Statistics
| Branch: | Revision:

root / qemu-doc.texi @ f66724c9

History | View | Annotate | Download (74.6 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 4af39611 Paul Brook
@item Syborg SVP base model (ARM Cortex-A8).
111 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
166 debc7065 bellard
* pcsys_usb::          USB emulation
167 f858dcae ths
* vnc_security::       VNC security
168 debc7065 bellard
* gdb_usage::          GDB usage
169 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
170 debc7065 bellard
@end menu
171 debc7065 bellard
172 debc7065 bellard
@node pcsys_introduction
173 0806e3f6 bellard
@section Introduction
174 0806e3f6 bellard
175 0806e3f6 bellard
@c man begin DESCRIPTION
176 0806e3f6 bellard
177 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
178 3f9f3aa1 bellard
following peripherals:
179 0806e3f6 bellard
180 0806e3f6 bellard
@itemize @minus
181 5fafdf24 ths
@item
182 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
183 0806e3f6 bellard
@item
184 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185 15a34c63 bellard
extensions (hardware level, including all non standard modes).
186 0806e3f6 bellard
@item
187 0806e3f6 bellard
PS/2 mouse and keyboard
188 5fafdf24 ths
@item
189 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
190 1f673135 bellard
@item
191 1f673135 bellard
Floppy disk
192 5fafdf24 ths
@item
193 3a2eeac0 Stefan Weil
PCI and ISA network adapters
194 0806e3f6 bellard
@item
195 05d5818c bellard
Serial ports
196 05d5818c bellard
@item
197 c0fe3827 bellard
Creative SoundBlaster 16 sound card
198 c0fe3827 bellard
@item
199 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
200 c0fe3827 bellard
@item
201 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
202 e5c9a13e balrog
@item
203 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
204 b389dbfb bellard
@item
205 26463dbc balrog
Gravis Ultrasound GF1 sound card
206 26463dbc balrog
@item
207 cc53d26d malc
CS4231A compatible sound card
208 cc53d26d malc
@item
209 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
210 0806e3f6 bellard
@end itemize
211 0806e3f6 bellard
212 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
213 3f9f3aa1 bellard
214 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
215 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
216 e5178e8d malc
required card(s).
217 c0fe3827 bellard
218 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
219 15a34c63 bellard
VGA BIOS.
220 15a34c63 bellard
221 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
222 c0fe3827 bellard
223 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224 26463dbc balrog
by Tibor "TS" Schรผtz.
225 423d65f4 balrog
226 720036a5 malc
Not that, by default, GUS shares IRQ(7) with parallel ports and so
227 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
228 720036a5 malc
229 720036a5 malc
@example
230 720036a5 malc
qemu dos.img -soundhw gus -parallel none
231 720036a5 malc
@end example
232 720036a5 malc
233 720036a5 malc
Alternatively:
234 720036a5 malc
@example
235 720036a5 malc
qemu dos.img -device gus,irq=5
236 720036a5 malc
@end example
237 720036a5 malc
238 720036a5 malc
Or some other unclaimed IRQ.
239 720036a5 malc
240 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
241 cc53d26d malc
242 0806e3f6 bellard
@c man end
243 0806e3f6 bellard
244 debc7065 bellard
@node pcsys_quickstart
245 1eb20527 bellard
@section Quick Start
246 7544a042 Stefan Weil
@cindex quick start
247 1eb20527 bellard
248 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
249 0806e3f6 bellard
250 0806e3f6 bellard
@example
251 285dc330 bellard
qemu linux.img
252 0806e3f6 bellard
@end example
253 0806e3f6 bellard
254 0806e3f6 bellard
Linux should boot and give you a prompt.
255 0806e3f6 bellard
256 6cc721cf bellard
@node sec_invocation
257 ec410fc9 bellard
@section Invocation
258 ec410fc9 bellard
259 ec410fc9 bellard
@example
260 0806e3f6 bellard
@c man begin SYNOPSIS
261 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
262 0806e3f6 bellard
@c man end
263 ec410fc9 bellard
@end example
264 ec410fc9 bellard
265 0806e3f6 bellard
@c man begin OPTIONS
266 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267 d2c639d6 blueswir1
targets do not need a disk image.
268 ec410fc9 bellard
269 5824d651 blueswir1
@include qemu-options.texi
270 ec410fc9 bellard
271 3e11db9a bellard
@c man end
272 3e11db9a bellard
273 debc7065 bellard
@node pcsys_keys
274 3e11db9a bellard
@section Keys
275 3e11db9a bellard
276 3e11db9a bellard
@c man begin OPTIONS
277 3e11db9a bellard
278 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
279 a1b74fe8 bellard
@table @key
280 f9859310 bellard
@item Ctrl-Alt-f
281 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
282 a1b74fe8 bellard
Toggle full screen
283 a0a821a4 bellard
284 c4a735f9 malc
@item Ctrl-Alt-u
285 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
286 c4a735f9 malc
Restore the screen's un-scaled dimensions
287 c4a735f9 malc
288 f9859310 bellard
@item Ctrl-Alt-n
289 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
290 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
291 a0a821a4 bellard
@table @emph
292 a0a821a4 bellard
@item 1
293 a0a821a4 bellard
Target system display
294 a0a821a4 bellard
@item 2
295 a0a821a4 bellard
Monitor
296 a0a821a4 bellard
@item 3
297 a0a821a4 bellard
Serial port
298 a1b74fe8 bellard
@end table
299 a1b74fe8 bellard
300 f9859310 bellard
@item Ctrl-Alt
301 7544a042 Stefan Weil
@kindex Ctrl-Alt
302 a0a821a4 bellard
Toggle mouse and keyboard grab.
303 a0a821a4 bellard
@end table
304 a0a821a4 bellard
305 7544a042 Stefan Weil
@kindex Ctrl-Up
306 7544a042 Stefan Weil
@kindex Ctrl-Down
307 7544a042 Stefan Weil
@kindex Ctrl-PageUp
308 7544a042 Stefan Weil
@kindex Ctrl-PageDown
309 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
310 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
311 3e11db9a bellard
312 7544a042 Stefan Weil
@kindex Ctrl-a h
313 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
314 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
315 ec410fc9 bellard
316 ec410fc9 bellard
@table @key
317 a1b74fe8 bellard
@item Ctrl-a h
318 7544a042 Stefan Weil
@kindex Ctrl-a h
319 d2c639d6 blueswir1
@item Ctrl-a ?
320 7544a042 Stefan Weil
@kindex Ctrl-a ?
321 ec410fc9 bellard
Print this help
322 3b46e624 ths
@item Ctrl-a x
323 7544a042 Stefan Weil
@kindex Ctrl-a x
324 366dfc52 ths
Exit emulator
325 3b46e624 ths
@item Ctrl-a s
326 7544a042 Stefan Weil
@kindex Ctrl-a s
327 1f47a922 bellard
Save disk data back to file (if -snapshot)
328 20d8a3ed ths
@item Ctrl-a t
329 7544a042 Stefan Weil
@kindex Ctrl-a t
330 d2c639d6 blueswir1
Toggle console timestamps
331 a1b74fe8 bellard
@item Ctrl-a b
332 7544a042 Stefan Weil
@kindex Ctrl-a b
333 1f673135 bellard
Send break (magic sysrq in Linux)
334 a1b74fe8 bellard
@item Ctrl-a c
335 7544a042 Stefan Weil
@kindex Ctrl-a c
336 1f673135 bellard
Switch between console and monitor
337 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
338 7544a042 Stefan Weil
@kindex Ctrl-a a
339 a1b74fe8 bellard
Send Ctrl-a
340 ec410fc9 bellard
@end table
341 0806e3f6 bellard
@c man end
342 0806e3f6 bellard
343 0806e3f6 bellard
@ignore
344 0806e3f6 bellard
345 1f673135 bellard
@c man begin SEEALSO
346 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
347 1f673135 bellard
user mode emulator invocation.
348 1f673135 bellard
@c man end
349 1f673135 bellard
350 1f673135 bellard
@c man begin AUTHOR
351 1f673135 bellard
Fabrice Bellard
352 1f673135 bellard
@c man end
353 1f673135 bellard
354 1f673135 bellard
@end ignore
355 1f673135 bellard
356 debc7065 bellard
@node pcsys_monitor
357 1f673135 bellard
@section QEMU Monitor
358 7544a042 Stefan Weil
@cindex QEMU monitor
359 1f673135 bellard
360 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
361 1f673135 bellard
emulator. You can use it to:
362 1f673135 bellard
363 1f673135 bellard
@itemize @minus
364 1f673135 bellard
365 1f673135 bellard
@item
366 e598752a ths
Remove or insert removable media images
367 89dfe898 ths
(such as CD-ROM or floppies).
368 1f673135 bellard
369 5fafdf24 ths
@item
370 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
371 1f673135 bellard
from a disk file.
372 1f673135 bellard
373 1f673135 bellard
@item Inspect the VM state without an external debugger.
374 1f673135 bellard
375 1f673135 bellard
@end itemize
376 1f673135 bellard
377 1f673135 bellard
@subsection Commands
378 1f673135 bellard
379 1f673135 bellard
The following commands are available:
380 1f673135 bellard
381 2313086a Blue Swirl
@include qemu-monitor.texi
382 0806e3f6 bellard
383 1f673135 bellard
@subsection Integer expressions
384 1f673135 bellard
385 1f673135 bellard
The monitor understands integers expressions for every integer
386 1f673135 bellard
argument. You can use register names to get the value of specifics
387 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
388 ec410fc9 bellard
389 1f47a922 bellard
@node disk_images
390 1f47a922 bellard
@section Disk Images
391 1f47a922 bellard
392 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
393 acd935ef bellard
growable disk images (their size increase as non empty sectors are
394 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
395 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
396 13a2e80f bellard
snapshots.
397 1f47a922 bellard
398 debc7065 bellard
@menu
399 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
400 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
401 13a2e80f bellard
* vm_snapshots::              VM snapshots
402 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
403 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
404 19cb3738 bellard
* host_drives::               Using host drives
405 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
406 75818250 ths
* disk_images_nbd::           NBD access
407 debc7065 bellard
@end menu
408 debc7065 bellard
409 debc7065 bellard
@node disk_images_quickstart
410 acd935ef bellard
@subsection Quick start for disk image creation
411 acd935ef bellard
412 acd935ef bellard
You can create a disk image with the command:
413 1f47a922 bellard
@example
414 acd935ef bellard
qemu-img create myimage.img mysize
415 1f47a922 bellard
@end example
416 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
417 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
418 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
419 acd935ef bellard
420 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
421 1f47a922 bellard
422 debc7065 bellard
@node disk_images_snapshot_mode
423 1f47a922 bellard
@subsection Snapshot mode
424 1f47a922 bellard
425 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
426 1f47a922 bellard
considered as read only. When sectors in written, they are written in
427 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
428 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
429 acd935ef bellard
command (or @key{C-a s} in the serial console).
