Statistics
| Branch: | Revision:

root / target-arm / op.c @ f51bbbfe

History | View | Annotate | Download (30.4 kB)

1
/*
2
 *  ARM micro operations
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 */
21
#include "exec.h"
22

    
23
void OPPROTO op_addl_T0_T1_cc(void)
24
{
25
    unsigned int src1;
26
    src1 = T0;
27
    T0 += T1;
28
    env->NZF = T0;
29
    env->CF = T0 < src1;
30
    env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
31
}
32

    
33
void OPPROTO op_adcl_T0_T1_cc(void)
34
{
35
    unsigned int src1;
36
    src1 = T0;
37
    if (!env->CF) {
38
        T0 += T1;
39
        env->CF = T0 < src1;
40
    } else {
41
        T0 += T1 + 1;
42
        env->CF = T0 <= src1;
43
    }
44
    env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
45
    env->NZF = T0;
46
    FORCE_RET();
47
}
48

    
49
#define OPSUB(sub, sbc, res, T0, T1)            \
50
                                                \
51
void OPPROTO op_ ## sub ## l_T0_T1_cc(void)     \
52
{                                               \
53
    unsigned int src1;                          \
54
    src1 = T0;                                  \
55
    T0 -= T1;                                   \
56
    env->NZF = T0;                              \
57
    env->CF = src1 >= T1;                       \
58
    env->VF = (src1 ^ T1) & (src1 ^ T0);        \
59
    res = T0;                                   \
60
}                                               \
61
                                                \
62
void OPPROTO op_ ## sbc ## l_T0_T1(void)        \
63
{                                               \
64
    res = T0 - T1 + env->CF - 1;                \
65
}                                               \
66
                                                \
67
void OPPROTO op_ ## sbc ## l_T0_T1_cc(void)     \
68
{                                               \
69
    unsigned int src1;                          \
70
    src1 = T0;                                  \
71
    if (!env->CF) {                             \
72
        T0 = T0 - T1 - 1;                       \
73
        env->CF = src1 > T1;                    \
74
    } else {                                    \
75
        T0 = T0 - T1;                           \
76
        env->CF = src1 >= T1;                   \
77
    }                                           \
78
    env->VF = (src1 ^ T1) & (src1 ^ T0);        \
79
    env->NZF = T0;                              \
80
    res = T0;                                   \
81
    FORCE_RET();                                \
82
}
83

    
84
OPSUB(sub, sbc, T0, T0, T1)
85

    
86
OPSUB(rsb, rsc, T0, T1, T0)
87

    
88
#define EIP (env->regs[15])
89

    
90
void OPPROTO op_test_eq(void)
91
{
92
    if (env->NZF == 0)
93
        GOTO_LABEL_PARAM(1);;
94
    FORCE_RET();
95
}
96

    
97
void OPPROTO op_test_ne(void)
98
{
99
    if (env->NZF != 0)
100
        GOTO_LABEL_PARAM(1);;
101
    FORCE_RET();
102
}
103

    
104
void OPPROTO op_test_cs(void)
105
{
106
    if (env->CF != 0)
107
        GOTO_LABEL_PARAM(1);
108
    FORCE_RET();
109
}
110

    
111
void OPPROTO op_test_cc(void)
112
{
113
    if (env->CF == 0)
114
        GOTO_LABEL_PARAM(1);
115
    FORCE_RET();
116
}
117

    
118
void OPPROTO op_test_mi(void)
119
{
120
    if ((env->NZF & 0x80000000) != 0)
121
        GOTO_LABEL_PARAM(1);
122
    FORCE_RET();
123
}
124

    
125
void OPPROTO op_test_pl(void)
126
{
127
    if ((env->NZF & 0x80000000) == 0)
128
        GOTO_LABEL_PARAM(1);
129
    FORCE_RET();
130
}
131

    
132
void OPPROTO op_test_vs(void)
133
{
134
    if ((env->VF & 0x80000000) != 0)
135
        GOTO_LABEL_PARAM(1);
136
    FORCE_RET();
137
}
138

    
139
void OPPROTO op_test_vc(void)
140
{
141
    if ((env->VF & 0x80000000) == 0)
142
        GOTO_LABEL_PARAM(1);
143
    FORCE_RET();
144
}
145

    
146
void OPPROTO op_test_hi(void)
147
{
148
    if (env->CF != 0 && env->NZF != 0)
149
        GOTO_LABEL_PARAM(1);
150
    FORCE_RET();
151
}
152

    
153
void OPPROTO op_test_ls(void)
154
{
155
    if (env->CF == 0 || env->NZF == 0)
156
        GOTO_LABEL_PARAM(1);
157
    FORCE_RET();
158
}
159

    
160
void OPPROTO op_test_ge(void)
161
{
162
    if (((env->VF ^ env->NZF) & 0x80000000) == 0)
163
        GOTO_LABEL_PARAM(1);
164
    FORCE_RET();
165
}
166

    
167
void OPPROTO op_test_lt(void)
168
{
169
    if (((env->VF ^ env->NZF) & 0x80000000) != 0)
170
        GOTO_LABEL_PARAM(1);
171
    FORCE_RET();
172
}
173

    
174
void OPPROTO op_test_gt(void)
175
{
176
    if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
177
        GOTO_LABEL_PARAM(1);
178
    FORCE_RET();
179
}
180

    
181
void OPPROTO op_test_le(void)
182
{
183
    if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
184
        GOTO_LABEL_PARAM(1);
185
    FORCE_RET();
186
}
187

    
188
void OPPROTO op_test_T0(void)
189
{
190
    if (T0)
191
        GOTO_LABEL_PARAM(1);
192
    FORCE_RET();
193
}
194
void OPPROTO op_testn_T0(void)
195
{
196
    if (!T0)
197
        GOTO_LABEL_PARAM(1);
198
    FORCE_RET();
199
}
200

