b6abf97d bellard
89 57fec1fe bellard
#include "helper.h"
90 57fec1fe bellard
91 b8b6a50b bellard
static inline void svm_check_intercept(uint32_t type)
92 b8b6a50b bellard
{
93 b8b6a50b bellard
    helper_svm_check_intercept_param(type, 0);
94 b8b6a50b bellard
}
95 3e25f951 bellard
96 9951bf39 bellard
#if !defined(CONFIG_USER_ONLY)
97 9951bf39 bellard
98 a9049a07 bellard
#include "softmmu_exec.h"
99 9951bf39 bellard
100 9951bf39 bellard
#endif /* !defined(CONFIG_USER_ONLY) */
101 9951bf39 bellard
102 2c0262af bellard
#ifdef USE_X86LDOUBLE
103 2c0262af bellard
/* use long double functions */
104 7a0e1f41 bellard
#define floatx_to_int32 floatx80_to_int32
105 7a0e1f41 bellard
#define floatx_to_int64 floatx80_to_int64
106 465e9838 bellard
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
107 465e9838 bellard
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
108 19e6c4b8 bellard
#define int32_to_floatx int32_to_floatx80
109 19e6c4b8 bellard
#define int64_to_floatx int64_to_floatx80
110 19e6c4b8 bellard
#define float32_to_floatx float32_to_floatx80
111 19e6c4b8 bellard
#define float64_to_floatx float64_to_floatx80
112 19e6c4b8 bellard
#define floatx_to_float32 floatx80_to_float32
113 19e6c4b8 bellard
#define floatx_to_float64 floatx80_to_float64
114 7a0e1f41 bellard
#define floatx_abs floatx80_abs
115 7a0e1f41 bellard
#define floatx_chs floatx80_chs
116 7a0e1f41 bellard
#define floatx_round_to_int floatx80_round_to_int
117 8422b113 bellard
#define floatx_compare floatx80_compare
118 8422b113 bellard
#define floatx_compare_quiet floatx80_compare_quiet
119 7d3505c5 bellard
#else
120 7a0e1f41 bellard
#define floatx_to_int32 float64_to_int32
121 7a0e1f41 bellard
#define floatx_to_int64 float64_to_int64
122 465e9838 bellard
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
123 465e9838 bellard
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
124 19e6c4b8 bellard
#define int32_to_floatx int32_to_float64
125 19e6c4b8 bellard
#define int64_to_floatx int64_to_float64
126 19e6c4b8 bellard
#define float32_to_floatx float32_to_float64
127 19e6c4b8 bellard
#define float64_to_floatx(x, e) (x)
128 19e6c4b8 bellard
#define floatx_to_float32 float64_to_float32
129 19e6c4b8 bellard
#define floatx_to_float64(x, e) (x)
130 7a0e1f41 bellard
#define floatx_abs float64_abs
131 7a0e1f41 bellard
#define floatx_chs float64_chs
132 7a0e1f41 bellard
#define floatx_round_to_int float64_round_to_int
133 8422b113 bellard
#define floatx_compare float64_compare
134 8422b113 bellard
#define floatx_compare_quiet float64_compare_quiet
135 7d3505c5 bellard
#endif
136 7a0e1f41 bellard
137 2c0262af bellard
#define RC_MASK         0xc00
138 2c0262af bellard
#define RC_NEAR                0x000
139 2c0262af bellard
#define RC_DOWN                0x400
140 2c0262af bellard
#define RC_UP                0x800
141 2c0262af bellard
#define RC_CHOP                0xc00
142 2c0262af bellard
143 2c0262af bellard
#define MAXTAN 9223372036854775808.0
144 2c0262af bellard
145 2c0262af bellard
#ifdef USE_X86LDOUBLE
146 2c0262af bellard
147 2c0262af bellard
/* only for x86 */
148 2c0262af bellard
typedef union {
149 2c0262af bellard
    long double d;
150 2c0262af bellard
    struct {
151 2c0262af bellard
        unsigned long long lower;
152 2c0262af bellard
