Statistics
| Branch: | Revision:

root / cpu-all.h @ f54b3f92

History | View | Annotate | Download (25.6 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24
#define WORDS_ALIGNED
25
#endif
26

    
27
/* some important defines:
28
 *
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 *
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 *
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#include "bswap.h"
41

    
42
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43
#define BSWAP_NEEDED
44
#endif
45

    
46
#ifdef BSWAP_NEEDED
47

    
48
static inline uint16_t tswap16(uint16_t s)
49
{
50
    return bswap16(s);
51
}
52

    
53
static inline uint32_t tswap32(uint32_t s)
54
{
55
    return bswap32(s);
56
}
57

    
58
static inline uint64_t tswap64(uint64_t s)
59
{
60
    return bswap64(s);
61
}
62

    
63
static inline void tswap16s(uint16_t *s)
64
{
65
    *s = bswap16(*s);
66
}
67

    
68
static inline void tswap32s(uint32_t *s)
69
{
70
    *s = bswap32(*s);
71
}
72

    
73
static inline void tswap64s(uint64_t *s)
74
{
75
    *s = bswap64(*s);
76
}
77

    
78
#else
79

    
80
static inline uint16_t tswap16(uint16_t s)
81
{
82
    return s;
83
}
84

    
85
static inline uint32_t tswap32(uint32_t s)
86
{
87
    return s;
88
}
89

    
90
static inline uint64_t tswap64(uint64_t s)
91
{
92
    return s;
93
}
94

    
95
static inline void tswap16s(uint16_t *s)
96
{
97
}
98

    
99
static inline void tswap32s(uint32_t *s)
100
{
101
}
102

    
103
static inline void tswap64s(uint64_t *s)
104
{
105
}
106

    
107
#endif
108

    
109
#if TARGET_LONG_SIZE == 4
110
#define tswapl(s) tswap32(s)
111
#define tswapls(s) tswap32s((uint32_t *)(s))
112
#define bswaptls(s) bswap32s(s)
113
#else
114
#define tswapl(s) tswap64(s)
115
#define tswapls(s) tswap64s((uint64_t *)(s))
116
#define bswaptls(s) bswap64s(s)
117
#endif
118

    
119
typedef union {
120
    float32 f;
121
    uint32_t l;
122
} CPU_FloatU;
123

    
124
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
125
   endian ! */
126
typedef union {
127
    float64 d;
128
#if defined(WORDS_BIGENDIAN) \
129
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
130
    struct {
131
        uint32_t upper;
132
        uint32_t lower;
133
    } l;
134
#else
135
    struct {
136
        uint32_t lower;
137
        uint32_t upper;
138
    } l;
139
#endif
140
    uint64_t ll;
141
} CPU_DoubleU;
142

    
143
#ifdef TARGET_SPARC
144
typedef union {
145
    float128 q;
146
#if defined(WORDS_BIGENDIAN) \
147
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
148
    struct {
149
        uint32_t upmost;
150
        uint32_t upper;
151
        uint32_t lower;
152
        uint32_t lowest;
153
    } l;
154
    struct {
155
        uint64_t upper;
156
        uint64_t lower;
157
    } ll;
158
#else
159
    struct {
160
        uint32_t lowest;
161
        uint32_t lower;
162
        uint32_t upper;
163
        uint32_t upmost;
164
    } l;
165
    struct {
166
        uint64_t lower;
167
        uint64_t upper;
168
    } ll;
169
#endif
170
} CPU_QuadU;
171
#endif
172