    
201
void OPPROTO op_movl_T0_cpsr(void)
202
{
203
    /* Execution state bits always read as zero.  */
204
    T0 = cpsr_read(env) & ~CPSR_EXEC;
205
    FORCE_RET();
206
}
207

    
208
void OPPROTO op_movl_T0_spsr(void)
209
{
210
    T0 = env->spsr;
211
}
212

    
213
void OPPROTO op_movl_spsr_T0(void)
214
{
215
    uint32_t mask = PARAM1;
216
    env->spsr = (env->spsr & ~mask) | (T0 & mask);
217
}
218

    
219
void OPPROTO op_movl_cpsr_T0(void)
220
{
221
    cpsr_write(env, T0, PARAM1);
222
    FORCE_RET();
223
}
224

    
225
void OPPROTO op_mul_T0_T1(void)
226
{
227
    T0 = T0 * T1;
228
}
229

    
230
/* 64 bit unsigned mul */
231
void OPPROTO op_mull_T0_T1(void)
232
{
233
    uint64_t res;
234
    res = (uint64_t)T0 * (uint64_t)T1;
235
    T1 = res >> 32;
236
    T0 = res;
237
}
238

    
239
/* 64 bit signed mul */
240
void OPPROTO op_imull_T0_T1(void)
241
{
242
    uint64_t res;
243
    res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
244
    T1 = res >> 32;
245
    T0 = res;
246
}
247

    
248
/* 48 bit signed mul, top 32 bits */
249
void OPPROTO op_imulw_T0_T1(void)
250
{
251
  uint64_t res;
252
  res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
253
  T0 = res >> 16;
254
}
255

    
256
void OPPROTO op_addq_T0_T1(void)
257
{
258
    uint64_t res;
259
    res = ((uint64_t)T1 << 32) | T0;
260
    res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
261
    T1 = res >> 32;
262
    T0 = res;
263
}
264

    
265
void OPPROTO op_addq_lo_T0_T1(void)
266
{
267
    uint64_t res;
268
    res = ((uint64_t)T1 << 32) | T0;
269
    res += (uint64_t)(env->regs[PARAM1]);
270
    T1 = res >> 32;
271
    T0 = res;
272
}
273

    
274
/* Dual 16-bit accumulate.  */
275
void OPPROTO op_addq_T0_T1_dual(void)
276
{
277
  uint64_t res;
278
  res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
279
  res += (int32_t)T0;
280
  res += (int32_t)T1;
281
  env->regs[PARAM1] = (uint32_t)res;
282
  env->regs[PARAM2] = res >> 32;
283
}
284

    
285
/* Dual 16-bit subtract accumulate.  */
286
void OPPROTO op_subq_T0_T1_dual(void)
287
{
288
  uint64_t res;
289
  res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
290
  res += (int32_t)T0;
291
  res -= (int32_t)T1;
292
  env->regs[PARAM1] = (uint32_t)res;
293
  env->regs[PARAM2] = res >> 32;
294
}
295

    
296
void OPPROTO op_logicq_cc(void)
297
{
298
    env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
299
}
300

    
301
/* memory access */
302

    
303
#define MEMSUFFIX _raw
304
#include "op_mem.h"
305

    
306
#if !defined(CONFIG_USER_ONLY)
307
#define MEMSUFFIX _user
308
#include "op_mem.h"
309
#define MEMSUFFIX _kernel
310
#include "op_mem.h"
311
#endif
312

    
313
void OPPROTO op_clrex(void)
314
{
315
    cpu_lock();
316
    helper_clrex(env);
317
    cpu_unlock();
318
}
319

    
320
/* shifts */
321

    
322
/* T1 based, set C flag */
323
void OPPROTO op_shll_T1_im_cc(void)
324
{
325
    env->CF = (T1 >> (32 - PARAM1)) & 1;
326
    T1 = T1 << PARAM1;
327
}
328

    
329
void OPPROTO op_shrl_T1_im_cc(void)
330
{
331
    env->CF = (T1 >> (PARAM1 - 1)) & 1;
332
    T1 = (uint32_t)T1 >> PARAM1;
333
}
334

    
335
void OPPROTO op_shrl_T1_0_cc(void)
336
{
337
    env->CF = (T1 >> 31) & 1;
338
    T1 = 0;
339
}
340

    
341
void OPPROTO op_sarl_T1_im_cc(void)
342
{
343
    env->CF = (T1 >> (PARAM1 - 1)) & 1;
344
    T1 = (int32_t)T1 >> PARAM1;
345
}
346

    
347
void OPPROTO op_sarl_T1_0_cc(void)
348
{
349
    env->CF = (T1 >> 31) & 1;
350
    T1 = (int32_t)T1 >> 31;
351
}
352

    
353
void OPPROTO op_rorl_T1_im_cc(void)
354
{
355
    int shift;
356
    shift = PARAM1;
357
    env->CF = (T1 >> (shift - 1)) & 1;
358
    T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
359
}
360

    
361
void OPPROTO op_rrxl_T1_cc(void)
362
{
363
    uint32_t c;
364
    c = T1 & 1;
365
    T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
366
    env->CF = c;
367
}
368

    
369
/* T1 based, use T0 as shift count */
370

    
371
void OPPROTO op_shll_T1_T0(void)
372
{
373
    int shift;
374
    shift = T0 & 0xff;
375
    if (shift >= 32)
376
        T1 = 0;
377
    else
378
        T1 = T1 << shift;
379
    FORCE_RET();
380
}
381

    
382
void OPPROTO op_shrl_T1_T0(void)
383
{
384
    int shift;
385
    shift = T0 & 0xff;
386
    if (shift >= 32)
387
        T1 = 0;
388
    else
389
        T1 = (uint32_t)T1 >> shift;
390
    FORCE_RET();
391
}
392