        unsigned short upper;
153 2c0262af bellard
    } l;
154 2c0262af bellard
} CPU86_LDoubleU;
155 2c0262af bellard
156 2c0262af bellard
/* the following deal with x86 long double-precision numbers */
157 2c0262af bellard
#define MAXEXPD 0x7fff
158 2c0262af bellard
#define EXPBIAS 16383
159 2c0262af bellard
#define EXPD(fp)        (fp.l.upper & 0x7fff)
160 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
161 2c0262af bellard
#define MANTD(fp)       (fp.l.lower)
162 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
163 2c0262af bellard
164 2c0262af bellard
#else
165 2c0262af bellard
166 2c0262af bellard
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
167 2c0262af bellard
typedef union {
168 2c0262af bellard
    double d;
169 2c0262af bellard
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
170 2c0262af bellard
    struct {
171 2c0262af bellard
        uint32_t lower;
172 2c0262af bellard
        int32_t upper;
173 2c0262af bellard
    } l;
174 2c0262af bellard
#else
175 2c0262af bellard
    struct {
176 2c0262af bellard
        int32_t upper;
177 2c0262af bellard
        uint32_t lower;
178 2c0262af bellard
    } l;
179 2c0262af bellard
#endif
180 2c0262af bellard
#ifndef __arm__
181 2c0262af bellard
    int64_t ll;
182 2c0262af bellard
#endif
183 2c0262af bellard
} CPU86_LDoubleU;
184 2c0262af bellard
185 2c0262af bellard
/* the following deal with IEEE double-precision numbers */
186 2c0262af bellard
#define MAXEXPD 0x7ff
187 2c0262af bellard
#define EXPBIAS 1023
188 2c0262af bellard
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
189 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
190 2c0262af bellard
#ifdef __arm__
191 2c0262af bellard
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
192 2c0262af bellard
#else
193 2c0262af bellard
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
194 2c0262af bellard
#endif
195 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
196 2c0262af bellard
#endif
197 2c0262af bellard
198 2c0262af bellard
static inline void fpush(void)
199 2c0262af bellard
{
200 2c0262af bellard
    env->fpstt = (env->fpstt - 1) & 7;
201 2c0262af bellard
    env->fptags[env->fpstt] = 0; /* validate stack entry */
202 2c0262af bellard
}
203 2c0262af bellard
204 2c0262af bellard
static inline void fpop(void)
205 2c0262af bellard
{
206 2c0262af bellard
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
207 2c0262af bellard
    env->fpstt = (env->fpstt + 1) & 7;
208 2c0262af bellard
}
209 2c0262af bellard
210 2c0262af bellard
#ifndef USE_X86LDOUBLE
211 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
212 2c0262af bellard
{
213 2c0262af bellard
    CPU86_LDoubleU temp;
214 2c0262af bellard
    int upper, e;
215 2c0262af bellard
    uint64_t ll;
216 2c0262af bellard
217 2c0262af bellard
    /* mantissa */
218 2c0262af bellard
    upper = lduw(ptr + 8);
219 2c0262af bellard
    /* XXX: handle overflow ? */
220 2c0262af bellard
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
221 2c0262af bellard
    e |= (upper >> 4) & 0x800; /* sign */
222 2c0262af bellard
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
223 2c0262af bellard
#ifdef __arm__
224 2c0262af bellard
    temp.l.upper = (e << 20) | (ll >> 32);
225 2c0262af bellard
    temp.l.lower = ll;
226 2c0262af bellard