    
173
/* CPU memory access without any memory or io remapping */
174

    
175
/*
176
 * the generic syntax for the memory accesses is:
177
 *
178
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
179
 *
180
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
181
 *
182
 * type is:
183
 * (empty): integer access
184
 *   f    : float access
185
 *
186
 * sign is:
187
 * (empty): for floats or 32 bit size
188
 *   u    : unsigned
189
 *   s    : signed
190
 *
191
 * size is:
192
 *   b: 8 bits
193
 *   w: 16 bits
194
 *   l: 32 bits
195
 *   q: 64 bits
196
 *
197
 * endian is:
198
 * (empty): target cpu endianness or 8 bit access
199
 *   r    : reversed target cpu endianness (not implemented yet)
200
 *   be   : big endian (not implemented yet)
201
 *   le   : little endian (not implemented yet)
202
 *
203
 * access_type is:
204
 *   raw    : host memory access
205
 *   user   : user mode access using soft MMU
206
 *   kernel : kernel mode access using soft MMU
207
 */
208
static inline int ldub_p(void *ptr)
209
{
210
    return *(uint8_t *)ptr;
211
}
212

    
213
static inline int ldsb_p(void *ptr)
214
{
215
    return *(int8_t *)ptr;
216
}
217

    
218
static inline void stb_p(void *ptr, int v)
219
{
220
    *(uint8_t *)ptr = v;
221
}
222

    
223
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
224
   kernel handles unaligned load/stores may give better results, but
225
   it is a system wide setting : bad */
226
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
227

    
228
/* conservative code for little endian unaligned accesses */
229
static inline int lduw_le_p(void *ptr)
230
{
231
#ifdef __powerpc__
232
    int val;
233
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
234
    return val;
235
#else
236
    uint8_t *p = ptr;
237
    return p[0] | (p[1] << 8);
238
#endif
239
}
240

    
241
static inline int ldsw_le_p(void *ptr)
242
{
243
#ifdef __powerpc__
244
    int val;
245
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
246
    return (int16_t)val;
247
#else
248
    uint8_t *p = ptr;
249
    return (int16_t)(p[0] | (p[1] << 8));
250
#endif
251
}
252

    
253
static inline int ldl_le_p(void *ptr)
254
{
255
#ifdef __powerpc__
256
    int val;
257
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
258
    return val;
259
#else
260
    uint8_t *p = ptr;
261
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
262
#endif
263
}
264

    
265
static inline uint64_t ldq_le_p(void *ptr)
266
{
267
    uint8_t *p = ptr;
268
    uint32_t v1, v2;
269
    v1 = ldl_le_p(p);
270
    v2 = ldl_le_p(p + 4);
271
    return v1 | ((uint64_t)v2 << 32);
272
}
273

    
274
static inline void stw_le_p(void *ptr, int v)
275
{
276
#ifdef __powerpc__
277
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
278
#else
279
    uint8_t *p = ptr;
280
    p[0] = v;
281
    p[1] = v >> 8;
282
#endif
283
}
284

    
285
static inline void stl_le_p(void *ptr, int v)
286
{
287
#ifdef __powerpc__
288
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
289
#else
290
    uint8_t *p = ptr;
291
    p[0] = v;
292
    p[1] = v >> 8;
293
    p[2] = v >> 16;
294
    p[3] = v >> 24;
295
#endif
296
}
297

    
298
static inline void stq_le_p(void *ptr, uint64_t v)
299
{
300
    uint8_t *p = ptr;
301
    stl_le_p(p, (uint32_t)v);
302
    stl_le_p(p + 4, v >> 32);
303
}
304

    
305
/* float access */
306

    
307
static inline float32 ldfl_le_p(void *ptr)
308
{
309
    union {
310
        float32 f;
311
        uint32_t i;
312
    } u;
313
    u.i = ldl_le_p(ptr);
314
    return u.f;
315
}
316

    
317
static inline void stfl_le_p(void *ptr, float32 v)
318
{
319
    union {
320
        float32 f;
321
        uint32_t i;
322
    } u;
323
    u.f = v;
324
    stl_le_p(ptr, u.i);
325
}
326

    
327
static inline float64 ldfq_le_p(void *ptr)
328
{
329
    CPU_DoubleU u;
330
    u.l.lower = ldl_le_p(ptr);
331
    u.l.upper = ldl_le_p(ptr + 4);
332
    return u.d;
333
}
334

    
335
static inline void stfq_le_p(void *ptr, float64 v)
336
{
337
    CPU_DoubleU u;
338
    u.d = v;
339
    stl_le_p(ptr, u.l.lower);
340
    stl_le_p(ptr + 4, u.l.upper);
341
}
342

