Statistics
| Branch: | Revision:

root / hw / m48t59.c @ f6503059

History | View | Annotate | Download (16.8 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "nvram.h"
26
#include "isa.h"
27
#include "qemu-timer.h"
28
#include "sysemu.h"
29

    
30
//#define DEBUG_NVRAM
31

    
32
#if defined(DEBUG_NVRAM)
33
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
34
#else
35
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
36
#endif
37

    
38
/*
39
 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
40
 * alarm and a watchdog timer and related control registers. In the
41
 * PPC platform there is also a nvram lock function.
42
 */
43
struct m48t59_t {
44
    /* Model parameters */
45
    int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
46
    /* Hardware parameters */
47
    qemu_irq IRQ;
48
    int mem_index;
49
    target_phys_addr_t mem_base;
50
    uint32_t io_base;
51
    uint16_t size;
52
    /* RTC management */
53
    time_t   time_offset;
54
    time_t   stop_time;
55
    /* Alarm & watchdog */
56
    struct tm alarm;
57
    struct QEMUTimer *alrm_timer;
58
    struct QEMUTimer *wd_timer;
59
    /* NVRAM storage */
60
    uint8_t  lock;
61
    uint16_t addr;
62
    uint8_t *buffer;
63
};
64

    
65
/* Fake timer functions */
66
/* Generic helpers for BCD */
67
static inline uint8_t toBCD (uint8_t value)
68
{
69
    return (((value / 10) % 10) << 4) | (value % 10);
70
}
71

    
72
static inline uint8_t fromBCD (uint8_t BCD)
73
{
74
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
75
}
76

    
77
/* Alarm management */
78
static void alarm_cb (void *opaque)
79
{
80
    struct tm tm;
81
    uint64_t next_time;
82
    m48t59_t *NVRAM = opaque;
83

    
84
    qemu_set_irq(NVRAM->IRQ, 1);
85
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
86
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
87
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
88
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
89
        /* Repeat once a month */
90
        qemu_get_timedate(&tm, NVRAM->time_offset);
91
        tm.tm_mon++;
92
        if (tm.tm_mon == 13) {
93
            tm.tm_mon = 1;
94
            tm.tm_year++;
95
        }
96
        next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
97
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
98
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
99
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
100
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
101
        /* Repeat once a day */
102
        next_time = 24 * 60 * 60;
103
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
104
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
105
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
106
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
107
        /* Repeat once an hour */
108
        next_time = 60 * 60;
109
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
110
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
111
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
112
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
113
        /* Repeat once a minute */
114
        next_time = 60;
115
    } else {
116
        /* Repeat once a second */
117
        next_time = 1;
118
    }
119
    qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
120
                    next_time * 1000);
121
    qemu_set_irq(NVRAM->IRQ, 0);
122
}
123

    
124
static void set_alarm (m48t59_t *NVRAM)
125
{
126
    int diff;
127
    if (NVRAM->alrm_timer != NULL) {
128
        qemu_del_timer(NVRAM->alrm_timer);
129
        diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
130
        if (diff > 0)
131
            qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
132
    }
133
}
134

    
135
/* RTC management helpers */
136
static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
137
{
138
    qemu_get_timedate(tm, NVRAM->time_offset);
139
}
140

    
141
static void set_time (m48t59_t *NVRAM, struct tm *tm)
142
{
143
    NVRAM->time_offset = qemu_timedate_diff(tm);
144
    set_alarm(NVRAM);
145
}
146

    
147
/* Watchdog management */
148
static void watchdog_cb (void *opaque)
149
{
150
    m48t59_t *NVRAM = opaque;
151

    
152
    NVRAM->buffer[0x1FF0] |= 0x80;
153
    if (NVRAM->buffer[0x1FF7] & 0x80) {
154
        NVRAM->buffer[0x1FF7] = 0x00;
155
        NVRAM->buffer[0x1FFC] &= ~0x40;
156
        /* May it be a hw CPU Reset instead ? */
157
        qemu_system_reset_request();
158
    } else {
159
        qemu_set_irq(NVRAM->IRQ, 1);
160
        qemu_set_irq(NVRAM->IRQ, 0);
161
    }
162
}
163