    
393
void OPPROTO op_sarl_T1_T0(void)
394
{
395
    int shift;
396
    shift = T0 & 0xff;
397
    if (shift >= 32)
398
        shift = 31;
399
    T1 = (int32_t)T1 >> shift;
400
}
401

    
402
void OPPROTO op_rorl_T1_T0(void)
403
{
404
    int shift;
405
    shift = T0 & 0x1f;
406
    if (shift) {
407
        T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
408
    }
409
    FORCE_RET();
410
}
411

    
412
/* T1 based, use T0 as shift count and compute CF */
413

    
414
void OPPROTO op_shll_T1_T0_cc(void)
415
{
416
    int shift;
417
    shift = T0 & 0xff;
418
    if (shift >= 32) {
419
        if (shift == 32)
420
            env->CF = T1 & 1;
421
        else
422
            env->CF = 0;
423
        T1 = 0;
424
    } else if (shift != 0) {
425
        env->CF = (T1 >> (32 - shift)) & 1;
426
        T1 = T1 << shift;
427
    }
428
    FORCE_RET();
429
}
430

    
431
void OPPROTO op_shrl_T1_T0_cc(void)
432
{
433
    int shift;
434
    shift = T0 & 0xff;
435
    if (shift >= 32) {
436
        if (shift == 32)
437
            env->CF = (T1 >> 31) & 1;
438
        else
439
            env->CF = 0;
440
        T1 = 0;
441
    } else if (shift != 0) {
442
        env->CF = (T1 >> (shift - 1)) & 1;
443
        T1 = (uint32_t)T1 >> shift;
444
    }
445
    FORCE_RET();
446
}
447

    
448
void OPPROTO op_sarl_T1_T0_cc(void)
449
{
450
    int shift;
451
    shift = T0 & 0xff;
452
    if (shift >= 32) {
453
        env->CF = (T1 >> 31) & 1;
454
        T1 = (int32_t)T1 >> 31;
455
    } else if (shift != 0) {
456
        env->CF = (T1 >> (shift - 1)) & 1;
457
        T1 = (int32_t)T1 >> shift;
458
    }
459
    FORCE_RET();
460
}
461

    
462
void OPPROTO op_rorl_T1_T0_cc(void)
463
{
464
    int shift1, shift;
465
    shift1 = T0 & 0xff;
466
    shift = shift1 & 0x1f;
467
    if (shift == 0) {
468
        if (shift1 != 0)
469
            env->CF = (T1 >> 31) & 1;
470
    } else {
471
        env->CF = (T1 >> (shift - 1)) & 1;
472
        T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
473
    }
474
    FORCE_RET();
475
}
476

    
477
/* misc */
478
#define SIGNBIT (uint32_t)0x80000000
479
/* saturating arithmetic  */
480
void OPPROTO op_addl_T0_T1_setq(void)
481
{
482
  uint32_t res;
483

    
484
  res = T0 + T1;
485
  if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
486
      env->QF = 1;
487

    
488
  T0 = res;
489
  FORCE_RET();
490
}
491

    
492
void OPPROTO op_addl_T0_T1_saturate(void)
493
{
494
  uint32_t res;
495

    
496
  res = T0 + T1;
497
  if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
498
      env->QF = 1;
499
      if (T0 & SIGNBIT)
500
          T0 = 0x80000000;
501
      else
502
          T0 = 0x7fffffff;
503
  }
504
  else
505
    T0 = res;
506

    
507
  FORCE_RET();
508
}
509

    
510
void OPPROTO op_subl_T0_T1_saturate(void)
511
{
512
  uint32_t res;
513

    
514
  res = T0 - T1;
515
  if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
516
      env->QF = 1;
517
      if (T0 & SIGNBIT)
518
          T0 = 0x80000000;
519
      else
520
          T0 = 0x7fffffff;
521
  }
522
  else
523
    T0 = res;
524

    
525
  FORCE_RET();
526
}
527

    
528
void OPPROTO op_double_T1_saturate(void)
529
{
530
  int32_t val;
531

    
532
  val = T1;
533
  if (val >= 0x40000000) {
534
      T1 = 0x7fffffff;
535
      env->QF = 1;
536
  } else if (val <= (int32_t)0xc0000000) {
537
      T1 = 0x80000000;
538
      env->QF = 1;
539
  } else {
540
      T1 = val << 1;
541
  }
542
  FORCE_RET();
543
}
544

    
545
/* Unsigned saturating arithmetic for NEON.  */
546
void OPPROTO op_addl_T0_T1_usaturate(void)
547
{
548
  uint32_t res;
549

    
550
  res = T0 + T1;
551
  if (res < T0) {
552
      env->QF = 1;
553
      T0 = 0xffffffff;
554
  } else {
555
      T0 = res;
556
  }
557

    
558
  FORCE_RET();
559
}
560

    
561
void OPPROTO op_subl_T0_T1_usaturate(void)
562
{
563
  uint32_t res;
564

    
565
  res = T0 - T1;
566
  if (res > T0) {
567
      env->QF = 1;
568
      T0 = 0;
569
  } else {
570
      T0 = res;
571
  }
572

    
573
  FORCE_RET();
574
}
575

    
576
/* Thumb shift by immediate */
577
void OPPROTO op_shll_T0_im_thumb_cc(void)
578
{
579
    int shift;
580
    shift = PARAM1;
581
    if (shift != 0) {
582
        env->CF = (T0 >> (32 - shift)) & 1;
583
        T0 = T0 << shift;
584
    }
585
    env->NZF = T0;
586
    FORCE_RET();
587
}
588

    
589
void OPPROTO op_shll_T0_im_thumb(void)
590
{
591
    T0 = T0 << PARAM1;
592
    FORCE_RET();
593
}
594