    
343
#else
344

    
345
static inline int lduw_le_p(void *ptr)
346
{
347
    return *(uint16_t *)ptr;
348
}
349

    
350
static inline int ldsw_le_p(void *ptr)
351
{
352
    return *(int16_t *)ptr;
353
}
354

    
355
static inline int ldl_le_p(void *ptr)
356
{
357
    return *(uint32_t *)ptr;
358
}
359

    
360
static inline uint64_t ldq_le_p(void *ptr)
361
{
362
    return *(uint64_t *)ptr;
363
}
364

    
365
static inline void stw_le_p(void *ptr, int v)
366
{
367
    *(uint16_t *)ptr = v;
368
}
369

    
370
static inline void stl_le_p(void *ptr, int v)
371
{
372
    *(uint32_t *)ptr = v;
373
}
374

    
375
static inline void stq_le_p(void *ptr, uint64_t v)
376
{
377
    *(uint64_t *)ptr = v;
378
}
379

    
380
/* float access */
381

    
382
static inline float32 ldfl_le_p(void *ptr)
383
{
384
    return *(float32 *)ptr;
385
}
386

    
387
static inline float64 ldfq_le_p(void *ptr)
388
{
389
    return *(float64 *)ptr;
390
}
391

    
392
static inline void stfl_le_p(void *ptr, float32 v)
393
{
394
    *(float32 *)ptr = v;
395
}
396

    
397
static inline void stfq_le_p(void *ptr, float64 v)
398
{
399
    *(float64 *)ptr = v;
400
}
401
#endif
402

    
403
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
404

    
405
static inline int lduw_be_p(void *ptr)
406
{
407
#if defined(__i386__)
408
    int val;
409
    asm volatile ("movzwl %1, %0\n"
410
                  "xchgb %b0, %h0\n"
411
                  : "=q" (val)
412
                  : "m" (*(uint16_t *)ptr));
413
    return val;
414
#else
415
    uint8_t *b = (uint8_t *) ptr;
416
    return ((b[0] << 8) | b[1]);
417
#endif
418
}
419

    
420
static inline int ldsw_be_p(void *ptr)
421
{
422
#if defined(__i386__)
423
    int val;
424
    asm volatile ("movzwl %1, %0\n"
425
                  "xchgb %b0, %h0\n"
426
                  : "=q" (val)
427
                  : "m" (*(uint16_t *)ptr));
428
    return (int16_t)val;
429
#else
430
    uint8_t *b = (uint8_t *) ptr;
431
    return (int16_t)((b[0] << 8) | b[1]);
432
#endif
433
}
434

    
435
static inline int ldl_be_p(void *ptr)
436
{
437
#if defined(__i386__) || defined(__x86_64__)
438
    int val;
439
    asm volatile ("movl %1, %0\n"
440
                  "bswap %0\n"
441
                  : "=r" (val)
442
                  : "m" (*(uint32_t *)ptr));
443
    return val;
444
#else
445
    uint8_t *b = (uint8_t *) ptr;
446
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
447
#endif
448
}
449

    
450
static inline uint64_t ldq_be_p(void *ptr)
451
{
452
    uint32_t a,b;
453
    a = ldl_be_p(ptr);
454
    b = ldl_be_p(ptr+4);
455
    return (((uint64_t)a<<32)|b);
456
}
457

    
458
static inline void stw_be_p(void *ptr, int v)
459
{
460
#if defined(__i386__)
461
    asm volatile ("xchgb %b0, %h0\n"
462
                  "movw %w0, %1\n"
463
                  : "=q" (v)
464
                  : "m" (*(uint16_t *)ptr), "0" (v));
465
#else
466
    uint8_t *d = (uint8_t *) ptr;
467
    d[0] = v >> 8;
468
    d[1] = v;
469
#endif
470
}
471