    
164
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
165
{
166
    uint64_t interval; /* in 1/16 seconds */
167

    
168
    NVRAM->buffer[0x1FF0] &= ~0x80;
169
    if (NVRAM->wd_timer != NULL) {
170
        qemu_del_timer(NVRAM->wd_timer);
171
        if (value != 0) {
172
            interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
173
            qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
174
                           ((interval * 1000) >> 4));
175
        }
176
    }
177
}
178

    
179
/* Direct access to NVRAM */
180
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
181
{
182
    m48t59_t *NVRAM = opaque;
183
    struct tm tm;
184
    int tmp;
185

    
186
    if (addr > 0x1FF8 && addr < 0x2000)
187
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
188

    
189
    /* check for NVRAM access */
190
    if ((NVRAM->type == 2 && addr < 0x7f8) ||
191
        (NVRAM->type == 8 && addr < 0x1ff8) ||
192
        (NVRAM->type == 59 && addr < 0x1ff0))
193
        goto do_write;
194

    
195
    /* TOD access */
196
    switch (addr) {
197
    case 0x1FF0:
198
        /* flags register : read-only */
199
        break;
200
    case 0x1FF1:
201
        /* unused */
202
        break;
203
    case 0x1FF2:
204
        /* alarm seconds */
205
        tmp = fromBCD(val & 0x7F);
206
        if (tmp >= 0 && tmp <= 59) {
207
            NVRAM->alarm.tm_sec = tmp;
208
            NVRAM->buffer[0x1FF2] = val;
209
            set_alarm(NVRAM);
210
        }
211
        break;
212
    case 0x1FF3:
213
        /* alarm minutes */
214
        tmp = fromBCD(val & 0x7F);
215
        if (tmp >= 0 && tmp <= 59) {
216
            NVRAM->alarm.tm_min = tmp;
217
            NVRAM->buffer[0x1FF3] = val;
218
            set_alarm(NVRAM);
219
        }
220
        break;
221
    case 0x1FF4:
222
        /* alarm hours */
223
        tmp = fromBCD(val & 0x3F);
224
        if (tmp >= 0 && tmp <= 23) {
225
            NVRAM->alarm.tm_hour = tmp;
226
            NVRAM->buffer[0x1FF4] = val;
227
            set_alarm(NVRAM);
228
        }
229
        break;
230
    case 0x1FF5:
231
        /* alarm date */
232
        tmp = fromBCD(val & 0x1F);
233
        if (tmp != 0) {
234
            NVRAM->alarm.tm_mday = tmp;
235
            NVRAM->buffer[0x1FF5] = val;
236
            set_alarm(NVRAM);
237
        }
238
        break;
239
    case 0x1FF6:
240
        /* interrupts */
241
        NVRAM->buffer[0x1FF6] = val;
242
        break;
243
    case 0x1FF7:
244
        /* watchdog */
245
        NVRAM->buffer[0x1FF7] = val;
246
        set_up_watchdog(NVRAM, val);
247
        break;
248
    case 0x1FF8:
249
    case 0x07F8:
250
        /* control */
251
       NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
252
        break;
253
    case 0x1FF9:
254
    case 0x07F9:
255