    
595
void OPPROTO op_shrl_T0_im_thumb_cc(void)
596
{
597
    int shift;
598

    
599
    shift = PARAM1;
600
    if (shift == 0) {
601
        env->CF = ((uint32_t)T0) >> 31;
602
        T0 = 0;
603
    } else {
604
        env->CF = (T0 >> (shift - 1)) & 1;
605
        T0 = T0 >> shift;
606
    }
607
    env->NZF = T0;
608
    FORCE_RET();
609
}
610

    
611
void OPPROTO op_shrl_T0_im_thumb(void)
612
{
613
    int shift;
614

    
615
    shift = PARAM1;
616
    if (shift == 0) {
617
        T0 = 0;
618
    } else {
619
        T0 = T0 >> shift;
620
    }
621
    FORCE_RET();
622
}
623

    
624
void OPPROTO op_sarl_T0_im_thumb_cc(void)
625
{
626
    int shift;
627

    
628
    shift = PARAM1;
629
    if (shift == 0) {
630
        T0 = ((int32_t)T0) >> 31;
631
        env->CF = T0 & 1;
632
    } else {
633
        env->CF = (T0 >> (shift - 1)) & 1;
634
        T0 = ((int32_t)T0) >> shift;
635
    }
636
    env->NZF = T0;
637
    FORCE_RET();
638
}
639

    
640
void OPPROTO op_sarl_T0_im_thumb(void)
641
{
642
    int shift;
643

    
644
    shift = PARAM1;
645
    if (shift == 0) {
646
        env->CF = T0 & 1;
647
    } else {
648
        T0 = ((int32_t)T0) >> shift;
649
    }
650
    FORCE_RET();
651
}
652

    
653
/* exceptions */
654

    
655
void OPPROTO op_swi(void)
656
{
657
    env->exception_index = EXCP_SWI;
658
    cpu_loop_exit();
659
}
660

    
661
void OPPROTO op_undef_insn(void)
662
{
663
    env->exception_index = EXCP_UDEF;
664
    cpu_loop_exit();
665
}
666

    
667
void OPPROTO op_debug(void)
668
{
669
    env->exception_index = EXCP_DEBUG;
670
    cpu_loop_exit();
671
}
672

    
673
void OPPROTO op_wfi(void)
674
{
675
    env->exception_index = EXCP_HLT;
676
    env->halted = 1;
677
    cpu_loop_exit();
678
}
679

    
680
void OPPROTO op_bkpt(void)
681
{
682
    env->exception_index = EXCP_BKPT;
683
    cpu_loop_exit();
684
}
685

    
686
void OPPROTO op_exception_exit(void)
687
{
688
    env->exception_index = EXCP_EXCEPTION_EXIT;
689
    cpu_loop_exit();
690
}
691

    
692
/* VFP support.  We follow the convention used for VFP instrunctions:
693
   Single precition routines have a "s" suffix, double precision a
694
   "d" suffix.  */
695

    
696
#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
697

    
698
#define VFP_BINOP(name) \
699
VFP_OP(name, s)             \
700
{                           \
701
    FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status);    \
702
}                           \
703
VFP_OP(name, d)             \
704
{                           \
705
    FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status);    \
706
}
707
VFP_BINOP(add)
708
VFP_BINOP(sub)
709
VFP_BINOP(mul)
710
VFP_BINOP(div)
711
#undef VFP_BINOP
712

    
713
#define VFP_HELPER(name)  \
714
VFP_OP(name, s)           \
715
{                         \
716
    do_vfp_##name##s();    \
717
}                         \
718
VFP_OP(name, d)           \
719
{                         \
720
    do_vfp_##name##d();    \
721
}
722
VFP_HELPER(abs)
723
VFP_HELPER(sqrt)
724
VFP_HELPER(cmp)
725
VFP_HELPER(cmpe)
726
#undef VFP_HELPER
727

    
728
/* XXX: Will this do the right thing for NANs.  Should invert the signbit
729
   without looking at the rest of the value.  */
730
VFP_OP(neg, s)
731
{
732
    FT0s = float32_chs(FT0s);
733
}
734

    
735
VFP_OP(neg, d)
736
{
737
    FT0d = float64_chs(FT0d);
738
}
739

    
740
VFP_OP(F1_ld0, s)
741
{
742
    union {
743
        uint32_t i;
744
        float32 s;
745
    } v;
746
    v.i = 0;
747
    FT1s = v.s;
748
}
749

    
750
VFP_OP(F1_ld0, d)
751
{
752
    union {
753
        uint64_t i;
754
        float64 d;
755
    } v;
756
    v.i = 0;
757
    FT1d = v.d;
758
}
759

    
760
/* Helper routines to perform bitwise copies between float and int.  */
761
static inline float32 vfp_itos(uint32_t i)
762
{
763
    union {
764
        uint32_t i;
765
        float32 s;
766
    } v;
767

    
768
    v.i = i;
769
    return v.s;
770
}
771

    
772
static inline uint32_t vfp_stoi(float32 s)
773
{
774
    union {
775
        uint32_t i;
776
        float32 s;
777
    } v;
778

    
779
    v.s = s;
780
    return v.i;
781
}
782

    
783
static inline float64 vfp_itod(uint64_t i)
784
{
785
    union {
786
        uint64_t i;
787
        float64 d;
788
    } v;
789

    
790
    v.i = i;
791
    return v.d;
792
}
793

    
794
static inline uint64_t vfp_dtoi(float64 d)
795
{
796
    union {
797
        uint64_t i;
798
        float64 d;
799
    } v;
800

    
801
    v.d = d;
802
    return v.i;
803
}
804

    
805
/* Integer to float conversion.  */
806
VFP_OP(uito, s)
807
{
808
    FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
809
}
810