    
472
static inline void stl_be_p(void *ptr, int v)
473
{
474
#if defined(__i386__) || defined(__x86_64__)
475
    asm volatile ("bswap %0\n"
476
                  "movl %0, %1\n"
477
                  : "=r" (v)
478
                  : "m" (*(uint32_t *)ptr), "0" (v));
479
#else
480
    uint8_t *d = (uint8_t *) ptr;
481
    d[0] = v >> 24;
482
    d[1] = v >> 16;
483
    d[2] = v >> 8;
484
    d[3] = v;
485
#endif
486
}
487

    
488
static inline void stq_be_p(void *ptr, uint64_t v)
489
{
490
    stl_be_p(ptr, v >> 32);
491
    stl_be_p(ptr + 4, v);
492
}
493

    
494
/* float access */
495

    
496
static inline float32 ldfl_be_p(void *ptr)
497
{
498
    union {
499
        float32 f;
500
        uint32_t i;
501
    } u;
502
    u.i = ldl_be_p(ptr);
503
    return u.f;
504
}
505

    
506
static inline void stfl_be_p(void *ptr, float32 v)
507
{
508
    union {
509
        float32 f;
510
        uint32_t i;
511
    } u;
512
    u.f = v;
513
    stl_be_p(ptr, u.i);
514
}
515

    
516
static inline float64 ldfq_be_p(void *ptr)
517
{
518
    CPU_DoubleU u;
519
    u.l.upper = ldl_be_p(ptr);
520
    u.l.lower = ldl_be_p(ptr + 4);
521
    return u.d;
522
}
523

    
524
static inline void stfq_be_p(void *ptr, float64 v)
525
{
526
    CPU_DoubleU u;
527
    u.d = v;
528
    stl_be_p(ptr, u.l.upper);
529
    stl_be_p(ptr + 4, u.l.lower);
530
}
531

    
532
#else
533

    
534
static inline int lduw_be_p(void *ptr)
535
{
536
    return *(uint16_t *)ptr;
537
}
538

    
539
static inline int ldsw_be_p(void *ptr)
540
{
541
    return *(int16_t *)ptr;
542
}
543

    
544
static inline int ldl_be_p(void *ptr)
545
{
546
    return *(uint32_t *)ptr;
547
}
548

    
549
static inline uint64_t ldq_be_p(void *ptr)
550
{
551
    return *(uint64_t *)ptr;
552
}
553

    
554
static inline void stw_be_p(void *ptr, int v)
555
{
556
    *(uint16_t *)ptr = v;
557
}
558

    
559
static inline void stl_be_p(void *ptr, int v)
560
{
561
    *(uint32_t *)ptr = v;
562
}
563

    
564
static inline void stq_be_p(void *ptr, uint64_t v)
565
{
566
    *(uint64_t *)ptr = v;
567
}
568

    
569
/* float access */
570

    
571
static inline float32 ldfl_be_p(void *ptr)
572
{
573
    return *(float32 *)ptr;
574
}
575

    
576
static inline float64 ldfq_be_p(void *ptr)
577
{
578
    return *(float64 *)ptr;
579
}
580

    
581
static inline void stfl_be_p(void *ptr, float32 v)
582
{
583
    *(float32 *)ptr = v;
584
}
585

    
586
static inline void stfq_be_p(void *ptr, float64 v)
587
{
588
    *(float64 *)ptr = v;
589
}
590

    
591
#endif
592

    
593
/* target CPU memory access functions */
594
#if defined(TARGET_WORDS_BIGENDIAN)
595
#define lduw_p(p) lduw_be_p(p)
596
#define ldsw_p(p) ldsw_be_p(p)
597
#define ldl_p(p) ldl_be_p(p)
598
#define ldq_p(p) ldq_be_p(p)
599
#define ldfl_p(p) ldfl_be_p(p)
600
#define ldfq_p(p) ldfq_be_p(p)
601
#define stw_p(p, v) stw_be_p(p, v)
602
#define stl_p(p, v) stl_be_p(p, v)
603
#define stq_p(p, v) stq_be_p(p, v)
604
#define stfl_p(p, v) stfl_be_p(p, v)
605
#define stfq_p(p, v) stfq_be_p(p, v)
606
#else
607
#define lduw_p(p) lduw_le_p(p)
608
#define ldsw_p(p) ldsw_le_p(p)
609
#define ldl_p(p) ldl_le_p(p)
610
#define ldq_p(p) ldq_le_p(p)
611
#define ldfl_p(p) ldfl_le_p(p)
612
#define ldfq_p(p) ldfq_le_p(p)
613
#define stw_p(p, v) stw_le_p(p, v)
614
#define stl_p(p, v) stl_le_p(p, v)
615
#define stq_p(p, v) stq_le_p(p, v)
616
#define stfl_p(p, v) stfl_le_p(p, v)
617
#define stfq_p(p, v) stfq_le_p(p, v)
618
#endif
619