#else
227 2c0262af bellard
    temp.ll = ll | ((uint64_t)e << 52);
228 2c0262af bellard
#endif
229 2c0262af bellard
    return temp.d;
230 2c0262af bellard
}
231 2c0262af bellard
232 664e0f19 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
233 2c0262af bellard
{
234 2c0262af bellard
    CPU86_LDoubleU temp;
235 2c0262af bellard
    int e;
236 2c0262af bellard
237 2c0262af bellard
    temp.d = f;
238 2c0262af bellard
    /* mantissa */
239 2c0262af bellard
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
240 2c0262af bellard
    /* exponent + sign */
241 2c0262af bellard
    e = EXPD(temp) - EXPBIAS + 16383;
242 2c0262af bellard
    e |= SIGND(temp) >> 16;
243 2c0262af bellard
    stw(ptr + 8, e);
244 2c0262af bellard
}
245 9951bf39 bellard
#else
246 9951bf39 bellard
247 9951bf39 bellard
/* we use memory access macros */
248 9951bf39 bellard
249 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
250 9951bf39 bellard
{
251 9951bf39 bellard
    CPU86_LDoubleU temp;
252 9951bf39 bellard
253 9951bf39 bellard
    temp.l.lower = ldq(ptr);
254 9951bf39 bellard
    temp.l.upper = lduw(ptr + 8);
255 9951bf39 bellard
    return temp.d;
256 9951bf39 bellard
}
257 9951bf39 bellard
258 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
259 9951bf39 bellard
{
260 9951bf39 bellard
    CPU86_LDoubleU temp;
261 3b46e624 ths
262 9951bf39 bellard
    temp.d = f;
263 9951bf39 bellard
    stq(ptr, temp.l.lower);
264 9951bf39 bellard
    stw(ptr + 8, temp.l.upper);
265 9951bf39 bellard
}
266 9951bf39 bellard
267 9951bf39 bellard
#endif /* USE_X86LDOUBLE */
268 2c0262af bellard
269 2ee73ac3 bellard
#define FPUS_IE (1 << 0)
270 2ee73ac3 bellard
#define FPUS_DE (1 << 1)
271 2ee73ac3 bellard
#define FPUS_ZE (1 << 2)
272 2ee73ac3 bellard
#define FPUS_OE (1 << 3)
273 2ee73ac3 bellard
#define FPUS_UE (1 << 4)
274 2ee73ac3 bellard
#define FPUS_PE (1 << 5)
275 2ee73ac3 bellard
#define FPUS_SF (1 << 6)
276 2ee73ac3 bellard
#define FPUS_SE (1 << 7)
277 2ee73ac3 bellard
#define FPUS_B  (1 << 15)
278 2ee73ac3 bellard
279 2ee73ac3 bellard
#define FPUC_EM 0x3f
280 2ee73ac3 bellard
281 83fb7adf bellard
extern const CPU86_LDouble f15rk[7];
282 2c0262af bellard
283 2ee73ac3 bellard
void fpu_raise_exception(void);
284 03857e31 bellard
void restore_native_fp_state(CPUState *env);
285 03857e31 bellard
void save_native_fp_state(CPUState *env);
286 2c0262af bellard
287 83fb7adf bellard
extern const uint8_t parity_table[256];
288 83fb7adf bellard
extern const uint8_t rclw_table[32];
289 83fb7adf bellard
extern const uint8_t rclb_table[32];
290 2c0262af bellard
291 2c0262af bellard
static inline uint32_t compute_eflags(void)
292 2c0262af bellard
{
293 2c0262af bellard
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
294 2c0262af bellard
}
295 2c0262af bellard
296 2c0262af bellard
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
297 2c0262af bellard
static inline void load_eflags(int eflags, int update_mask)
298 2c0262af bellard
{
299 2c0262af bellard
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
300 2c0262af bellard
    DF = 1 - (2 * ((eflags >> 10) & 1));
301 5fafdf24 ths
    env->eflags = (env->eflags & ~update_mask) |
302 093f8f06 bellard
        (eflags & update_mask) | 0x2;
303 2c0262af bellard
}
304 2c0262af bellard
305 0d1a29f9 bellard