        /* seconds (BCD) */
256
        tmp = fromBCD(val & 0x7F);
257
        if (tmp >= 0 && tmp <= 59) {
258
            get_time(NVRAM, &tm);
259
            tm.tm_sec = tmp;
260
            set_time(NVRAM, &tm);
261
        }
262
        if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
263
            if (val & 0x80) {
264
                NVRAM->stop_time = time(NULL);
265
            } else {
266
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
267
                NVRAM->stop_time = 0;
268
            }
269
        }
270
        NVRAM->buffer[addr] = val & 0x80;
271
        break;
272
    case 0x1FFA:
273
    case 0x07FA:
274
        /* minutes (BCD) */
275
        tmp = fromBCD(val & 0x7F);
276
        if (tmp >= 0 && tmp <= 59) {
277
            get_time(NVRAM, &tm);
278
            tm.tm_min = tmp;
279
            set_time(NVRAM, &tm);
280
        }
281
        break;
282
    case 0x1FFB:
283
    case 0x07FB:
284
        /* hours (BCD) */
285
        tmp = fromBCD(val & 0x3F);
286
        if (tmp >= 0 && tmp <= 23) {
287
            get_time(NVRAM, &tm);
288
            tm.tm_hour = tmp;
289
            set_time(NVRAM, &tm);
290
        }
291
        break;
292
    case 0x1FFC:
293
    case 0x07FC:
294
        /* day of the week / century */
295
        tmp = fromBCD(val & 0x07);
296
        get_time(NVRAM, &tm);
297
        tm.tm_wday = tmp;
298
        set_time(NVRAM, &tm);
299
        NVRAM->buffer[addr] = val & 0x40;
300
        break;
301
    case 0x1FFD:
302
    case 0x07FD:
303
        /* date */
304
        tmp = fromBCD(val & 0x1F);
305
        if (tmp != 0) {
306
            get_time(NVRAM, &tm);
307
            tm.tm_mday = tmp;
308
            set_time(NVRAM, &tm);
309
        }
310
        break;
311
    case 0x1FFE:
312
    case 0x07FE:
313
        /* month */
314
        tmp = fromBCD(val & 0x1F);
315
        if (tmp >= 1 && tmp <= 12) {
316
            get_time(NVRAM, &tm);
317
            tm.tm_mon = tmp - 1;
318
            set_time(NVRAM, &tm);
319
        }
320
        break;
321
    case 0x1FFF:
322
    case 0x07FF:
323
        /* year */
324
        tmp = fromBCD(val);
325
        if (tmp >= 0 && tmp <= 99) {
326
            get_time(NVRAM, &tm);
327
            if (NVRAM->type == 8)
328
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
329
            else
330
                tm.tm_year = fromBCD(val);
331
            set_time(NVRAM, &tm);
332
        }
333
        break;
334
    default:
335
        /* Check lock registers state */
336
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
337
            break;
338
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
339
            break;
340
    do_write:
341
        if (addr < NVRAM->size) {
342
            NVRAM->buffer[addr] = val & 0xFF;
343
        }
344
        break;
345
    }
346
}
347