    
620
/* MMU memory access macros */
621

    
622
#if defined(CONFIG_USER_ONLY)
623
/* On some host systems the guest address space is reserved on the host.
624
 * This allows the guest address space to be offset to a convenient location.
625
 */
626
//#define GUEST_BASE 0x20000000
627
#define GUEST_BASE 0
628

    
629
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
630
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
631
#define h2g(x) ((target_ulong)(x - GUEST_BASE))
632

    
633
#define saddr(x) g2h(x)
634
#define laddr(x) g2h(x)
635

    
636
#else /* !CONFIG_USER_ONLY */
637
/* NOTE: we use double casts if pointers and target_ulong have
638
   different sizes */
639
#define saddr(x) (uint8_t *)(long)(x)
640
#define laddr(x) (uint8_t *)(long)(x)
641
#endif
642

    
643
#define ldub_raw(p) ldub_p(laddr((p)))
644
#define ldsb_raw(p) ldsb_p(laddr((p)))
645
#define lduw_raw(p) lduw_p(laddr((p)))
646
#define ldsw_raw(p) ldsw_p(laddr((p)))
647
#define ldl_raw(p) ldl_p(laddr((p)))
648
#define ldq_raw(p) ldq_p(laddr((p)))
649
#define ldfl_raw(p) ldfl_p(laddr((p)))
650
#define ldfq_raw(p) ldfq_p(laddr((p)))
651
#define stb_raw(p, v) stb_p(saddr((p)), v)
652
#define stw_raw(p, v) stw_p(saddr((p)), v)
653
#define stl_raw(p, v) stl_p(saddr((p)), v)
654
#define stq_raw(p, v) stq_p(saddr((p)), v)
655
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
656
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
657

    
658

    
659
#if defined(CONFIG_USER_ONLY)
660

    
661
/* if user mode, no other memory access functions */
662
#define ldub(p) ldub_raw(p)
663
#define ldsb(p) ldsb_raw(p)
664
#define lduw(p) lduw_raw(p)
665
#define ldsw(p) ldsw_raw(p)
666
#define ldl(p) ldl_raw(p)
667
#define ldq(p) ldq_raw(p)
668
#define ldfl(p) ldfl_raw(p)
669
#define ldfq(p) ldfq_raw(p)
670
#define stb(p, v) stb_raw(p, v)
671
#define stw(p, v) stw_raw(p, v)
672
#define stl(p, v) stl_raw(p, v)
673
#define stq(p, v) stq_raw(p, v)
674
#define stfl(p, v) stfl_raw(p, v)
675
#define stfq(p, v) stfq_raw(p, v)
676

    
677
#define ldub_code(p) ldub_raw(p)
678
#define ldsb_code(p) ldsb_raw(p)
679
#define lduw_code(p) lduw_raw(p)
680
#define ldsw_code(p) ldsw_raw(p)
681
#define ldl_code(p) ldl_raw(p)
682
#define ldq_code(p) ldq_raw(p)
683