430 1f47a922 bellard
431 13a2e80f bellard
@node vm_snapshots
432 13a2e80f bellard
@subsection VM snapshots
433 13a2e80f bellard
434 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
435 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
436 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
437 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
438 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
439 13a2e80f bellard
440 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
441 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
442 19d36792 bellard
snapshot in addition to its numerical ID.
443 13a2e80f bellard
444 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
446 13a2e80f bellard
with their associated information:
447 13a2e80f bellard
448 13a2e80f bellard
@example
449 13a2e80f bellard
(qemu) info snapshots
450 13a2e80f bellard
Snapshot devices: hda
451 13a2e80f bellard
Snapshot list (from hda):
452 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
453 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
454 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
455 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
456 13a2e80f bellard
@end example
457 13a2e80f bellard
458 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
459 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
460 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
461 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
462 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
463 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
464 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
465 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
466 19d36792 bellard
disk images).
467 13a2e80f bellard
468 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
469 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
471 13a2e80f bellard
472 13a2e80f bellard
VM snapshots currently have the following known limitations:
473 13a2e80f bellard
@itemize
474 5fafdf24 ths
@item
475 13a2e80f bellard
They cannot cope with removable devices if they are removed or
476 13a2e80f bellard
inserted after a snapshot is done.
477 5fafdf24 ths
@item
478 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
479 13a2e80f bellard
state is not saved or restored properly (in particular USB).
480 13a2e80f bellard
@end itemize
481 13a2e80f bellard
482 acd935ef bellard
@node qemu_img_invocation
483 acd935ef bellard
@subsection @code{qemu-img} Invocation
484 1f47a922 bellard
485 acd935ef bellard
@include qemu-img.texi
486 05efe46e bellard
487 975b092b ths
@node qemu_nbd_invocation
488 975b092b ths
@subsection @code{qemu-nbd} Invocation
489 975b092b ths
490 975b092b ths
@include qemu-nbd.texi
491 975b092b ths
492 19cb3738 bellard
@node host_drives
493 19cb3738 bellard
@subsection Using host drives
494 19cb3738 bellard
495 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
496 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
497 19cb3738 bellard
498 19cb3738 bellard
@subsubsection Linux
499 19cb3738 bellard
500 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
501 4be456f1 ths
disk image filename provided you have enough privileges to access
502 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
503 19cb3738 bellard
@file{/dev/fd0} for the floppy.
504 19cb3738 bellard
505 f542086d bellard
@table @code
506 19cb3738 bellard
@item CD
507 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
508 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
509 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
510 19cb3738 bellard
@item Floppy
511 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
512 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
513 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
514 19cb3738 bellard
OS will think that the same floppy is loaded).
515 19cb3738 bellard
@item Hard disks
516 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
517 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
518 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
519 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
520 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
521 19cb3738 bellard
line option or modify the device permissions accordingly).
522 19cb3738 bellard
@end table
523 19cb3738 bellard
524 19cb3738 bellard
@subsubsection Windows
525 19cb3738 bellard
526 01781963 bellard
@table @code
527 01781963 bellard
@item CD
528 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
529 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
530 01781963 bellard
supported as an alias to the first CDROM drive.
531 19cb3738 bellard
532 e598752a ths
Currently there is no specific code to handle removable media, so it
533 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
534 19cb3738 bellard
change or eject media.
535 01781963 bellard
@item Hard disks
536 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
537 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
538 01781963 bellard
539 01781963 bellard
WARNING: unless you know what you do, it is better to only make
540 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
541 01781963 bellard
host data (use the @option{-snapshot} command line so that the
542 01781963 bellard
modifications are written in a temporary file).
543 01781963 bellard
@end table
544 01781963 bellard
545 19cb3738 bellard
546 19cb3738 bellard
@subsubsection Mac OS X
547 19cb3738 bellard
548 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
549 19cb3738 bellard
550 e598752a ths
Currently there is no specific code to handle removable media, so it
551 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
552 19cb3738 bellard
change or eject media.
553 19cb3738 bellard
554 debc7065 bellard
@node disk_images_fat_images
555 2c6cadd4 bellard
@subsection Virtual FAT disk images
556 2c6cadd4 bellard
557 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
558 2c6cadd4 bellard
directory tree. In order to use it, just type:
559 2c6cadd4 bellard
560 5fafdf24 ths
@example
561 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
562 2c6cadd4 bellard
@end example
563 2c6cadd4 bellard
564 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
565 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
566 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
567 2c6cadd4 bellard
568 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
569 2c6cadd4 bellard
570 5fafdf24 ths
@example
571 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
572 2c6cadd4 bellard
@end example
573 2c6cadd4 bellard
574 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
575 2c6cadd4 bellard
@code{:rw:} option:
576 2c6cadd4 bellard
577 5fafdf24 ths
@example
578 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
579 2c6cadd4 bellard
@end example
580 2c6cadd4 bellard
581 2c6cadd4 bellard
What you should @emph{never} do:
582 2c6cadd4 bellard
@itemize
583 2c6cadd4 bellard
@item use non-ASCII filenames ;
584 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
585 85b2c688 bellard
@item expect it to work when loadvm'ing ;
586 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
587 2c6cadd4 bellard
@end itemize
588 2c6cadd4 bellard
589 75818250 ths
@node disk_images_nbd
590 75818250 ths
@subsection NBD access
591 75818250 ths
592 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
593 75818250 ths
protocol.
594 75818250 ths
595 75818250 ths
@example
596 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
597 75818250 ths
@end example
598 75818250 ths
599 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
600 75818250 ths
of an inet socket:
601 75818250 ths
602 75818250 ths
@example
603 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
604 75818250 ths
@end example
605 75818250 ths
606 75818250 ths
In this case, the block device must be exported using qemu-nbd:
607 75818250 ths
608 75818250 ths
@example
609 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
610 75818250 ths
@end example
611 75818250 ths
612 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
613 75818250 ths
@example
614 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
615 75818250 ths
@end example
616 75818250 ths
617 75818250 ths
and then you can use it with two guests:
618 75818250 ths
@example
619 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
620 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
621 75818250 ths
@end example
622 75818250 ths
623 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
624 1d45f8b5 Laurent Vivier
"exportname" option:
625 1d45f8b5 Laurent Vivier
@example
626 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
627 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
628 1d45f8b5 Laurent Vivier
@end example
629 1d45f8b5 Laurent Vivier
630 debc7065 bellard
@node pcsys_network
631 9d4fb82e bellard
@section Network emulation
632 9d4fb82e bellard
633 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
634 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
635 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
636 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
637 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
638 41d03949 bellard
network stack can replace the TAP device to have a basic network
639 41d03949 bellard
connection.
640 41d03949 bellard
641 41d03949 bellard
@subsection VLANs
642 9d4fb82e bellard
643 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
644 41d03949 bellard
connection between several network devices. These devices can be for
645 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
646 41d03949 bellard
(TAP devices).
647 9d4fb82e bellard
648 41d03949 bellard
@subsection Using TAP network interfaces
649 41d03949 bellard
650 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
651 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
652 41d03949 bellard
can then configure it as if it was a real ethernet card.
653 9d4fb82e bellard
654 8f40c388 bellard
@subsubsection Linux host
655 8f40c388 bellard
656 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
657 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
658 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
659 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
660 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
661 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
662 9d4fb82e bellard
663 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
664 ee0f4751 bellard
TAP network interfaces.
665 9d4fb82e bellard
666 8f40c388 bellard
@subsubsection Windows host
667 8f40c388 bellard
668 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
669 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
670 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
671 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
672 8f40c388 bellard
673 9d4fb82e bellard
@subsection Using the user mode network stack
674 9d4fb82e bellard
675 41d03949 bellard
By using the option @option{-net user} (default configuration if no
676 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
677 4be456f1 ths
network stack (you don't need root privilege to use the virtual
678 41d03949 bellard
network). The virtual network configuration is the following:
679 9d4fb82e bellard
680 9d4fb82e bellard
@example
681 9d4fb82e bellard
682 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
683 41d03949 bellard
                           |          (10.0.2.2)
684 9d4fb82e bellard
                           |
685 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
686 3b46e624 ths
                           |
687 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
688 9d4fb82e bellard
@end example
689 9d4fb82e bellard
690 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
691 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
692 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
693 41d03949 bellard
to the hosts starting from 10.0.2.15.
694 9d4fb82e bellard
695 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
696 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
697 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
698 9d4fb82e bellard
699 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
700 4be456f1 ths
would require root privileges. It means you can only ping the local
701 b415a407 bellard
router (10.0.2.2).
702 b415a407 bellard
703 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
704 9bf05444 bellard
server.
705 9bf05444 bellard
706 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
707 9bf05444 bellard
redirected from the host to the guest. It allows for example to
708 9bf05444 bellard
redirect X11, telnet or SSH connections.
709 443f1376 bellard
710 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
711 41d03949 bellard
712 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
713 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
714 41d03949 bellard
basic example.
715 41d03949 bellard
716 6cbf4c8c Cam Macdonell
@section Other Devices
717 6cbf4c8c Cam Macdonell
718 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
719 6cbf4c8c Cam Macdonell
720 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
721 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
722 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
723 6cbf4c8c Cam Macdonell
syntax is:
724 6cbf4c8c Cam Macdonell
725 6cbf4c8c Cam Macdonell
@example
726 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
727 6cbf4c8c Cam Macdonell
@end example
728 6cbf4c8c Cam Macdonell
729 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
730 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
731 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
732 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
733 6cbf4c8c Cam Macdonell
memory server is:
734 6cbf4c8c Cam Macdonell
735 6cbf4c8c Cam Macdonell
@example
736 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
737 6cbf4c8c Cam Macdonell
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
738 6cbf4c8c Cam Macdonell
qemu -chardev socket,path=<path>,id=<id>
739 6cbf4c8c Cam Macdonell
@end example
740 6cbf4c8c Cam Macdonell
741 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
742 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
743 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
744 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
745 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
746 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
747 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
748 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
749 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
750 6cbf4c8c Cam Macdonell
guest before proceeding.