    
811
VFP_OP(uito, d)
812
{
813
    FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
814
}
815

    
816
VFP_OP(sito, s)
817
{
818
    FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
819
}
820

    
821
VFP_OP(sito, d)
822
{
823
    FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
824
}
825

    
826
/* Float to integer conversion.  */
827
VFP_OP(toui, s)
828
{
829
    FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
830
}
831

    
832
VFP_OP(toui, d)
833
{
834
    FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
835
}
836

    
837
VFP_OP(tosi, s)
838
{
839
    FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
840
}
841

    
842
VFP_OP(tosi, d)
843
{
844
    FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
845
}
846

    
847
/* TODO: Set rounding mode properly.  */
848
VFP_OP(touiz, s)
849
{
850
    FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
851
}
852

    
853
VFP_OP(touiz, d)
854
{
855
    FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
856
}
857

    
858
VFP_OP(tosiz, s)
859
{
860
    FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
861
}
862

    
863
VFP_OP(tosiz, d)
864
{
865
    FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
866
}
867

    
868
/* floating point conversion */
869
VFP_OP(fcvtd, s)
870
{
871
    FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
872
}
873

    
874
VFP_OP(fcvts, d)
875
{
876
    FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
877
}
878

    
879
/* VFP3 fixed point conversion.  */
880
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
881
VFP_OP(name##to, p) \
882
{ \
883
    ftype tmp; \
884
    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \
885
                                  &env->vfp.fp_status); \
886
    FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \
887
} \
888
VFP_OP(to##name, p) \
889
{ \
890
    ftype tmp; \
891
    tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \
892
    FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
893
            &env->vfp.fp_status)); \
894
}
895

    
896
VFP_CONV_FIX(sh, d, float64, int16, )
897
VFP_CONV_FIX(sl, d, float64, int32, )
898
VFP_CONV_FIX(uh, d, float64, uint16, u)
899
VFP_CONV_FIX(ul, d, float64, uint32, u)
900
VFP_CONV_FIX(sh, s, float32, int16, )
901
VFP_CONV_FIX(sl, s, float32, int32, )
902
VFP_CONV_FIX(uh, s, float32, uint16, u)
903
VFP_CONV_FIX(ul, s, float32, uint32, u)
904

    
905
/* Get and Put values from registers.  */
906
VFP_OP(getreg_F0, d)
907
{
908
  FT0d = *(float64 *)((char *) env + PARAM1);
909
}
910

    
911
VFP_OP(getreg_F0, s)
912
{
913
  FT0s = *(float32 *)((char *) env + PARAM1);
914
}
915

    
916
VFP_OP(getreg_F1, d)
917
{
918
  FT1d = *(float64 *)((char *) env + PARAM1);
919
}
920

    
921
VFP_OP(getreg_F1, s)
922
{
923
  FT1s = *(float32 *)((char *) env + PARAM1);
924
}
925

    
926
VFP_OP(setreg_F0, d)
927
{
928
  *(float64 *)((char *) env + PARAM1) = FT0d;
929
}
930

    
931
VFP_OP(setreg_F0, s)
932
{
933
  *(float32 *)((char *) env + PARAM1) = FT0s;
934
}
935

    
936
void OPPROTO op_vfp_movl_T0_fpscr(void)
937
{
938
    do_vfp_get_fpscr ();
939
}
940

    
941
void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
942
{
943
    T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28);
944
}
945

    
946
void OPPROTO op_vfp_movl_fpscr_T0(void)
947
{
948
    do_vfp_set_fpscr();
949
}
950

    
951
void OPPROTO op_vfp_movl_T0_xreg(void)
952
{
953
    T0 = env->vfp.xregs[PARAM1];
954
}
955

    
956
void OPPROTO op_vfp_movl_xreg_T0(void)
957
{
958
    env->vfp.xregs[PARAM1] = T0;
959
}
960

    
961
/* Move between FT0s to T0  */
962
void OPPROTO op_vfp_mrs(void)
963
{
964
    T0 = vfp_stoi(FT0s);
965
}
966

    
967
void OPPROTO op_vfp_msr(void)
968
{
969
    FT0s = vfp_itos(T0);
970
}
971

    
972
/* Move between FT0d and {T0,T1} */
973
void OPPROTO op_vfp_mrrd(void)
974
{
975
    CPU_DoubleU u;
976

    
977
    u.d = FT0d;
978
    T0 = u.l.lower;
979
    T1 = u.l.upper;
980
}
981

    
982
void OPPROTO op_vfp_mdrr(void)
983
{
984
    CPU_DoubleU u;
985

    
986
    u.l.lower = T0;
987
    u.l.upper = T1;
988
    FT0d = u.d;
989
}
990

    
991
/* Load immediate.  PARAM1 is the 32 most significant bits of the value.  */
992
void OPPROTO op_vfp_fconstd(void)
993
{
994
    CPU_DoubleU u;
995
    u.l.upper = PARAM1;
996
    u.l.lower = 0;
997
    FT0d = u.d;
998
}
999

    
1000
void OPPROTO op_vfp_fconsts(void)
1001
{
1002
    FT0s = vfp_itos(PARAM1);
1003
}
1004

    
1005
/* Copy the most significant bit of T0 to all bits of T1.  */
1006
void OPPROTO op_signbit_T1_T0(void)
1007
{
1008
    T1 = (int32_t)T0 >> 31;
1009
}
1010

    
1011
void OPPROTO op_movl_cp_T0(void)
1012
{
1013
    helper_set_cp(env, PARAM1, T0);
1014
    FORCE_RET();
1015
}
1016

    
1017
void OPPROTO op_movl_T0_cp(void)
1018
{
1019
    T0 = helper_get_cp(env, PARAM1);
1020
    FORCE_RET();
1021
}
1022