    
684
#define ldub_kernel(p) ldub_raw(p)
685
#define ldsb_kernel(p) ldsb_raw(p)
686
#define lduw_kernel(p) lduw_raw(p)
687
#define ldsw_kernel(p) ldsw_raw(p)
688
#define ldl_kernel(p) ldl_raw(p)
689
#define ldq_kernel(p) ldq_raw(p)
690
#define ldfl_kernel(p) ldfl_raw(p)
691
#define ldfq_kernel(p) ldfq_raw(p)
692
#define stb_kernel(p, v) stb_raw(p, v)
693
#define stw_kernel(p, v) stw_raw(p, v)
694
#define stl_kernel(p, v) stl_raw(p, v)
695
#define stq_kernel(p, v) stq_raw(p, v)
696
#define stfl_kernel(p, v) stfl_raw(p, v)
697
#define stfq_kernel(p, vt) stfq_raw(p, v)
698

    
699
#endif /* defined(CONFIG_USER_ONLY) */
700

    
701
/* page related stuff */
702

    
703
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
704
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
705
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
706

    
707
/* ??? These should be the larger of unsigned long and target_ulong.  */
708
extern unsigned long qemu_real_host_page_size;
709
extern unsigned long qemu_host_page_bits;
710
extern unsigned long qemu_host_page_size;
711
extern unsigned long qemu_host_page_mask;
712

    
713
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
714

    
715
/* same as PROT_xxx */
716
#define PAGE_READ      0x0001
717
#define PAGE_WRITE     0x0002
718
#define PAGE_EXEC      0x0004
719
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
720
#define PAGE_VALID     0x0008
721
/* original state of the write flag (used when tracking self-modifying
722
   code */
723
#define PAGE_WRITE_ORG 0x0010
724
#define PAGE_RESERVED  0x0020
725

    
726
void page_dump(FILE *f);
727
int page_get_flags(target_ulong address);
728
void page_set_flags(target_ulong start, target_ulong end, int flags);
729
int page_check_range(target_ulong start, target_ulong len, int flags);
730

    
731
CPUState *cpu_copy(CPUState *env);
732

    
733
void cpu_dump_state(CPUState *env, FILE *f,
734
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
735
                    int flags);
736
void cpu_dump_statistics (CPUState *env, FILE *f,
737
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
738
                          int flags);
739

    
740
void cpu_abort(CPUState *env, const char *fmt, ...)
741
    __attribute__ ((__format__ (__printf__, 2, 3)))
742
    __attribute__ ((__noreturn__));
743
extern CPUState *first_cpu;
744
extern CPUState *cpu_single_env;
745
extern int code_copy_enabled;
746

    
747
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
748
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
749
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
750
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
751
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
752
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
753
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
754
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
755
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
756

    
757
void cpu_interrupt(CPUState *s, int mask);
758
void cpu_reset_interrupt(CPUState *env, int mask);
759

    
760
int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
761
int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
762
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
763
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
764
void cpu_single_step(CPUState *env, int enabled);
765
void cpu_reset(CPUState *s);
766

    
767
/* Return the physical page corresponding to a virtual one. Use it
768
   only for debugging because no protection checks are done. Return -1
769
   if no page found. */
770
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
771

    
772
#define CPU_LOG_TB_OUT_ASM (1 << 0)
773
#define CPU_LOG_TB_IN_ASM  (1 << 1)
774
#define CPU_LOG_TB_OP      (1 << 2)
775
#define CPU_LOG_TB_OP_OPT  (1 << 3)
776
#define CPU_LOG_INT        (1 << 4)
777
#define CPU_LOG_EXEC       (1 << 5)
778
#define CPU_LOG_PCALL      (1 << 6)
779
#define CPU_LOG_IOPORT     (1 << 7)
780
#define CPU_LOG_TB_CPU     (1 << 8)
781

    
782
/* define log items */
783
typedef struct CPULogItem {
784
    int mask;
785
    const char *name;
786
    const char *help;
787
} CPULogItem;
788

    
789
extern CPULogItem cpu_log_items[];
790

    
791
void cpu_set_log(int log_flags);
792
void cpu_set_log_filename(const char *filename);
793
int cpu_str_to_log_mask(const char *str);
794