static inline void env_to_regs(void)
306 0d1a29f9 bellard
{
307 0d1a29f9 bellard
#ifdef reg_EAX
308 0d1a29f9 bellard
    EAX = env->regs[R_EAX];
309 0d1a29f9 bellard
#endif
310 0d1a29f9 bellard
#ifdef reg_ECX
311 0d1a29f9 bellard
    ECX = env->regs[R_ECX];
312 0d1a29f9 bellard
#endif
313 0d1a29f9 bellard
#ifdef reg_EDX
314 0d1a29f9 bellard
    EDX = env->regs[R_EDX];
315 0d1a29f9 bellard
#endif
316 0d1a29f9 bellard
#ifdef reg_EBX
317 0d1a29f9 bellard
    EBX = env->regs[R_EBX];
318 0d1a29f9 bellard
#endif
319 0d1a29f9 bellard
#ifdef reg_ESP
320 0d1a29f9 bellard
    ESP = env->regs[R_ESP];
321 0d1a29f9 bellard
#endif
322 0d1a29f9 bellard
#ifdef reg_EBP
323 0d1a29f9 bellard
    EBP = env->regs[R_EBP];
324 0d1a29f9 bellard
#endif
325 0d1a29f9 bellard
#ifdef reg_ESI
326 0d1a29f9 bellard
    ESI = env->regs[R_ESI];
327 0d1a29f9 bellard
#endif
328 0d1a29f9 bellard
#ifdef reg_EDI
329 0d1a29f9 bellard
    EDI = env->regs[R_EDI];
330 0d1a29f9 bellard
#endif
331 0d1a29f9 bellard
}
332 0d1a29f9 bellard
333 0d1a29f9 bellard
static inline void regs_to_env(void)
334 0d1a29f9 bellard
{
335 0d1a29f9 bellard
#ifdef reg_EAX
336 0d1a29f9 bellard
    env->regs[R_EAX] = EAX;
337 0d1a29f9 bellard
#endif
338 0d1a29f9 bellard
#ifdef reg_ECX
339 0d1a29f9 bellard
    env->regs[R_ECX] = ECX;
340 0d1a29f9 bellard
#endif
341 0d1a29f9 bellard
#ifdef reg_EDX
342 0d1a29f9 bellard
    env->regs[R_EDX] = EDX;
343 0d1a29f9 bellard
#endif
344 0d1a29f9 bellard
#ifdef reg_EBX
345 0d1a29f9 bellard
    env->regs[R_EBX] = EBX;
346 0d1a29f9 bellard
#endif
347 0d1a29f9 bellard
#ifdef reg_ESP
348 0d1a29f9 bellard
    env->regs[R_ESP] = ESP;
349 0d1a29f9 bellard
#endif
350 0d1a29f9 bellard
#ifdef reg_EBP
351 0d1a29f9 bellard
    env->regs[R_EBP] = EBP;
352 0d1a29f9 bellard
#endif
353 0d1a29f9 bellard
#ifdef reg_ESI
354 0d1a29f9 bellard
    env->regs[R_ESI] = ESI;
355 0d1a29f9 bellard
#endif
356 0d1a29f9 bellard
#ifdef reg_EDI
357 0d1a29f9 bellard
    env->regs[R_EDI] = EDI;
358 0d1a29f9 bellard
#endif
359 0d1a29f9 bellard
}
360 bfed01fc ths
361 bfed01fc ths
static inline int cpu_halted(CPUState *env) {
362 bfed01fc ths
    /* handle exit of HALTED state */
363 ce5232c5 bellard
    if (!env->halted)
364 bfed01fc ths
        return 0;
365 bfed01fc ths
    /* disable halt condition */
366 474ea849 aurel32
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
367 474ea849 aurel32
         (env->eflags & IF_MASK)) ||
368 474ea849 aurel32
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
369 ce5232c5 bellard
        env->halted = 0;
370 bfed01fc ths
        return 0;
371 bfed01fc ths
    }
372 bfed01fc ths
    return EXCP_HALTED;
373 bfed01fc ths
}
374 0573fbfc ths
375 5efc27bb bellard
/* load efer and update the corresponding hflags. XXX: do consistency
376 5efc27bb bellard
   checks with cpuid bits ? */
377 5efc27bb bellard
static inline void cpu_load_efer(CPUState *env, uint64_t val)
378 5efc27bb bellard
{
379 5efc27bb bellard
    env->efer = val;
380 5efc27bb bellard
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
381 5efc27bb bellard
    if (env->efer & MSR_EFER_LMA)
382 5efc27bb bellard
        env->hflags |= HF_LMA_MASK;
383 5efc27bb bellard
    if (env->efer & MSR_EFER_SVME)
384 5efc27bb bellard
        env->hflags |= HF_SVME_MASK;
385 5efc27bb bellard
}