    
1023
void OPPROTO op_movl_cp15_T0(void)
1024
{
1025
    helper_set_cp15(env, PARAM1, T0);
1026
    FORCE_RET();
1027
}
1028

    
1029
void OPPROTO op_movl_T0_cp15(void)
1030
{
1031
    T0 = helper_get_cp15(env, PARAM1);
1032
    FORCE_RET();
1033
}
1034

    
1035
/* Access to user mode registers from privileged modes.  */
1036
void OPPROTO op_movl_T0_user(void)
1037
{
1038
    int regno = PARAM1;
1039
    if (regno == 13) {
1040
        T0 = env->banked_r13[0];
1041
    } else if (regno == 14) {
1042
        T0 = env->banked_r14[0];
1043
    } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1044
        T0 = env->usr_regs[regno - 8];
1045
    } else {
1046
        T0 = env->regs[regno];
1047
    }
1048
    FORCE_RET();
1049
}
1050

    
1051

    
1052
void OPPROTO op_movl_user_T0(void)
1053
{
1054
    int regno = PARAM1;
1055
    if (regno == 13) {
1056
        env->banked_r13[0] = T0;
1057
    } else if (regno == 14) {
1058
        env->banked_r14[0] = T0;
1059
    } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1060
        env->usr_regs[regno - 8] = T0;
1061
    } else {
1062
        env->regs[regno] = T0;
1063
    }
1064
    FORCE_RET();
1065
}
1066

    
1067
/* ARMv6 Media instructions.  */
1068

    
1069
/* Note that signed overflow is undefined in C.  The following routines are
1070
   careful to use unsigned types where modulo arithmetic is required.
1071
   Failure to do so _will_ break on newer gcc.  */
1072

    
1073
/* Signed saturating arithmetic.  */
1074

    
1075
/* Perform 16-bit signed satruating addition.  */
1076
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1077
{
1078
    uint16_t res;
1079

    
1080
    res = a + b;
1081
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1082
        if (a & 0x8000)
1083
            res = 0x8000;
1084
        else
1085
            res = 0x7fff;
1086
    }
1087
    return res;
1088
}
1089

    
1090
/* Perform 8-bit signed satruating addition.  */
1091
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1092
{
1093
    uint8_t res;
1094

    
1095
    res = a + b;
1096
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1097
        if (a & 0x80)
1098
            res = 0x80;
1099
        else
1100
            res = 0x7f;
1101
    }
1102
    return res;
1103
}
1104

    
1105
/* Perform 16-bit signed satruating subtraction.  */
1106
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1107
{
1108
    uint16_t res;
1109

    
1110
    res = a - b;
1111
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1112
        if (a & 0x8000)
1113
            res = 0x8000;
1114
        else
1115
            res = 0x7fff;
1116
    }
1117
    return res;
1118
}
1119

    
1120
/* Perform 8-bit signed satruating subtraction.  */
1121
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1122
{
1123
    uint8_t res;
1124

    
1125
    res = a - b;
1126
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
1127
        if (a & 0x80)
1128
            res = 0x80;
1129
        else
1130
            res = 0x7f;
1131
    }
1132
    return res;
1133
}
1134

    
1135
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
1136
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
1137
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
1138
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
1139
#define PFX q
1140

    
1141
#include "op_addsub.h"
1142

    
1143
/* Unsigned saturating arithmetic.  */
1144
static inline uint16_t add16_usat(uint16_t a, uint8_t b)
1145
{
1146
    uint16_t res;
1147
    res = a + b;
1148
    if (res < a)
1149
        res = 0xffff;
1150
    return res;
1151
}
1152

    
1153
static inline uint16_t sub16_usat(uint16_t a, uint8_t b)
1154
{
1155
    if (a < b)
1156
        return a - b;
1157
    else
1158
        return 0;
1159
}
1160

    
1161
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
1162
{
1163
    uint8_t res;
1164
    res = a + b;
1165
    if (res < a)
1166
        res = 0xff;
1167
    return res;
1168
}
1169

    
1170
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
1171
{
1172
    if (a < b)
1173
        return a - b;
1174
    else
1175
        return 0;
1176
}
1177

    
1178
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
1179
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
1180
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
1181
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
1182
#define PFX uq
1183

    
1184
#include "op_addsub.h"
1185

    
1186
/* Signed modulo arithmetic.  */
1187
#define SARITH16(a, b, n, op) do { \
1188
    int32_t sum; \
1189
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
1190
    RESULT(sum, n, 16); \
1191
    if (sum >= 0) \
1192
        ge |= 3 << (n * 2); \
1193
    } while(0)
1194

    
1195
#define SARITH8(a, b, n, op) do { \
1196
    int32_t sum; \
1197
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
1198
    RESULT(sum, n, 8); \
1199
    if (sum >= 0) \
1200
        ge |= 1 << n; \
1201
    } while(0)
1202

    
1203

    
1204
#define ADD16(a, b, n) SARITH16(a, b, n, +)
1205
#define SUB16(a, b, n) SARITH16(a, b, n, -)
1206
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
1207
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
1208
#define PFX s
1209
#define ARITH_GE
1210

    
1211
#include "op_addsub.h"
1212

    
1213
/* Unsigned modulo arithmetic.  */
1214
#define ADD16(a, b, n) do { \
1215
    uint32_t sum; \
1216
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
1217
    RESULT(sum, n, 16); \
1218
    if ((sum >> 16) == 0) \
1219
        ge |= 3 << (n * 2); \
1220
    } while(0)
1221

    
1222
#define ADD8(a, b, n) do { \
1223
    uint32_t sum; \
1224
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
1225
    RESULT(sum, n, 8); \
1226
    if ((sum >> 8) == 0) \
1227
        ge |= 3 << (n * 2); \
1228
    } while(0)
1229