751 6cbf4c8c Cam Macdonell
752 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
753 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
754 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
755 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
756 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
757 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
758 6cbf4c8c Cam Macdonell
759 9d4fb82e bellard
@node direct_linux_boot
760 9d4fb82e bellard
@section Direct Linux Boot
761 1f673135 bellard
762 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
763 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
764 ee0f4751 bellard
kernel testing.
765 1f673135 bellard
766 ee0f4751 bellard
The syntax is:
767 1f673135 bellard
@example
768 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
769 1f673135 bellard
@end example
770 1f673135 bellard
771 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
772 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
773 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
774 1f673135 bellard
775 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
776 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
777 ee0f4751 bellard
Linux kernel.
778 1f673135 bellard
779 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
780 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
781 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
782 1f673135 bellard
@example
783 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
784 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
785 1f673135 bellard
@end example
786 1f673135 bellard
787 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
788 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
789 1f673135 bellard
790 debc7065 bellard
@node pcsys_usb
791 b389dbfb bellard
@section USB emulation
792 b389dbfb bellard
793 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
794 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
795 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
796 f542086d bellard
as necessary to connect multiple USB devices.
797 b389dbfb bellard
798 0aff66b5 pbrook
@menu
799 0aff66b5 pbrook
* usb_devices::
800 0aff66b5 pbrook
* host_usb_devices::
801 0aff66b5 pbrook
@end menu
802 0aff66b5 pbrook
@node usb_devices
803 0aff66b5 pbrook
@subsection Connecting USB devices
804 b389dbfb bellard
805 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
806 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
807 b389dbfb bellard
808 db380c06 balrog
@table @code
809 db380c06 balrog
@item mouse
810 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
811 db380c06 balrog
@item tablet
812 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
813 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
814 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
815 db380c06 balrog
@item disk:@var{file}
816 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
817 db380c06 balrog
@item host:@var{bus.addr}
818 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
819 0aff66b5 pbrook
(Linux only)
820 db380c06 balrog
@item host:@var{vendor_id:product_id}
821 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
822 0aff66b5 pbrook
(Linux only)
823 db380c06 balrog
@item wacom-tablet
824 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
825 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
826 f6d2a316 balrog
coordinates it reports touch pressure.
827 db380c06 balrog
@item keyboard
828 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
829 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
830 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
831 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
832 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
833 a11d070e balrog
used to override the default 0403:6001. For instance, 
834 db380c06 balrog
@example
835 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
836 db380c06 balrog
@end example
837 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
838 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
839 2e4d9fb1 aurel32
@item braille
840 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
841 2e4d9fb1 aurel32
or fake device.
842 9ad97e65 balrog
@item net:@var{options}
843 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
844 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
845 9ad97e65 balrog
For instance, user-mode networking can be used with
846 6c9f886c balrog
@example
847 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
848 6c9f886c balrog
@end example
849 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
850 2d564691 balrog
@item bt[:@var{hci-type}]
851 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
852 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
853 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
854 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
855 2d564691 balrog
usage:
856 2d564691 balrog
@example
857 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
858 2d564691 balrog
@end example
859 0aff66b5 pbrook
@end table
860 b389dbfb bellard
861 0aff66b5 pbrook
@node host_usb_devices
862 b389dbfb bellard
@subsection Using host USB devices on a Linux host
863 b389dbfb bellard
864 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
865 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
866 b389dbfb bellard
Cameras) are not supported yet.
867 b389dbfb bellard
868 b389dbfb bellard
@enumerate
869 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
870 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
871 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
872 b389dbfb bellard
to @file{mydriver.o.disabled}.
873 b389dbfb bellard
874 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
875 b389dbfb bellard
@example
876 b389dbfb bellard
ls /proc/bus/usb
877 b389dbfb bellard
001  devices  drivers
878 b389dbfb bellard
@end example
879 b389dbfb bellard
880 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
881 b389dbfb bellard
@example
882 b389dbfb bellard
chown -R myuid /proc/bus/usb
883 b389dbfb bellard
@end example
884 b389dbfb bellard
885 b389dbfb bellard
@item Launch QEMU and do in the monitor:
886 5fafdf24 ths
@example
887 b389dbfb bellard
info usbhost
888 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
889 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
890 b389dbfb bellard
@end example
891 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
892 b389dbfb bellard
hubs, it won't work).
893 b389dbfb bellard
894 b389dbfb bellard
@item Add the device in QEMU by using:
895 5fafdf24 ths
@example
896 b389dbfb bellard
usb_add host:1234:5678
897 b389dbfb bellard
@end example
898 b389dbfb bellard
899 b389dbfb bellard
Normally the guest OS should report that a new USB device is
900 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
901 b389dbfb bellard
902 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
903 b389dbfb bellard
904 b389dbfb bellard
@end enumerate
905 b389dbfb bellard
906 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
907 b389dbfb bellard
device to make it work again (this is a bug).
908 b389dbfb bellard
909 f858dcae ths
@node vnc_security
910 f858dcae ths
@section VNC security
911 f858dcae ths
912 f858dcae ths
The VNC server capability provides access to the graphical console
913 f858dcae ths
of the guest VM across the network. This has a number of security
914 f858dcae ths
considerations depending on the deployment scenarios.
915 f858dcae ths
916 f858dcae ths
@menu
917 f858dcae ths
* vnc_sec_none::
918 f858dcae ths
* vnc_sec_password::
919 f858dcae ths
* vnc_sec_certificate::
920 f858dcae ths
* vnc_sec_certificate_verify::
921 f858dcae ths
* vnc_sec_certificate_pw::
922 2f9606b3 aliguori
* vnc_sec_sasl::
923 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
924 f858dcae ths
* vnc_generate_cert::
925 2f9606b3 aliguori
* vnc_setup_sasl::
926 f858dcae ths
@end menu
927 f858dcae ths
@node vnc_sec_none
928 f858dcae ths
@subsection Without passwords
929 f858dcae ths
930 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
931 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
932 f858dcae ths
socket only. For example
933 f858dcae ths
934 f858dcae ths
@example
935 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
936 f858dcae ths
@end example
937 f858dcae ths
938 f858dcae ths
This ensures that only users on local box with read/write access to that
939 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
940 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
941 f858dcae ths
tunnel.
942 f858dcae ths
943 f858dcae ths
@node vnc_sec_password
944 f858dcae ths
@subsection With passwords
945 f858dcae ths
946 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
947 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
948 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
949 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
950 f858dcae ths
authentication should be restricted to only listen on the loopback interface
951 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
952 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
953 f858dcae ths
the monitor is used to set the password all clients will be rejected.
954 f858dcae ths
955 f858dcae ths
@example
956 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
957 f858dcae ths
(qemu) change vnc password
958 f858dcae ths
Password: ********
959 f858dcae ths
(qemu)
960 f858dcae ths
@end example
961 f858dcae ths
962 f858dcae ths
@node vnc_sec_certificate
963 f858dcae ths
@subsection With x509 certificates
964 f858dcae ths
965 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
966 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
967 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
968 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
969 f858dcae ths
support provides a secure session, but no authentication. This allows any
970 f858dcae ths
client to connect, and provides an encrypted session.
971 f858dcae ths
972 f858dcae ths
@example
973 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
974 f858dcae ths
@end example
975 f858dcae ths
976 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
977 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
978 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
979 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
980 f858dcae ths
only be readable by the user owning it.
981 f858dcae ths
982 f858dcae ths
@node vnc_sec_certificate_verify
983 f858dcae ths
@subsection With x509 certificates and client verification
984 f858dcae ths
985 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
986 f858dcae ths
The server will request that the client provide a certificate, which it will
987 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
988 f858dcae ths
in an environment with a private internal certificate authority.
989 f858dcae ths
990 f858dcae ths
@example
991 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
992 f858dcae ths
@end example
993 f858dcae ths
994 f858dcae ths
995 f858dcae ths
@node vnc_sec_certificate_pw
996 f858dcae ths
@subsection With x509 certificates, client verification and passwords
997 f858dcae ths
998 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
999 f858dcae ths
to provide two layers of authentication for clients.
1000 f858dcae ths
1001 f858dcae ths
@example
1002 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1003 f858dcae ths
(qemu) change vnc password
1004 f858dcae ths
Password: ********
1005 f858dcae ths
(qemu)
1006 f858dcae ths
@end example
1007 f858dcae ths
1008 2f9606b3 aliguori
1009 2f9606b3 aliguori
@node vnc_sec_sasl
1010 2f9606b3 aliguori
@subsection With SASL authentication
1011 2f9606b3 aliguori
1012 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1013 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1014 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1015 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1016 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1017 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1018 2f9606b3 aliguori
it will encrypt the datastream as well.
1019 2f9606b3 aliguori
1020 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1021 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1022 2f9606b3 aliguori
then QEMU can be launched with:
1023 2f9606b3 aliguori
1024 2f9606b3 aliguori
@example
1025 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1026 2f9606b3 aliguori
@end example
1027 2f9606b3 aliguori
1028 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1029 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1030 2f9606b3 aliguori
1031 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1032 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1033 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1034 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1035 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1036 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1037 2f9606b3 aliguori
1038 2f9606b3 aliguori
@example
1039 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1040 2f9606b3 aliguori
@end example
1041 2f9606b3 aliguori
1042 2f9606b3 aliguori
1043 f858dcae ths
@node vnc_generate_cert
1044 f858dcae ths
@subsection Generating certificates for VNC
1045 f858dcae ths
1046 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1047 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1048 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1049 f858dcae ths
each server. If using certificates for authentication, then each client
1050 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1051 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1052 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1053 f858dcae ths
1054 f858dcae ths
@menu
1055 f858dcae ths
* vnc_generate_ca::
1056 f858dcae ths
* vnc_generate_server::
1057 f858dcae ths
* vnc_generate_client::
1058 f858dcae ths
@end menu
1059 f858dcae ths
@node vnc_generate_ca
1060 f858dcae ths
@subsubsection Setup the Certificate Authority
1061 f858dcae ths
1062 f858dcae ths
This step only needs to be performed once per organization / organizational
1063 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1064 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1065 f858dcae ths
issued with it is lost.