    
795
/* IO ports API */
796

    
797
/* NOTE: as these functions may be even used when there is an isa
798
   brige on non x86 targets, we always defined them */
799
#ifndef NO_CPU_IO_DEFS
800
void cpu_outb(CPUState *env, int addr, int val);
801
void cpu_outw(CPUState *env, int addr, int val);
802
void cpu_outl(CPUState *env, int addr, int val);
803
int cpu_inb(CPUState *env, int addr);
804
int cpu_inw(CPUState *env, int addr);
805
int cpu_inl(CPUState *env, int addr);
806
#endif
807

    
808
/* memory API */
809

    
810
extern int phys_ram_size;
811
extern int phys_ram_fd;
812
extern uint8_t *phys_ram_base;
813
extern uint8_t *phys_ram_dirty;
814

    
815
/* physical memory access */
816
#define TLB_INVALID_MASK   (1 << 3)
817
#define IO_MEM_SHIFT       4
818
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
819

    
820
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
821
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
822
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
823
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
824
/* acts like a ROM when read and like a device when written. As an
825
   exception, the write memory callback gets the ram offset instead of
826
   the physical address */
827
#define IO_MEM_ROMD        (1)
828
#define IO_MEM_SUBPAGE     (2)
829
#define IO_MEM_SUBWIDTH    (4)
830

    
831
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
832
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
833

    
834
void cpu_register_physical_memory(target_phys_addr_t start_addr,
835
                                  unsigned long size,
836
                                  unsigned long phys_offset);
837
uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
838
ram_addr_t qemu_ram_alloc(unsigned int size);
839
void qemu_ram_free(ram_addr_t addr);
840
int cpu_register_io_memory(int io_index,
841
                           CPUReadMemoryFunc **mem_read,
842
                           CPUWriteMemoryFunc **mem_write,
843
                           void *opaque);
844
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
845
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
846

    
847
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
848
                            int len, int is_write);
849
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
850
                                            uint8_t *buf, int len)
851
{
852
    cpu_physical_memory_rw(addr, buf, len, 0);
853
}
854
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
855
                                             const uint8_t *buf, int len)
856
{
857
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
858
}
859
uint32_t ldub_phys(target_phys_addr_t addr);
860
uint32_t lduw_phys(target_phys_addr_t addr);
861
uint32_t ldl_phys(target_phys_addr_t addr);
862
uint64_t ldq_phys(target_phys_addr_t addr);
863
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
864
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
865
void stb_phys(target_phys_addr_t addr, uint32_t val);
866
void stw_phys(target_phys_addr_t addr, uint32_t val);
867
void stl_phys(target_phys_addr_t addr, uint32_t val);
868
void stq_phys(target_phys_addr_t addr, uint64_t val);
869

    
870
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
871
                                   const uint8_t *buf, int len);
872
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
873
                        uint8_t *buf, int len, int is_write);
874

    
875
#define VGA_DIRTY_FLAG  0x01
876
#define CODE_DIRTY_FLAG 0x02
877

    
878
/* read dirty bit (return 0 or 1) */
879
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
880
{
881
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
882
}
883

    
884
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
885
                                                int dirty_flags)
886
{
887
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
888
}
889

    
890
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
891
{
892
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
893
}
894

    
895
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
896
                                     int dirty_flags);
897
void cpu_tlb_update_dirty(CPUState *env);
898

    
899
void dump_exec_info(FILE *f,
900
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
901

    
902
/*******************************************/
903
/* host CPU ticks (if available) */
904

    
905
#if defined(__powerpc__)
906

    
907
static inline uint32_t get_tbl(void)
908
{
909
    uint32_t tbl;
910
    asm volatile("mftb %0" : "=r" (tbl));
911
    return tbl;
912
}
913

    
914
static inline uint32_t get_tbu(void)
915
{
916
        uint32_t tbl;
917
        asm volatile("mftbu %0" : "=r" (tbl));
918
        return tbl;
919
}
920

    
921
static inline int64_t cpu_get_real_ticks(void)
922
{
923
    uint32_t l, h, h1;
924
    /* NOTE: we test if wrapping has occurred */
925
    do {
926
        h = get_tbu();
927
        l = get_tbl();
928
        h1 = get_tbu();
929
    } while (h != h1);
930
    return ((int64_t)h << 32) | l;
931
}
932