    
1230
#define SUB16(a, b, n) do { \
1231
    uint32_t sum; \
1232
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
1233
    RESULT(sum, n, 16); \
1234
    if ((sum >> 16) == 0) \
1235
        ge |= 3 << (n * 2); \
1236
    } while(0)
1237

    
1238
#define SUB8(a, b, n) do { \
1239
    uint32_t sum; \
1240
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
1241
    RESULT(sum, n, 8); \
1242
    if ((sum >> 8) == 0) \
1243
        ge |= 3 << (n * 2); \
1244
    } while(0)
1245

    
1246
#define PFX u
1247
#define ARITH_GE
1248

    
1249
#include "op_addsub.h"
1250

    
1251
/* Halved signed arithmetic.  */
1252
#define ADD16(a, b, n) \
1253
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
1254
#define SUB16(a, b, n) \
1255
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
1256
#define ADD8(a, b, n) \
1257
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
1258
#define SUB8(a, b, n) \
1259
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
1260
#define PFX sh
1261

    
1262
#include "op_addsub.h"
1263

    
1264
/* Halved unsigned arithmetic.  */
1265
#define ADD16(a, b, n) \
1266
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
1267
#define SUB16(a, b, n) \
1268
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
1269
#define ADD8(a, b, n) \
1270
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
1271
#define SUB8(a, b, n) \
1272
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
1273
#define PFX uh
1274

    
1275
#include "op_addsub.h"
1276

    
1277
void OPPROTO op_pkhtb_T0_T1(void)
1278
{
1279
    T0 = (T0 & 0xffff0000) | (T1 & 0xffff);
1280
}
1281

    
1282
void OPPROTO op_pkhbt_T0_T1(void)
1283
{
1284
    T0 = (T0 & 0xffff) | (T1 & 0xffff0000);
1285
}
1286
void OPPROTO op_rev_T0(void)
1287
{
1288
    T0 =  ((T0 & 0xff000000) >> 24)
1289
        | ((T0 & 0x00ff0000) >> 8)
1290
        | ((T0 & 0x0000ff00) << 8)
1291
        | ((T0 & 0x000000ff) << 24);
1292
}
1293

    
1294
void OPPROTO op_revh_T0(void)
1295
{
1296
    T0 = (T0 >> 16) | (T0 << 16);
1297
}
1298

    
1299
void OPPROTO op_rev16_T0(void)
1300
{
1301
    T0 =  ((T0 & 0xff000000) >> 8)
1302
        | ((T0 & 0x00ff0000) << 8)
1303
        | ((T0 & 0x0000ff00) >> 8)
1304
        | ((T0 & 0x000000ff) << 8);
1305
}
1306

    
1307
void OPPROTO op_revsh_T0(void)
1308
{
1309
    T0 = (int16_t)(  ((T0 & 0x0000ff00) >> 8)
1310
                   | ((T0 & 0x000000ff) << 8));
1311
}
1312

    
1313
void OPPROTO op_rbit_T0(void)
1314
{
1315
    T0 =  ((T0 & 0xff000000) >> 24)
1316
        | ((T0 & 0x00ff0000) >> 8)
1317
        | ((T0 & 0x0000ff00) << 8)
1318
        | ((T0 & 0x000000ff) << 24);
1319
    T0 =  ((T0 & 0xf0f0f0f0) >> 4)
1320
        | ((T0 & 0x0f0f0f0f) << 4);
1321
    T0 =  ((T0 & 0x88888888) >> 3)
1322
        | ((T0 & 0x44444444) >> 1)
1323
        | ((T0 & 0x22222222) << 1)
1324
        | ((T0 & 0x11111111) << 3);
1325
}
1326

    
1327
/* Swap low and high halfwords.  */
1328
void OPPROTO op_swap_half_T1(void)
1329
{
1330
    T1 = (T1 >> 16) | (T1 << 16);
1331
    FORCE_RET();
1332
}
1333

    
1334
/* Dual 16-bit signed multiply.  */
1335
void OPPROTO op_mul_dual_T0_T1(void)
1336
{
1337
    int32_t low;
1338
    int32_t high;
1339
    low = (int32_t)(int16_t)T0 * (int32_t)(int16_t)T1;
1340
    high = (((int32_t)T0) >> 16) * (((int32_t)T1) >> 16);
1341
    T0 = low;
1342
    T1 = high;
1343
}
1344

    
1345
void OPPROTO op_sel_T0_T1(void)
1346
{
1347
    uint32_t mask;
1348
    uint32_t flags;
1349

    
1350
    flags = env->GE;
1351
    mask = 0;
1352
    if (flags & 1)
1353
        mask |= 0xff;
1354
    if (flags & 2)
1355
        mask |= 0xff00;
1356
    if (flags & 4)
1357
        mask |= 0xff0000;
1358
    if (flags & 8)
1359
        mask |= 0xff000000;
1360
    T0 = (T0 & mask) | (T1 & ~mask);
1361
    FORCE_RET();
1362
}
1363

    
1364
void OPPROTO op_roundqd_T0_T1(void)
1365
{
1366
    T0 = T1 + ((uint32_t)T0 >> 31);
1367
}
1368

    
1369
/* Signed saturation.  */
1370
static inline uint32_t do_ssat(int32_t val, int shift)
1371
{
1372
    int32_t top;
1373
    uint32_t mask;
1374

    
1375
    shift = PARAM1;
1376
    top = val >> shift;
1377
    mask = (1u << shift) - 1;
1378
    if (top > 0) {
1379
        env->QF = 1;
1380
        return mask;
1381
    } else if (top < -1) {
1382
        env->QF = 1;
1383
        return ~mask;
1384
    }
1385
    return val;
1386
}
1387

    
1388
/* Unsigned saturation.  */
1389
static inline uint32_t do_usat(int32_t val, int shift)
1390
{
1391
    uint32_t max;
1392