1066 f858dcae ths
1067 f858dcae ths
@example
1068 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1069 f858dcae ths
@end example
1070 f858dcae ths
1071 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1072 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1073 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1074 f858dcae ths
name of the organization.
1075 f858dcae ths
1076 f858dcae ths
@example
1077 f858dcae ths
# cat > ca.info <<EOF
1078 f858dcae ths
cn = Name of your organization
1079 f858dcae ths
ca
1080 f858dcae ths
cert_signing_key
1081 f858dcae ths
EOF
1082 f858dcae ths
# certtool --generate-self-signed \
1083 f858dcae ths
           --load-privkey ca-key.pem
1084 f858dcae ths
           --template ca.info \
1085 f858dcae ths
           --outfile ca-cert.pem
1086 f858dcae ths
@end example
1087 f858dcae ths
1088 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1089 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1090 f858dcae ths
1091 f858dcae ths
@node vnc_generate_server
1092 f858dcae ths
@subsubsection Issuing server certificates
1093 f858dcae ths
1094 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1095 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1096 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1097 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1098 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1099 f858dcae ths
secure CA private key:
1100 f858dcae ths
1101 f858dcae ths
@example
1102 f858dcae ths
# cat > server.info <<EOF
1103 f858dcae ths
organization = Name  of your organization
1104 f858dcae ths
cn = server.foo.example.com
1105 f858dcae ths
tls_www_server
1106 f858dcae ths
encryption_key
1107 f858dcae ths
signing_key
1108 f858dcae ths
EOF
1109 f858dcae ths
# certtool --generate-privkey > server-key.pem
1110 f858dcae ths
# certtool --generate-certificate \
1111 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1112 f858dcae ths
           --load-ca-privkey ca-key.pem \
1113 f858dcae ths
           --load-privkey server server-key.pem \
1114 f858dcae ths
           --template server.info \
1115 f858dcae ths
           --outfile server-cert.pem
1116 f858dcae ths
@end example
1117 f858dcae ths
1118 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1119 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1120 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1121 f858dcae ths
1122 f858dcae ths
@node vnc_generate_client
1123 f858dcae ths
@subsubsection Issuing client certificates
1124 f858dcae ths
1125 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1126 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1127 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1128 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1129 f858dcae ths
the secure CA private key:
1130 f858dcae ths
1131 f858dcae ths
@example
1132 f858dcae ths
# cat > client.info <<EOF
1133 f858dcae ths
country = GB
1134 f858dcae ths
state = London
1135 f858dcae ths
locality = London
1136 f858dcae ths
organiazation = Name of your organization
1137 f858dcae ths
cn = client.foo.example.com
1138 f858dcae ths
tls_www_client
1139 f858dcae ths
encryption_key
1140 f858dcae ths
signing_key
1141 f858dcae ths
EOF
1142 f858dcae ths
# certtool --generate-privkey > client-key.pem
1143 f858dcae ths
# certtool --generate-certificate \
1144 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1145 f858dcae ths
           --load-ca-privkey ca-key.pem \
1146 f858dcae ths
           --load-privkey client-key.pem \
1147 f858dcae ths
           --template client.info \
1148 f858dcae ths
           --outfile client-cert.pem
1149 f858dcae ths
@end example
1150 f858dcae ths
1151 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1152 f858dcae ths
copied to the client for which they were generated.
1153 f858dcae ths
1154 2f9606b3 aliguori
1155 2f9606b3 aliguori
@node vnc_setup_sasl
1156 2f9606b3 aliguori
1157 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1158 2f9606b3 aliguori
1159 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1160 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1161 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1162 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1163 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1164 2f9606b3 aliguori
to make it search alternate locations for the service config.
1165 2f9606b3 aliguori
1166 2f9606b3 aliguori
The default configuration might contain
1167 2f9606b3 aliguori
1168 2f9606b3 aliguori
@example
1169 2f9606b3 aliguori
mech_list: digest-md5
1170 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1171 2f9606b3 aliguori
@end example
1172 2f9606b3 aliguori
1173 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1174 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1175 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1176 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1177 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1178 2f9606b3 aliguori
ad-hoc testing.
1179 2f9606b3 aliguori
1180 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1181 2f9606b3 aliguori
mechanism
1182 2f9606b3 aliguori
1183 2f9606b3 aliguori
@example
1184 2f9606b3 aliguori
mech_list: gssapi
1185 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1186 2f9606b3 aliguori
@end example
1187 2f9606b3 aliguori
1188 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1189 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1190 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1191 2f9606b3 aliguori
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1192 2f9606b3 aliguori
1193 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1194 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1195 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1196 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1197 2f9606b3 aliguori
1198 0806e3f6 bellard
@node gdb_usage
1199 da415d54 bellard
@section GDB usage
1200 da415d54 bellard
1201 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1202 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1203 da415d54 bellard
1204 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1205 da415d54 bellard
gdb connection:
1206 da415d54 bellard
@example
1207 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1208 debc7065 bellard
       -append "root=/dev/hda"
1209 da415d54 bellard
Connected to host network interface: tun0
1210 da415d54 bellard
Waiting gdb connection on port 1234
1211 da415d54 bellard
@end example
1212 da415d54 bellard
1213 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1214 da415d54 bellard
@example
1215 da415d54 bellard
> gdb vmlinux
1216 da415d54 bellard
@end example
1217 da415d54 bellard
1218 da415d54 bellard
In gdb, connect to QEMU:
1219 da415d54 bellard
@example
1220 6c9bf893 bellard
(gdb) target remote localhost:1234
1221 da415d54 bellard
@end example
1222 da415d54 bellard
1223 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1224 da415d54 bellard
@example
1225 da415d54 bellard
(gdb) c
1226 da415d54 bellard
@end example
1227 da415d54 bellard
1228 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1229 0806e3f6 bellard
1230 0806e3f6 bellard
@enumerate
1231 0806e3f6 bellard
@item
1232 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1233 0806e3f6 bellard
@item
1234 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1235 0806e3f6 bellard
@item
1236 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1237 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1238 0806e3f6 bellard
@end enumerate
1239 0806e3f6 bellard
1240 60897d36 edgar_igl
Advanced debugging options:
1241 60897d36 edgar_igl
1242 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1243 94d45e44 edgar_igl
@table @code
1244 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1245 60897d36 edgar_igl
1246 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1247 60897d36 edgar_igl
@example
1248 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1249 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1250 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1251 60897d36 edgar_igl
@end example
1252 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1253 60897d36 edgar_igl
1254 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1255 60897d36 edgar_igl
@example
1256 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1257 60897d36 edgar_igl
sending: "qqemu.sstep"
1258 60897d36 edgar_igl
received: "0x7"
1259 60897d36 edgar_igl
@end example
1260 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1261 60897d36 edgar_igl
1262 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1263 60897d36 edgar_igl
@example
1264 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1265 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1266 60897d36 edgar_igl
received: "OK"
1267 60897d36 edgar_igl
@end example
1268 94d45e44 edgar_igl
@end table
1269 60897d36 edgar_igl
1270 debc7065 bellard
@node pcsys_os_specific
1271 1a084f3d bellard
@section Target OS specific information
1272 1a084f3d bellard
1273 1a084f3d bellard
@subsection Linux
1274 1a084f3d bellard
1275 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1276 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1277 15a34c63 bellard
color depth in the guest and the host OS.
1278 1a084f3d bellard
1279 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1280 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1281 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1282 e3371e62 bellard
cannot simulate exactly.
1283 e3371e62 bellard
1284 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1285 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1286 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1287 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1288 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1289 7c3fc84d bellard
1290 1a084f3d bellard
@subsection Windows
1291 1a084f3d bellard
1292 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1293 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1294 1a084f3d bellard
1295 e3371e62 bellard
@subsubsection SVGA graphic modes support
1296 e3371e62 bellard
1297 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1298 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1299 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1300 15a34c63 bellard
depth in the guest and the host OS.
1301 1a084f3d bellard
1302 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1303 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1304 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1305 3cb0853a bellard
(option @option{-std-vga}).
1306 3cb0853a bellard
1307 e3371e62 bellard
@subsubsection CPU usage reduction
1308 e3371e62 bellard
1309 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1310 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1311 15a34c63 bellard
idle. You can install the utility from
1312 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1313 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1314 1a084f3d bellard
1315 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1316 e3371e62 bellard
1317 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1318 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1319 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1320 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1321 9d0a8e6f bellard
IDE transfers).
1322 e3371e62 bellard
1323 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1324 6cc721cf bellard
1325 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1326 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1327 6cc721cf bellard
use the APM driver provided by the BIOS.
1328 6cc721cf bellard
1329 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1330 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1331 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1332 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1333 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1334 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1335 6cc721cf bellard
1336 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1337 6cc721cf bellard
1338 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1339 6cc721cf bellard
1340 2192c332 bellard
@subsubsection Windows XP security problem
1341 e3371e62 bellard
1342 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1343 e3371e62 bellard
error when booting:
1344 e3371e62 bellard
@example
1345 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1346 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1347 e3371e62 bellard
@end example
1348 e3371e62 bellard
1349 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1350 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1351 2192c332 bellard
network while in safe mode, its recommended to download the full
1352 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1353 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1354 e3371e62 bellard
1355 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1356 a0a821a4 bellard
1357 a0a821a4 bellard
@subsubsection CPU usage reduction
1358 a0a821a4 bellard
1359 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1360 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1361 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1362 a0a821a4 bellard
problem.
1363 a0a821a4 bellard
1364 debc7065 bellard
@node QEMU System emulator for non PC targets
1365 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1366 3f9f3aa1 bellard
1367 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1368 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1369 4be456f1 ths
differences are mentioned in the following sections.
1370 3f9f3aa1 bellard
1371 debc7065 bellard
@menu
1372 7544a042 Stefan Weil
* PowerPC System emulator::
1373 24d4de45 ths
* Sparc32 System emulator::
1374 24d4de45 ths
* Sparc64 System emulator::
1375 24d4de45 ths
* MIPS System emulator::
1376 24d4de45 ths
* ARM System emulator::
1377 24d4de45 ths
* ColdFire System emulator::
1378 7544a042 Stefan Weil
* Cris System emulator::
1379 7544a042 Stefan Weil
* Microblaze System emulator::
1380 7544a042 Stefan Weil
* SH4 System emulator::
1381 debc7065 bellard
@end menu
1382 debc7065 bellard
1383 7544a042 Stefan Weil
@node PowerPC System emulator
1384 7544a042 Stefan Weil
@section PowerPC System emulator
1385 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1386 1a084f3d bellard
1387 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1388 15a34c63 bellard
or PowerMac PowerPC system.