    
348
uint32_t m48t59_read (void *opaque, uint32_t addr)
349
{
350
    m48t59_t *NVRAM = opaque;
351
    struct tm tm;
352
    uint32_t retval = 0xFF;
353

    
354
    /* check for NVRAM access */
355
    if ((NVRAM->type == 2 && addr < 0x078f) ||
356
        (NVRAM->type == 8 && addr < 0x1ff8) ||
357
        (NVRAM->type == 59 && addr < 0x1ff0))
358
        goto do_read;
359

    
360
    /* TOD access */
361
    switch (addr) {
362
    case 0x1FF0:
363
        /* flags register */
364
        goto do_read;
365
    case 0x1FF1:
366
        /* unused */
367
        retval = 0;
368
        break;
369
    case 0x1FF2:
370
        /* alarm seconds */
371
        goto do_read;
372
    case 0x1FF3:
373
        /* alarm minutes */
374
        goto do_read;
375
    case 0x1FF4:
376
        /* alarm hours */
377
        goto do_read;
378
    case 0x1FF5:
379
        /* alarm date */
380
        goto do_read;
381
    case 0x1FF6:
382
        /* interrupts */
383
        goto do_read;
384
    case 0x1FF7:
385
        /* A read resets the watchdog */
386
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
387
        goto do_read;
388
    case 0x1FF8:
389
    case 0x07F8:
390
        /* control */
391
        goto do_read;
392
    case 0x1FF9:
393
    case 0x07F9:
394
        /* seconds (BCD) */
395
        get_time(NVRAM, &tm);
396
        retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
397
        break;
398
    case 0x1FFA:
399
    case 0x07FA:
400
        /* minutes (BCD) */
401
        get_time(NVRAM, &tm);
402
        retval = toBCD(tm.tm_min);
403
        break;
404
    case 0x1FFB:
405
    case 0x07FB:
406
        /* hours (BCD) */
407
        get_time(NVRAM, &tm);
408
        retval = toBCD(tm.tm_hour);
409
        break;
410
    case 0x1FFC:
411
    case 0x07FC:
412
        /* day of the week / century */
413
        get_time(NVRAM, &tm);
414
        retval = NVRAM->buffer[addr] | tm.tm_wday;
415
        break;
416
    case 0x1FFD:
417
    case 0x07FD:
418
        /* date */
419
        get_time(NVRAM, &tm);
420
        retval = toBCD(tm.tm_mday);
421
        break;
422
    case 0x1FFE:
423
    case 0x07FE:
424
        /* month */
425
        get_time(NVRAM, &tm);
426
        retval = toBCD(tm.tm_mon + 1);
427
        break;
428
    case 0x1FFF:
429
    case 0x07FF:
430
        /* year */
431
        get_time(NVRAM, &tm);
432
        if (NVRAM->type == 8)
433
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
434
        else
435
            retval = toBCD(tm.tm_year);
436
        break;
437
    default:
438
        /* Check lock registers state */
439
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
440
            break;
441
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
442
            break;
443
    do_read:
444
        if (addr < NVRAM->size) {
445
            retval = NVRAM->buffer[addr];
446
        }
447
        break;
448
    }
449
    if (addr > 0x1FF9 && addr < 0x2000)
450
       NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
451

    
452
    return retval;
453
}
454

    
455
void m48t59_set_addr (void *opaque, uint32_t addr)
456
{
457
    m48t59_t *NVRAM = opaque;
458

    
459
    NVRAM->addr = addr;
460
}
461

    
462
void m48t59_toggle_lock (void *opaque, int lock)
463
{
464
    m48t59_t *NVRAM = opaque;
465

    
466
    NVRAM->lock ^= 1 << lock;
467
}
468

    
469
/* IO access to NVRAM */
470
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
471
{
472
    m48t59_t *NVRAM = opaque;
473

    
474
    addr -= NVRAM->io_base;
475
    NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
476
    switch (addr) {
477
    case 0:
478
        NVRAM->addr &= ~0x00FF;
479
        NVRAM->addr |= val;
480
        break;
481
    case 1:
482
        NVRAM->addr &= ~0xFF00;
483
        NVRAM->addr |= val << 8;
484
        break;
485
    case 3:
486
        m48t59_write(NVRAM, val, NVRAM->addr);
487
        NVRAM->addr = 0x0000;
488
        break;
489
    default:
490
        break;
491
    }
492
}
493

    
494
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
495
{
496
    m48t59_t *NVRAM = opaque;
497
    uint32_t retval;
498

    
499
    addr -= NVRAM->io_base;
500
    switch (addr) {
501
    case 3:
502
        retval = m48t59_read(NVRAM, NVRAM->addr);
503
        break;
504
    default:
505
        retval = -1;
506
        break;
507
    }
508
    NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
509

    
510
    return retval;
511
}
512

    
513
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
514
{
515
    m48t59_t *NVRAM = opaque;
516

    
517
    addr -= NVRAM->mem_base;
518
    m48t59_write(NVRAM, addr, value & 0xff);
519
}
520

    
521
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
522
{
523
    m48t59_t *NVRAM = opaque;
524

    
525
    addr -= NVRAM->mem_base;
526
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
527
    m48t59_write(NVRAM, addr + 1, value & 0xff);
528
}
529