    
933
#elif defined(__i386__)
934

    
935
static inline int64_t cpu_get_real_ticks(void)
936
{
937
    int64_t val;
938
    asm volatile ("rdtsc" : "=A" (val));
939
    return val;
940
}
941

    
942
#elif defined(__x86_64__)
943

    
944
static inline int64_t cpu_get_real_ticks(void)
945
{
946
    uint32_t low,high;
947
    int64_t val;
948
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
949
    val = high;
950
    val <<= 32;
951
    val |= low;
952
    return val;
953
}
954

    
955
#elif defined(__hppa__)
956

    
957
static inline int64_t cpu_get_real_ticks(void)
958
{
959
    int val;
960
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
961
    return val;
962
}
963

    
964
#elif defined(__ia64)
965

    
966
static inline int64_t cpu_get_real_ticks(void)
967
{
968
        int64_t val;
969
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
970
        return val;
971
}
972

    
973
#elif defined(__s390__)
974

    
975
static inline int64_t cpu_get_real_ticks(void)
976
{
977
    int64_t val;
978
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
979
    return val;
980
}
981

    
982
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
983

    
984
static inline int64_t cpu_get_real_ticks (void)
985
{
986
#if     defined(_LP64)
987
        uint64_t        rval;
988
        asm volatile("rd %%tick,%0" : "=r"(rval));
989
        return rval;
990
#else
991
        union {
992
                uint64_t i64;
993
                struct {
994
                        uint32_t high;
995
                        uint32_t low;
996
                }       i32;
997
        } rval;
998
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
999
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1000
        return rval.i64;
1001
#endif
1002
}
1003

    
1004
#elif defined(__mips__)
1005

    
1006
static inline int64_t cpu_get_real_ticks(void)
1007
{
1008
#if __mips_isa_rev >= 2
1009
    uint32_t count;
1010
    static uint32_t cyc_per_count = 0;
1011

    
1012
    if (!cyc_per_count)
1013
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1014

    
1015
    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1016
    return (int64_t)(count * cyc_per_count);
1017
#else
1018
    /* FIXME */
1019
    static int64_t ticks = 0;
1020
    return ticks++;
1021
#endif
1022
}
1023

    
1024
#else
1025
/* The host CPU doesn't have an easily accessible cycle counter.
1026
   Just return a monotonically increasing value.  This will be
1027
   totally wrong, but hopefully better than nothing.  */
1028
static inline int64_t cpu_get_real_ticks (void)
1029
{
1030
    static int64_t ticks = 0;
1031
    return ticks++;
1032
}
1033
#endif
1034

    
1035
/* profiling */
1036
#ifdef CONFIG_PROFILER
1037
static inline int64_t profile_getclock(void)
1038
{
1039
    return cpu_get_real_ticks();
1040
}
1041

    
1042
extern int64_t kqemu_time, kqemu_time_start;
1043
extern int64_t qemu_time, qemu_time_start;
1044
extern int64_t tlb_flush_time;
1045
extern int64_t kqemu_exec_count;
1046
extern int64_t dev_time;
1047
extern int64_t kqemu_ret_int_count;
1048
extern int64_t kqemu_ret_excp_count;
1049
extern int64_t kqemu_ret_intr_count;
1050

    
1051
extern int64_t dyngen_tb_count1;
1052
extern int64_t dyngen_tb_count;
1053
extern int64_t dyngen_op_count;
1054
extern int64_t dyngen_old_op_count;
1055
extern int64_t dyngen_tcg_del_op_count;
1056
extern int dyngen_op_count_max;
1057
extern int64_t dyngen_code_in_len;
1058
extern int64_t dyngen_code_out_len;
1059
extern int64_t dyngen_interm_time;
1060
extern int64_t dyngen_code_time;
1061
extern int64_t dyngen_restore_count;
1062
extern int64_t dyngen_restore_time;
1063
#endif
1064

    
1065
#endif /* CPU_ALL_H */