1389 1a084f3d bellard
1390 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1391 1a084f3d bellard
1392 15a34c63 bellard
@itemize @minus
1393 5fafdf24 ths
@item
1394 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1395 15a34c63 bellard
@item
1396 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1397 5fafdf24 ths
@item
1398 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1399 5fafdf24 ths
@item
1400 15a34c63 bellard
NE2000 PCI adapters
1401 15a34c63 bellard
@item
1402 15a34c63 bellard
Non Volatile RAM
1403 15a34c63 bellard
@item
1404 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1405 1a084f3d bellard
@end itemize
1406 1a084f3d bellard
1407 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1408 52c00a5f bellard
1409 52c00a5f bellard
@itemize @minus
1410 5fafdf24 ths
@item
1411 15a34c63 bellard
PCI Bridge
1412 15a34c63 bellard
@item
1413 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1414 5fafdf24 ths
@item
1415 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1416 52c00a5f bellard
@item
1417 52c00a5f bellard
Floppy disk
1418 5fafdf24 ths
@item
1419 15a34c63 bellard
NE2000 network adapters
1420 52c00a5f bellard
@item
1421 52c00a5f bellard
Serial port
1422 52c00a5f bellard
@item
1423 52c00a5f bellard
PREP Non Volatile RAM
1424 15a34c63 bellard
@item
1425 15a34c63 bellard
PC compatible keyboard and mouse.
1426 52c00a5f bellard
@end itemize
1427 52c00a5f bellard
1428 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1429 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1430 52c00a5f bellard
1431 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1432 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1433 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1434 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1435 992e5acd blueswir1
1436 15a34c63 bellard
@c man begin OPTIONS
1437 15a34c63 bellard
1438 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1439 15a34c63 bellard
1440 15a34c63 bellard
@table @option
1441 15a34c63 bellard
1442 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1443 15a34c63 bellard
1444 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1445 15a34c63 bellard
1446 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1447 95efd11c blueswir1
1448 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1449 95efd11c blueswir1
1450 95efd11c blueswir1
@example
1451 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1452 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1453 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1454 95efd11c blueswir1
@end example
1455 95efd11c blueswir1
1456 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1457 95efd11c blueswir1
1458 15a34c63 bellard
@end table
1459 15a34c63 bellard
1460 5fafdf24 ths
@c man end
1461 15a34c63 bellard
1462 15a34c63 bellard
1463 52c00a5f bellard
More information is available at
1464 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1465 52c00a5f bellard
1466 24d4de45 ths
@node Sparc32 System emulator
1467 24d4de45 ths
@section Sparc32 System emulator
1468 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1469 e80cfcfc bellard
1470 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1471 34a3d239 blueswir1
Sun4m architecture machines:
1472 34a3d239 blueswir1
@itemize @minus
1473 34a3d239 blueswir1
@item
1474 34a3d239 blueswir1
SPARCstation 4
1475 34a3d239 blueswir1
@item
1476 34a3d239 blueswir1
SPARCstation 5
1477 34a3d239 blueswir1
@item
1478 34a3d239 blueswir1
SPARCstation 10
1479 34a3d239 blueswir1
@item
1480 34a3d239 blueswir1
SPARCstation 20
1481 34a3d239 blueswir1
@item
1482 34a3d239 blueswir1
SPARCserver 600MP
1483 34a3d239 blueswir1
@item
1484 34a3d239 blueswir1
SPARCstation LX
1485 34a3d239 blueswir1
@item
1486 34a3d239 blueswir1
SPARCstation Voyager
1487 34a3d239 blueswir1
@item
1488 34a3d239 blueswir1
SPARCclassic
1489 34a3d239 blueswir1
@item
1490 34a3d239 blueswir1
SPARCbook
1491 34a3d239 blueswir1
@end itemize
1492 34a3d239 blueswir1
1493 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1494 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1495 e80cfcfc bellard
1496 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1497 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1498 34a3d239 blueswir1
emulators are not usable yet.
1499 34a3d239 blueswir1
1500 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1501 e80cfcfc bellard
1502 e80cfcfc bellard
@itemize @minus
1503 3475187d bellard
@item
1504 7d85892b blueswir1
IOMMU or IO-UNITs
1505 e80cfcfc bellard
@item
1506 e80cfcfc bellard
TCX Frame buffer
1507 5fafdf24 ths
@item
1508 e80cfcfc bellard
Lance (Am7990) Ethernet
1509 e80cfcfc bellard
@item
1510 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1511 e80cfcfc bellard
@item
1512 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1513 3475187d bellard
and power/reset logic
1514 3475187d bellard
@item
1515 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1516 3475187d bellard
@item
1517 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1518 a2502b58 blueswir1
@item
1519 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1520 e80cfcfc bellard
@end itemize
1521 e80cfcfc bellard
1522 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1523 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1524 7d85892b blueswir1
others 2047MB.
1525 3475187d bellard
1526 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1527 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1528 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1529 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1530 3475187d bellard
1531 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1532 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1533 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1534 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1535 34a3d239 blueswir1
Solaris.
1536 3475187d bellard
1537 3475187d bellard
@c man begin OPTIONS
1538 3475187d bellard
1539 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1540 3475187d bellard
1541 3475187d bellard
@table @option
1542 3475187d bellard
1543 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1544 3475187d bellard
1545 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1546 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1547 3475187d bellard
1548 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1549 66508601 blueswir1
1550 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1551 66508601 blueswir1
1552 66508601 blueswir1
@example
1553 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1554 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1555 66508601 blueswir1
@end example
1556 66508601 blueswir1
1557 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1558 a2502b58 blueswir1
1559 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1560 a2502b58 blueswir1
1561 3475187d bellard
@end table
1562 3475187d bellard
1563 5fafdf24 ths
@c man end
1564 3475187d bellard
1565 24d4de45 ths
@node Sparc64 System emulator
1566 24d4de45 ths
@section Sparc64 System emulator
1567 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1568 e80cfcfc bellard
1569 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1570 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1571 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1572 34a3d239 blueswir1
it can launch some kernels.
1573 b756921a bellard
1574 c7ba218d blueswir1
QEMU emulates the following peripherals:
1575 83469015 bellard
1576 83469015 bellard
@itemize @minus
1577 83469015 bellard
@item
1578 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1579 83469015 bellard
@item
1580 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1581 83469015 bellard
@item
1582 34a3d239 blueswir1
PS/2 mouse and keyboard
1583 34a3d239 blueswir1
@item
1584 83469015 bellard
Non Volatile RAM M48T59
1585 83469015 bellard
@item
1586 83469015 bellard
PC-compatible serial ports
1587 c7ba218d blueswir1
@item
1588 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1589 34a3d239 blueswir1
@item
1590 34a3d239 blueswir1
Floppy disk
1591 83469015 bellard
@end itemize
1592 83469015 bellard
1593 c7ba218d blueswir1
@c man begin OPTIONS
1594 c7ba218d blueswir1
1595 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1596 c7ba218d blueswir1
1597 c7ba218d blueswir1
@table @option
1598 c7ba218d blueswir1
1599 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1600 34a3d239 blueswir1
1601 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1602 34a3d239 blueswir1
1603 34a3d239 blueswir1
@example
1604 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1605 34a3d239 blueswir1
@end example
1606 34a3d239 blueswir1
1607 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1608 c7ba218d blueswir1
1609 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1610 c7ba218d blueswir1
1611 c7ba218d blueswir1
@end table
1612 c7ba218d blueswir1
1613 c7ba218d blueswir1
@c man end
1614 c7ba218d blueswir1
1615 24d4de45 ths
@node MIPS System emulator
1616 24d4de45 ths
@section MIPS System emulator
1617 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1618 9d0a8e6f bellard
1619 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1620 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1621 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1622 88cb0a02 aurel32
Five different machine types are emulated:
1623 24d4de45 ths
1624 24d4de45 ths
@itemize @minus
1625 24d4de45 ths
@item
1626 24d4de45 ths
A generic ISA PC-like machine "mips"
1627 24d4de45 ths
@item
1628 24d4de45 ths
The MIPS Malta prototype board "malta"
1629 24d4de45 ths
@item
1630 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1631 6bf5b4e8 ths
@item
1632 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1633 88cb0a02 aurel32
@item
1634 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1635 24d4de45 ths
@end itemize
1636 24d4de45 ths
1637 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1638 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1639 24d4de45 ths
emulated:
1640 3f9f3aa1 bellard
1641 3f9f3aa1 bellard
@itemize @minus
1642 5fafdf24 ths
@item
1643 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1644 3f9f3aa1 bellard
@item
1645 3f9f3aa1 bellard
PC style serial port
1646 3f9f3aa1 bellard
@item
1647 24d4de45 ths
PC style IDE disk
1648 24d4de45 ths
@item
1649 3f9f3aa1 bellard
NE2000 network card
1650 3f9f3aa1 bellard
@end itemize
1651 3f9f3aa1 bellard
1652 24d4de45 ths
The Malta emulation supports the following devices:
1653 24d4de45 ths
1654 24d4de45 ths
@itemize @minus
1655 24d4de45 ths
@item
1656 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1657 24d4de45 ths
@item
1658 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1659 24d4de45 ths
@item
1660 24d4de45 ths
The Multi-I/O chip's serial device
1661 24d4de45 ths
@item
1662 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1663 24d4de45 ths
@item
1664 24d4de45 ths
Malta FPGA serial device
1665 24d4de45 ths
@item
1666 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1667 24d4de45 ths
@end itemize
1668 24d4de45 ths
1669 24d4de45 ths
The ACER Pica emulation supports:
1670 24d4de45 ths
1671 24d4de45 ths
@itemize @minus
1672 24d4de45 ths
@item
1673 24d4de45 ths
MIPS R4000 CPU
1674 24d4de45 ths
@item
1675 24d4de45 ths
PC-style IRQ and DMA controllers
1676 24d4de45 ths
@item
1677 24d4de45 ths
PC Keyboard
1678 24d4de45 ths
@item
1679 24d4de45 ths
IDE controller
1680 24d4de45 ths
@end itemize
1681 3f9f3aa1 bellard
1682 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1683 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1684 f0fc6f8f ths
It supports:
1685 6bf5b4e8 ths
1686 6bf5b4e8 ths
@itemize @minus
1687 6bf5b4e8 ths
@item
1688 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1689 6bf5b4e8 ths
@item
1690 6bf5b4e8 ths
PC style serial port
1691 6bf5b4e8 ths
@item
1692 6bf5b4e8 ths
MIPSnet network emulation
1693 6bf5b4e8 ths
@end itemize
1694 6bf5b4e8 ths
1695 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1696 88cb0a02 aurel32
1697 88cb0a02 aurel32
@itemize @minus
1698 88cb0a02 aurel32
@item
1699 88cb0a02 aurel32
MIPS R4000 CPU
1700 88cb0a02 aurel32
@item
1701 88cb0a02 aurel32
PC-style IRQ controller
1702 88cb0a02 aurel32
@item
1703 88cb0a02 aurel32
PC Keyboard
1704 88cb0a02 aurel32
@item
1705 88cb0a02 aurel32
SCSI controller
1706 88cb0a02 aurel32
@item
1707 88cb0a02 aurel32
G364 framebuffer
1708 88cb0a02 aurel32
@end itemize
1709 88cb0a02 aurel32
1710 88cb0a02 aurel32
1711 24d4de45 ths
@node ARM System emulator
1712 24d4de45 ths
@section ARM System emulator
1713 7544a042 Stefan Weil
@cindex system emulation (ARM)
1714 3f9f3aa1 bellard
1715 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1716 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1717 3f9f3aa1 bellard
devices:
1718 3f9f3aa1 bellard
1719 3f9f3aa1 bellard
@itemize @minus
1720 3f9f3aa1 bellard
@item
1721 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1722 3f9f3aa1 bellard
@item
1723 3f9f3aa1 bellard
Two PL011 UARTs
1724 5fafdf24 ths
@item
1725 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1726 00a9bf19 pbrook
@item
1727 00a9bf19 pbrook
PL110 LCD controller
1728 00a9bf19 pbrook
@item
1729 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1730 a1bb27b1 pbrook
@item
1731 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1732 00a9bf19 pbrook
@end itemize
1733 00a9bf19 pbrook
1734 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1735 00a9bf19 pbrook
1736 00a9bf19 pbrook
@itemize @minus
1737 00a9bf19 pbrook
@item
1738 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1739 00a9bf19 pbrook
@item
1740 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1741 00a9bf19 pbrook
@item
1742 00a9bf19 pbrook
Four PL011 UARTs
1743 5fafdf24 ths
@item
1744 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1745 00a9bf19 pbrook
@item
1746 00a9bf19 pbrook
PL110 LCD controller
1747 00a9bf19 pbrook
@item
1748 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1749 00a9bf19 pbrook
@item
1750 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1751 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1752 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1753 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1754 00a9bf19 pbrook
mapped control registers.