    
530
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
531
{
532
    m48t59_t *NVRAM = opaque;
533

    
534
    addr -= NVRAM->mem_base;
535
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
536
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
537
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
538
    m48t59_write(NVRAM, addr + 3, value & 0xff);
539
}
540

    
541
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
542
{
543
    m48t59_t *NVRAM = opaque;
544
    uint32_t retval;
545

    
546
    addr -= NVRAM->mem_base;
547
    retval = m48t59_read(NVRAM, addr);
548
    return retval;
549
}
550

    
551
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
552
{
553
    m48t59_t *NVRAM = opaque;
554
    uint32_t retval;
555

    
556
    addr -= NVRAM->mem_base;
557
    retval = m48t59_read(NVRAM, addr) << 8;
558
    retval |= m48t59_read(NVRAM, addr + 1);
559
    return retval;
560
}
561

    
562
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
563
{
564
    m48t59_t *NVRAM = opaque;
565
    uint32_t retval;
566

    
567
    addr -= NVRAM->mem_base;
568
    retval = m48t59_read(NVRAM, addr) << 24;
569
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
570
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
571
    retval |= m48t59_read(NVRAM, addr + 3);
572
    return retval;
573
}
574

    
575
static CPUWriteMemoryFunc *nvram_write[] = {
576
    &nvram_writeb,
577
    &nvram_writew,
578
    &nvram_writel,
579
};
580

    
581
static CPUReadMemoryFunc *nvram_read[] = {
582
    &nvram_readb,
583
    &nvram_readw,
584
    &nvram_readl,
585
};
586

    
587
static void m48t59_save(QEMUFile *f, void *opaque)
588
{
589
    m48t59_t *s = opaque;
590

    
591
    qemu_put_8s(f, &s->lock);
592
    qemu_put_be16s(f, &s->addr);
593
    qemu_put_buffer(f, s->buffer, s->size);
594
}
595

    
596
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
597
{
598
    m48t59_t *s = opaque;
599

    
600
    if (version_id != 1)
601
        return -EINVAL;
602

    
603
    qemu_get_8s(f, &s->lock);
604
    qemu_get_be16s(f, &s->addr);
605
    qemu_get_buffer(f, s->buffer, s->size);
606

    
607
    return 0;
608
}
609

    
610
static void m48t59_reset(void *opaque)
611
{
612
    m48t59_t *NVRAM = opaque;
613

    
614
    if (NVRAM->alrm_timer != NULL)
615
        qemu_del_timer(NVRAM->alrm_timer);
616

    
617
    if (NVRAM->wd_timer != NULL)
618
        qemu_del_timer(NVRAM->wd_timer);
619
}
620

    
621
/* Initialisation routine */
622
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
623
                       uint32_t io_base, uint16_t size,
624
                       int type)
625
{
626
    m48t59_t *s;
627
    target_phys_addr_t save_base;
628

    
629
    s = qemu_mallocz(sizeof(m48t59_t));
630
    if (!s)
631
        return NULL;
632
    s->buffer = qemu_mallocz(size);
633
    if (!s->buffer) {
634
        qemu_free(s);
635
        return NULL;
636
    }
637
    s->IRQ = IRQ;
638
    s->size = size;
639
    s->mem_base = mem_base;
640
    s->io_base = io_base;
641
    s->addr = 0;
642
    s->type = type;
643
    if (io_base != 0) {
644
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
645
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
646
    }
647
    if (mem_base != 0) {
648
        s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
649
        cpu_register_physical_memory(mem_base, size, s->mem_index);
650
    }
651
    if (type == 59) {
652
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
653
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
654
    }
655
    s->lock = 0;
656
    qemu_get_timedate(&s->alarm, 0);
657

    
658
    qemu_register_reset(m48t59_reset, s);
659
    save_base = mem_base ? mem_base : io_base;
660
    register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
661

    
662
    return s;
663
}