    
1393
    shift = PARAM1;
1394
    max = (1u << shift) - 1;
1395
    if (val < 0) {
1396
        env->QF = 1;
1397
        return 0;
1398
    } else if (val > max) {
1399
        env->QF = 1;
1400
        return max;
1401
    }
1402
    return val;
1403
}
1404

    
1405
/* Signed saturate.  */
1406
void OPPROTO op_ssat_T1(void)
1407
{
1408
    T0 = do_ssat(T0, PARAM1);
1409
    FORCE_RET();
1410
}
1411

    
1412
/* Dual halfword signed saturate.  */
1413
void OPPROTO op_ssat16_T1(void)
1414
{
1415
    uint32_t res;
1416

    
1417
    res = (uint16_t)do_ssat((int16_t)T0, PARAM1);
1418
    res |= do_ssat(((int32_t)T0) >> 16, PARAM1) << 16;
1419
    T0 = res;
1420
    FORCE_RET();
1421
}
1422

    
1423
/* Unsigned saturate.  */
1424
void OPPROTO op_usat_T1(void)
1425
{
1426
    T0 = do_usat(T0, PARAM1);
1427
    FORCE_RET();
1428
}
1429

    
1430
/* Dual halfword unsigned saturate.  */
1431
void OPPROTO op_usat16_T1(void)
1432
{
1433
    uint32_t res;
1434

    
1435
    res = (uint16_t)do_usat((int16_t)T0, PARAM1);
1436
    res |= do_usat(((int32_t)T0) >> 16, PARAM1) << 16;
1437
    T0 = res;
1438
    FORCE_RET();
1439
}
1440

    
1441
/* Dual 16-bit add.  */
1442
static inline uint8_t do_usad(uint8_t a, uint8_t b)
1443
{
1444
    if (a > b)
1445
        return a - b;
1446
    else
1447
        return b - a;
1448
}
1449

    
1450
/* Unsigned sum of absolute byte differences.  */
1451
void OPPROTO op_usad8_T0_T1(void)
1452
{
1453
    uint32_t sum;
1454
    sum = do_usad(T0, T1);
1455
    sum += do_usad(T0 >> 8, T1 >> 8);
1456
    sum += do_usad(T0 >> 16, T1 >>16);
1457
    sum += do_usad(T0 >> 24, T1 >> 24);
1458
    T0 = sum;
1459
}
1460

    
1461
/* Thumb-2 instructions.  */
1462

    
1463
/* Insert T1 into T0.  Result goes in T1.  */
1464
void OPPROTO op_bfi_T1_T0(void)
1465
{
1466
    int shift = PARAM1;
1467
    uint32_t mask = PARAM2;
1468
    uint32_t bits;
1469

    
1470
    bits = (T1 << shift) & mask;
1471
    T1 = (T0 & ~mask) | bits;
1472
}
1473

    
1474
/* Unsigned bitfield extract.  */
1475
void OPPROTO op_ubfx_T1(void)
1476
{
1477
    uint32_t shift = PARAM1;
1478
    uint32_t mask = PARAM2;
1479

    
1480
    T1 >>= shift;
1481
    T1 &= mask;
1482
}
1483

    
1484
/* Signed bitfield extract.  */
1485
void OPPROTO op_sbfx_T1(void)
1486
{
1487
    uint32_t shift = PARAM1;
1488
    uint32_t width = PARAM2;
1489
    int32_t val;
1490

    
1491
    val = T1 << (32 - (shift + width));
1492
    T1 = val >> (32 - width);
1493
}
1494

    
1495
void OPPROTO op_movtop_T0_im(void)
1496
{
1497
    T0 = (T0 & 0xffff) | PARAM1;
1498
}
1499

    
1500
/* Used by table branch instructions.  */
1501
void OPPROTO op_jmp_T0_im(void)
1502
{
1503
    env->regs[15] = PARAM1 + (T0 << 1);
1504
}
1505

    
1506
void OPPROTO op_set_condexec(void)
1507
{
1508
    env->condexec_bits = PARAM1;
1509
}
1510

    
1511
void OPPROTO op_sdivl_T0_T1(void)
1512
{
1513
  int32_t num;
1514
  int32_t den;
1515
  num = T0;
1516
  den = T1;
1517
  if (den == 0)
1518
    T0 = 0;
1519
  else
1520
    T0 = num / den;
1521
  FORCE_RET();
1522
}
1523

    
1524
void OPPROTO op_udivl_T0_T1(void)
1525
{
1526
  uint32_t num;
1527
  uint32_t den;
1528
  num = T0;
1529
  den = T1;
1530
  if (den == 0)
1531
    T0 = 0;
1532
  else
1533
    T0 = num / den;
1534
  FORCE_RET();
1535
}
1536

    
1537
void OPPROTO op_movl_T1_r13_banked(void)
1538
{
1539
    T1 = helper_get_r13_banked(env, PARAM1);
1540
}
1541

    
1542
void OPPROTO op_movl_r13_T1_banked(void)
1543
{
1544
    helper_set_r13_banked(env, PARAM1, T1);
1545
}
1546

    
1547
void OPPROTO op_v7m_mrs_T0(void)
1548
{
1549
    T0 = helper_v7m_mrs(env, PARAM1);
1550
}
1551

    
1552
void OPPROTO op_v7m_msr_T0(void)
1553
{
1554
    helper_v7m_msr(env, PARAM1, T0);
1555
}
1556

    
1557
void OPPROTO op_movl_T0_sp(void)
1558
{
1559
    if (PARAM1 == env->v7m.current_sp)
1560
        T0 = env->regs[13];
1561
    else
1562
        T0 = env->v7m.other_sp;
1563
    FORCE_RET();
1564
}
1565

    
1566
#include "op_neon.h"
1567

    
1568
/* iwMMXt support */
1569
#include "op_iwmmxt.c"