1755 e6de1bad pbrook
@item
1756 e6de1bad pbrook
PCI OHCI USB controller.
1757 e6de1bad pbrook
@item
1758 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1759 a1bb27b1 pbrook
@item
1760 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1761 3f9f3aa1 bellard
@end itemize
1762 3f9f3aa1 bellard
1763 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1764 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1765 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1766 21a88941 Paul Brook
of the box on these boards.
1767 21a88941 Paul Brook
1768 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1769 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1770 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1771 21a88941 Paul Brook
disabled and expect 1024M RAM.
1772 21a88941 Paul Brook
1773 21a88941 Paul Brook
The following devices are emuilated:
1774 d7739d75 pbrook
1775 d7739d75 pbrook
@itemize @minus
1776 d7739d75 pbrook
@item
1777 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1778 d7739d75 pbrook
@item
1779 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1780 d7739d75 pbrook
@item
1781 d7739d75 pbrook
Four PL011 UARTs
1782 5fafdf24 ths
@item
1783 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1784 d7739d75 pbrook
@item
1785 d7739d75 pbrook
PL110 LCD controller
1786 d7739d75 pbrook
@item
1787 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1788 d7739d75 pbrook
@item
1789 d7739d75 pbrook
PCI host bridge
1790 d7739d75 pbrook
@item
1791 d7739d75 pbrook
PCI OHCI USB controller
1792 d7739d75 pbrook
@item
1793 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1794 a1bb27b1 pbrook
@item
1795 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1796 d7739d75 pbrook
@end itemize
1797 d7739d75 pbrook
1798 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1799 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1800 b00052e4 balrog
1801 b00052e4 balrog
@itemize @minus
1802 b00052e4 balrog
@item
1803 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1804 b00052e4 balrog
@item
1805 b00052e4 balrog
NAND Flash memory
1806 b00052e4 balrog
@item
1807 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1808 b00052e4 balrog
@item
1809 b00052e4 balrog
On-chip OHCI USB controller
1810 b00052e4 balrog
@item
1811 b00052e4 balrog
On-chip LCD controller
1812 b00052e4 balrog
@item
1813 b00052e4 balrog
On-chip Real Time Clock
1814 b00052e4 balrog
@item
1815 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1816 b00052e4 balrog
@item
1817 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1818 b00052e4 balrog
@item
1819 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1820 b00052e4 balrog
@item
1821 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1822 b00052e4 balrog
@item
1823 b00052e4 balrog
Three on-chip UARTs
1824 b00052e4 balrog
@item
1825 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1826 b00052e4 balrog
@end itemize
1827 b00052e4 balrog
1828 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1829 02645926 balrog
following elements:
1830 02645926 balrog
1831 02645926 balrog
@itemize @minus
1832 02645926 balrog
@item
1833 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1834 02645926 balrog
@item
1835 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1836 02645926 balrog
@item
1837 02645926 balrog
On-chip LCD controller
1838 02645926 balrog
@item
1839 02645926 balrog
On-chip Real Time Clock
1840 02645926 balrog
@item
1841 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1842 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1843 02645926 balrog
@item
1844 02645926 balrog
GPIO-connected matrix keypad
1845 02645926 balrog
@item
1846 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1847 02645926 balrog
@item
1848 02645926 balrog
Three on-chip UARTs
1849 02645926 balrog
@end itemize
1850 02645926 balrog
1851 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1852 c30bb264 balrog
emulation supports the following elements:
1853 c30bb264 balrog
1854 c30bb264 balrog
@itemize @minus
1855 c30bb264 balrog
@item
1856 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1857 c30bb264 balrog
@item
1858 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1859 c30bb264 balrog
@item
1860 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1861 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1862 c30bb264 balrog
@item
1863 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1864 c30bb264 balrog
driven through SPI bus
1865 c30bb264 balrog
@item
1866 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1867 c30bb264 balrog
through I@math{^2}C bus
1868 c30bb264 balrog
@item
1869 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1870 c30bb264 balrog
@item
1871 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1872 c30bb264 balrog
@item
1873 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
1874 2d564691 balrog
@item
1875 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1876 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
1877 c30bb264 balrog
@item
1878 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
1879 c30bb264 balrog
@item
1880 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1881 c30bb264 balrog
@item
1882 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1883 c30bb264 balrog
through CBUS
1884 c30bb264 balrog
@end itemize
1885 c30bb264 balrog
1886 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1887 9ee6e8bb pbrook
devices:
1888 9ee6e8bb pbrook
1889 9ee6e8bb pbrook
@itemize @minus
1890 9ee6e8bb pbrook
@item
1891 9ee6e8bb pbrook
Cortex-M3 CPU core.
1892 9ee6e8bb pbrook
@item
1893 9ee6e8bb pbrook
64k Flash and 8k SRAM.
1894 9ee6e8bb pbrook
@item
1895 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
1896 9ee6e8bb pbrook
@item
1897 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1898 9ee6e8bb pbrook
@end itemize
1899 9ee6e8bb pbrook
1900 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1901 9ee6e8bb pbrook
devices:
1902 9ee6e8bb pbrook
1903 9ee6e8bb pbrook
@itemize @minus
1904 9ee6e8bb pbrook
@item
1905 9ee6e8bb pbrook
Cortex-M3 CPU core.
1906 9ee6e8bb pbrook
@item
1907 9ee6e8bb pbrook
256k Flash and 64k SRAM.
1908 9ee6e8bb pbrook
@item
1909 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1910 9ee6e8bb pbrook
@item
1911 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1912 9ee6e8bb pbrook
@end itemize
1913 9ee6e8bb pbrook
1914 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
1915 57cd6e97 balrog
elements:
1916 57cd6e97 balrog
1917 57cd6e97 balrog
@itemize @minus
1918 57cd6e97 balrog
@item
1919 57cd6e97 balrog
Marvell MV88W8618 ARM core.
1920 57cd6e97 balrog
@item
1921 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
1922 57cd6e97 balrog
@item
1923 57cd6e97 balrog
Up to 2 16550 UARTs
1924 57cd6e97 balrog
@item
1925 57cd6e97 balrog
MV88W8xx8 Ethernet controller
1926 57cd6e97 balrog
@item
1927 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
1928 57cd6e97 balrog
@item
1929 e080e785 Stefan Weil
128ร—64 display with brightness control
1930 57cd6e97 balrog
@item
1931 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
1932 57cd6e97 balrog
@end itemize
1933 57cd6e97 balrog
1934 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
1935 997641a8 balrog
The emulaton includes the following elements:
1936 997641a8 balrog
1937 997641a8 balrog
@itemize @minus
1938 997641a8 balrog
@item
1939 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1940 997641a8 balrog
@item
1941 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1942 997641a8 balrog
V1
1943 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
1944 997641a8 balrog
V2
1945 997641a8 balrog
1 Flash of 32MB
1946 997641a8 balrog
@item
1947 997641a8 balrog
On-chip LCD controller
1948 997641a8 balrog
@item
1949 997641a8 balrog
On-chip Real Time Clock
1950 997641a8 balrog
@item
1951 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
1952 997641a8 balrog
@item
1953 997641a8 balrog
Three on-chip UARTs
1954 997641a8 balrog
@end itemize
1955 997641a8 balrog
1956 4af39611 Paul Brook
The "Syborg" Symbian Virtual Platform base model includes the following
1957 4af39611 Paul Brook
elements:
1958 4af39611 Paul Brook
1959 4af39611 Paul Brook
@itemize @minus
1960 4af39611 Paul Brook
@item
1961 4af39611 Paul Brook
ARM Cortex-A8 CPU
1962 4af39611 Paul Brook
@item
1963 4af39611 Paul Brook
Interrupt controller
1964 4af39611 Paul Brook
@item
1965 4af39611 Paul Brook
Timer
1966 4af39611 Paul Brook
@item
1967 4af39611 Paul Brook
Real Time Clock
1968 4af39611 Paul Brook
@item
1969 4af39611 Paul Brook
Keyboard
1970 4af39611 Paul Brook
@item
1971 4af39611 Paul Brook
Framebuffer
1972 4af39611 Paul Brook
@item
1973 4af39611 Paul Brook
Touchscreen
1974 4af39611 Paul Brook
@item
1975 4af39611 Paul Brook
UARTs
1976 4af39611 Paul Brook
@end itemize
1977 4af39611 Paul Brook
1978 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
1979 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
1980 9d0a8e6f bellard
1981 d2c639d6 blueswir1
@c man begin OPTIONS
1982 d2c639d6 blueswir1
1983 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
1984 d2c639d6 blueswir1
1985 d2c639d6 blueswir1
@table @option
1986 d2c639d6 blueswir1
1987 d2c639d6 blueswir1
@item -semihosting
1988 d2c639d6 blueswir1
Enable semihosting syscall emulation.
1989 d2c639d6 blueswir1
1990 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
1991 d2c639d6 blueswir1
1992 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
1993 d2c639d6 blueswir1
so should only be used with trusted guest OS.
1994 d2c639d6 blueswir1
1995 d2c639d6 blueswir1
@end table
1996 d2c639d6 blueswir1
1997 24d4de45 ths
@node ColdFire System emulator
1998 24d4de45 ths
@section ColdFire System emulator
1999 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2000 7544a042 Stefan Weil
@cindex system emulation (M68K)
2001 209a4e69 pbrook
2002 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2003 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2004 707e011b pbrook
2005 707e011b pbrook
The M5208EVB emulation includes the following devices:
2006 707e011b pbrook
2007 707e011b pbrook
@itemize @minus
2008 5fafdf24 ths
@item
2009 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2010 707e011b pbrook
@item
2011 707e011b pbrook
Three Two on-chip UARTs.
2012 707e011b pbrook
@item
2013 707e011b pbrook
Fast Ethernet Controller (FEC)
2014 707e011b pbrook
@end itemize
2015 707e011b pbrook
2016 707e011b pbrook
The AN5206 emulation includes the following devices:
2017 209a4e69 pbrook
2018 209a4e69 pbrook
@itemize @minus
2019 5fafdf24 ths
@item
2020 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2021 209a4e69 pbrook
@item
2022 209a4e69 pbrook
Two on-chip UARTs.
2023 209a4e69 pbrook
@end itemize
2024 209a4e69 pbrook
2025 d2c639d6 blueswir1
@c man begin OPTIONS
2026 d2c639d6 blueswir1
2027 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2028 d2c639d6 blueswir1
2029 d2c639d6 blueswir1
@table @option
2030 d2c639d6 blueswir1
2031 d2c639d6 blueswir1
@item -semihosting
2032 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2033 d2c639d6 blueswir1
2034 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2035 d2c639d6 blueswir1
2036 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2037 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2038 d2c639d6 blueswir1
2039 d2c639d6 blueswir1
@end table
2040 d2c639d6 blueswir1
2041 7544a042 Stefan Weil
@node Cris System emulator
2042 7544a042 Stefan Weil
@section Cris System emulator
2043 7544a042 Stefan Weil
@cindex system emulation (Cris)
2044 7544a042 Stefan Weil
2045 7544a042 Stefan Weil
TODO
2046 7544a042 Stefan Weil
2047 7544a042 Stefan Weil
@node Microblaze System emulator
2048 7544a042 Stefan Weil
@section Microblaze System emulator
2049 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2050 7544a042 Stefan Weil
2051 7544a042 Stefan Weil
TODO
2052 7544a042 Stefan Weil
2053 7544a042 Stefan Weil
@node SH4 System emulator
2054 7544a042 Stefan Weil
@section SH4 System emulator
2055 7544a042 Stefan Weil
@cindex system emulation (SH4)
2056 7544a042 Stefan Weil
2057 7544a042 Stefan Weil
TODO
2058 7544a042 Stefan Weil
2059 5fafdf24 ths
@node QEMU User space emulator
2060 5fafdf24 ths
@chapter QEMU User space emulator
2061 83195237 bellard
2062 83195237 bellard
@menu
2063 83195237 bellard
* Supported Operating Systems ::
2064 83195237 bellard
* Linux User space emulator::
2065 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2066 84778508 blueswir1
* BSD User space emulator ::
2067 83195237 bellard
@end menu
2068 83195237 bellard
2069 83195237 bellard
@node Supported Operating Systems
2070 83195237 bellard
@section Supported Operating Systems
2071 83195237 bellard
2072 83195237 bellard
The following OS are supported in user space emulation:
2073 83195237 bellard
2074 83195237 bellard
@itemize @minus
2075 83195237 bellard
@item
2076 4be456f1 ths
Linux (referred as qemu-linux-user)
2077 83195237 bellard
@item
2078 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2079 84778508 blueswir1
@item
2080 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2081 83195237 bellard
@end itemize
2082 83195237 bellard
2083 83195237 bellard
@node Linux User space emulator
2084 83195237 bellard
@section Linux User space emulator
2085 386405f7 bellard
2086 debc7065 bellard
@menu
2087 debc7065 bellard
* Quick Start::
2088 debc7065 bellard
* Wine launch::
2089 debc7065 bellard
* Command line options::
2090 79737e4a pbrook
* Other binaries::
2091 debc7065 bellard
@end menu
2092 debc7065 bellard
2093 debc7065 bellard
@node Quick Start
2094 83195237 bellard
@subsection Quick Start
2095 df0f11a0 bellard
2096 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2097 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2098 386405f7 bellard
2099 1f673135 bellard
@itemize
2100 386405f7 bellard
2101 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2102 1f673135 bellard
libraries:
2103 386405f7 bellard
2104 5fafdf24 ths
@example
2105 1f673135 bellard
qemu-i386 -L / /bin/ls
2106 1f673135 bellard
@end example
2107 386405f7 bellard
2108 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2109 1f673135 bellard
@file{/} prefix.
2110 386405f7 bellard
2111 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2112 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2113 386405f7 bellard
2114 5fafdf24 ths
@example
2115 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2116 1f673135 bellard
@end example
2117 386405f7 bellard
2118 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2119 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2120 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2121 df0f11a0 bellard
2122 1f673135 bellard
@example
2123 5fafdf24 ths
unset LD_LIBRARY_PATH
2124 1f673135 bellard
@end example
2125 1eb87257 bellard
2126 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2127 1eb87257 bellard
2128 1f673135 bellard
@example
2129 1f673135 bellard
qemu-i386 tests/i386/ls
2130 1f673135 bellard
@end example
2131 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2132 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2133 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2134 1f673135 bellard
Linux kernel.
2135 1eb87257 bellard
2136 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2137 1f673135 bellard
@example
2138 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2139 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2140 1f673135 bellard
@end example
2141 1eb20527 bellard
2142 1f673135 bellard
@end itemize
2143 1eb20527 bellard
2144 debc7065 bellard
@node Wine launch
2145 83195237 bellard
@subsection Wine launch
2146 1eb20527 bellard
2147 1f673135 bellard
@itemize
2148 386405f7 bellard
2149 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2150 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2151 1f673135 bellard
able to do:
2152 386405f7 bellard
2153 1f673135 bellard
@example
2154 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2155 1f673135 bellard
@end example
2156 386405f7 bellard
2157 1f673135 bellard
@item Download the binary x86 Wine install
2158 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2159 386405f7 bellard
2160 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2161 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2162 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2163 386405f7 bellard
2164 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2165 386405f7 bellard
2166 1f673135 bellard
@example
2167 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2168 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2169 1f673135 bellard
@end example
2170 386405f7 bellard
2171 1f673135 bellard
@end itemize
2172 fd429f2f bellard
2173 debc7065 bellard
@node Command line options
2174 83195237 bellard
@subsection Command line options
2175 1eb20527 bellard
2176 1f673135 bellard
@example
2177 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2178 1f673135 bellard
@end example
2179 1eb20527 bellard
2180 1f673135 bellard
@table @option
2181 1f673135 bellard
@item -h
2182 1f673135 bellard
Print the help
2183 3b46e624 ths
@item -L path
2184 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2185 1f673135 bellard
@item -s size
2186 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2187 34a3d239 blueswir1
@item -cpu model
2188 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2189 f66724c9 Stefan Weil
@item -ignore-environment
2190 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2191 f66724c9 Stefan Weil
the inital environment is a copy of the caller's environment.
2192 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2193 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2194 f66724c9 Stefan Weil
@item -U @var{var}
2195 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2196 379f6698 Paul Brook
@item -B offset
2197 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2198 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2199 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2200 68a1c816 Paul Brook
@item -R size
2201 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2202 68a1c816 Paul Brook
"G", "M", and "k" suffixes may be used when specifying the size.  
2203 386405f7 bellard
@end table
2204 386405f7 bellard
2205 1f673135 bellard
Debug options:
2206 386405f7 bellard
2207 1f673135 bellard
@table @option
2208 1f673135 bellard
@item -d
2209 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2210 1f673135 bellard
@item -p pagesize
2211 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2212 34a3d239 blueswir1
@item -g port
2213 34a3d239 blueswir1
Wait gdb connection to port
2214 1b530a6d aurel32
@item -singlestep
2215 1b530a6d aurel32
Run the emulation in single step mode.
2216 1f673135 bellard
@end table
2217 386405f7 bellard
2218 b01bcae6 balrog
Environment variables:
2219 b01bcae6 balrog
2220 b01bcae6 balrog
@table @env
2221 b01bcae6 balrog
@item QEMU_STRACE
2222 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2223 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2224 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2225 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2226 b01bcae6 balrog
format are printed with information for six arguments.  Many
2227 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2228 5cfdf930 ths
@end table
2229 b01bcae6 balrog
2230 79737e4a pbrook
@node Other binaries
2231 83195237 bellard
@subsection Other binaries
2232 79737e4a pbrook
2233 7544a042 Stefan Weil
@cindex user mode (Alpha)
2234 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2235 7544a042 Stefan Weil
2236 7544a042 Stefan Weil
@cindex user mode (ARM)
2237 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2238 7544a042 Stefan Weil
2239 7544a042 Stefan Weil
@cindex user mode (ARM)
2240 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2241 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2242 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2243 79737e4a pbrook
2244 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2245 7544a042 Stefan Weil
@cindex user mode (M68K)
2246 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2247 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2248 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2249 e6e5906b pbrook
2250 79737e4a pbrook
The binary format is detected automatically.
2251 79737e4a pbrook
2252 7544a042 Stefan Weil
@cindex user mode (Cris)
2253 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2254 7544a042 Stefan Weil
2255 7544a042 Stefan Weil
@cindex user mode (i386)
2256 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2257 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2258 7544a042 Stefan Weil
2259 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2260 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2261 7544a042 Stefan Weil
2262 7544a042 Stefan Weil
@cindex user mode (MIPS)
2263 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2264 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2265 7544a042 Stefan Weil
2266 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2267 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2268 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2269 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2270 7544a042 Stefan Weil
2271 7544a042 Stefan Weil
@cindex user mode (SH4)
2272 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2273 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2274 7544a042 Stefan Weil
2275 7544a042 Stefan Weil
@cindex user mode (SPARC)
2276 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2277 34a3d239 blueswir1
2278 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2279 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2280 a785e42e blueswir1
2281 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2282 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2283 a785e42e blueswir1
2284 83195237 bellard
@node Mac OS X/Darwin User space emulator
2285 83195237 bellard
@section Mac OS X/Darwin User space emulator
2286 83195237 bellard
2287 83195237 bellard
@menu
2288 83195237 bellard
* Mac OS X/Darwin Status::
2289 83195237 bellard
* Mac OS X/Darwin Quick Start::
2290 83195237 bellard
* Mac OS X/Darwin Command line options::
2291 83195237 bellard
@end menu
2292 83195237 bellard
2293 83195237 bellard
@node Mac OS X/Darwin Status
2294 83195237 bellard
@subsection Mac OS X/Darwin Status
2295 83195237 bellard
2296 83195237 bellard
@itemize @minus
2297 83195237 bellard
@item
2298 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2299 83195237 bellard
@item
2300 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2301 83195237 bellard
@item
2302 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2303 83195237 bellard
@item
2304 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2305 83195237 bellard
@end itemize
2306 83195237 bellard
2307 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2308 83195237 bellard
2309 83195237 bellard
@node Mac OS X/Darwin Quick Start
2310 83195237 bellard
@subsection Quick Start
2311 83195237 bellard
2312 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2313 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2314 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2315 83195237 bellard
CD or compile them by hand.
2316 83195237 bellard
2317 83195237 bellard
@itemize
2318 83195237 bellard
2319 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2320 83195237 bellard
libraries:
2321 83195237 bellard
2322 5fafdf24 ths
@example
2323 dbcf5e82 ths
qemu-i386 /bin/ls
2324 83195237 bellard
@end example
2325 83195237 bellard
2326 83195237 bellard
or to run the ppc version of the executable:
2327 83195237 bellard
2328 5fafdf24 ths
@example
2329 dbcf5e82 ths
qemu-ppc /bin/ls
2330 83195237 bellard
@end example
2331 83195237 bellard
2332 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2333 83195237 bellard
are installed:
2334 83195237 bellard
2335 5fafdf24 ths
@example
2336 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2337 83195237 bellard
@end example
2338 83195237 bellard
2339 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2340 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2341 83195237 bellard
2342 83195237 bellard
@end itemize
2343 83195237 bellard
2344 83195237 bellard
@node Mac OS X/Darwin Command line options
2345 83195237 bellard
@subsection Command line options
2346 83195237 bellard
2347 83195237 bellard
@example
2348 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2349 83195237 bellard
@end example
2350 83195237 bellard
2351 83195237 bellard
@table @option
2352 83195237 bellard
@item -h
2353 83195237 bellard
Print the help
2354 3b46e624 ths
@item -L path
2355 83195237 bellard
Set the library root path (default=/)
2356 83195237 bellard
@item -s size
2357 83195237 bellard
Set the stack size in bytes (default=524288)
2358 83195237 bellard
@end table
2359 83195237 bellard
2360 83195237 bellard
Debug options:
2361 83195237 bellard
2362 83195237 bellard
@table @option
2363 83195237 bellard
@item -d
2364 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2365 83195237 bellard
@item -p pagesize
2366 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2367 1b530a6d aurel32
@item -singlestep
2368 1b530a6d aurel32
Run the emulation in single step mode.
2369 83195237 bellard
@end table
2370 83195237 bellard
2371 84778508 blueswir1
@node BSD User space emulator
2372 84778508 blueswir1
@section BSD User space emulator
2373 84778508 blueswir1
2374 84778508 blueswir1
@menu
2375 84778508 blueswir1
* BSD Status::
2376 84778508 blueswir1
* BSD Quick Start::
2377 84778508 blueswir1
* BSD Command line options::
2378 84778508 blueswir1
@end menu
2379 84778508 blueswir1
2380 84778508 blueswir1
@node BSD Status
2381 84778508 blueswir1
@subsection BSD Status
2382 84778508 blueswir1
2383 84778508 blueswir1
@itemize @minus
2384 84778508 blueswir1
@item
2385 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2386 84778508 blueswir1
@end itemize
2387 84778508 blueswir1
2388 84778508 blueswir1
@node BSD Quick Start
2389 84778508 blueswir1
@subsection Quick Start
2390 84778508 blueswir1
2391 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2392 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2393 84778508 blueswir1
2394 84778508 blueswir1
@itemize
2395 84778508 blueswir1
2396 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2397 84778508 blueswir1
libraries:
2398 84778508 blueswir1
2399 84778508 blueswir1
@example
2400 84778508 blueswir1
qemu-sparc64 /bin/ls
2401 84778508 blueswir1
@end example
2402 84778508 blueswir1
2403 84778508 blueswir1
@end itemize
2404 84778508 blueswir1
2405 84778508 blueswir1
@node BSD Command line options
2406 84778508 blueswir1
@subsection Command line options
2407 84778508 blueswir1
2408 84778508 blueswir1
@example
2409 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2410 84778508 blueswir1
@end example
2411 84778508 blueswir1
2412 84778508 blueswir1
@table @option
2413 84778508 blueswir1
@item -h
2414 84778508 blueswir1
Print the help
2415 84778508 blueswir1
@item -L path
2416 84778508 blueswir1
Set the library root path (default=/)
2417 84778508 blueswir1
@item -s size
2418 84778508 blueswir1
Set the stack size in bytes (default=524288)
2419 f66724c9 Stefan Weil
@item -ignore-environment
2420 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2421 f66724c9 Stefan Weil
the inital environment is a copy of the caller's environment.
2422 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2423 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2424 f66724c9 Stefan Weil
@item -U @var{var}
2425 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2426 84778508 blueswir1
@item -bsd type
2427 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2428 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2429 84778508 blueswir1
@end table
2430 84778508 blueswir1
2431 84778508 blueswir1
Debug options:
2432 84778508 blueswir1
2433 84778508 blueswir1
@table @option
2434 84778508 blueswir1
@item -d
2435 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2436 84778508 blueswir1
@item -p pagesize
2437 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2438 1b530a6d aurel32
@item -singlestep
2439 1b530a6d aurel32
Run the emulation in single step mode.
2440 84778508 blueswir1
@end table
2441 84778508 blueswir1
2442 15a34c63 bellard
@node compilation
2443 15a34c63 bellard
@chapter Compilation from the sources
2444 15a34c63 bellard
2445 debc7065 bellard
@menu
2446 debc7065 bellard
* Linux/Unix::
2447 debc7065 bellard
* Windows::
2448 debc7065 bellard
* Cross compilation for Windows with Linux::
2449 debc7065 bellard
* Mac OS X::
2450 47eacb4f Stefan Weil
* Make targets::
2451 debc7065 bellard
@end menu
2452 debc7065 bellard
2453 debc7065 bellard
@node Linux/Unix
2454 7c3fc84d bellard
@section Linux/Unix
2455 7c3fc84d bellard
2456 7c3fc84d bellard
@subsection Compilation
2457 7c3fc84d bellard
2458 7c3fc84d bellard
First you must decompress the sources:
2459 7c3fc84d bellard
@example
2460 7c3fc84d bellard
cd /tmp
2461 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2462 7c3fc84d bellard
cd qemu-x.y.z
2463 7c3fc84d bellard
@end example
2464 7c3fc84d bellard
2465 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2466 7c3fc84d bellard
@example
2467 7c3fc84d bellard
./configure
2468 7c3fc84d bellard
make
2469 7c3fc84d bellard
@end example
2470 7c3fc84d bellard
2471 7c3fc84d bellard
Then type as root user:
2472 7c3fc84d bellard
@example
2473 7c3fc84d bellard
make install
2474 7c3fc84d bellard
@end example
2475 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2476 7c3fc84d bellard
2477 debc7065 bellard
@node Windows
2478 15a34c63 bellard
@section Windows
2479 15a34c63 bellard
2480 15a34c63 bellard
@itemize
2481 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2482 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2483 15a34c63 bellard
instructions in the download section and the FAQ.
2484 15a34c63 bellard
2485 5fafdf24 ths
@item Download
2486 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2487 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2488 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2489 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2490 15a34c63 bellard
correct SDL directory when invoked.
2491 15a34c63 bellard
2492 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2493 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2494 d0a96f3d Scott Tsai
MingGW's default header and linker search paths.
2495 d0a96f3d Scott Tsai
2496 15a34c63 bellard
@item Extract the current version of QEMU.
2497 5fafdf24 ths
2498 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2499 15a34c63 bellard
2500 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2501 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2502 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2503 15a34c63 bellard
2504 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2505 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2506 15a34c63 bellard
@file{Program Files/Qemu}.
2507 15a34c63 bellard
2508 15a34c63 bellard
@end itemize
2509 15a34c63 bellard
2510 debc7065 bellard
@node Cross compilation for Windows with Linux
2511 15a34c63 bellard
@section Cross compilation for Windows with Linux
2512 15a34c63 bellard
2513 15a34c63 bellard
@itemize
2514 15a34c63 bellard
@item
2515 15a34c63 bellard
Install the MinGW cross compilation tools available at
2516 15a34c63 bellard
@url{http://www.mingw.org/}.
2517 15a34c63 bellard
2518 d0a96f3d Scott Tsai
@item Download
2519 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2520 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2521 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2522 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2523 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2524 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2525 15a34c63 bellard
the QEMU configuration script.
2526 15a34c63 bellard
2527 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2528 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2529 d0a96f3d Scott Tsai
MingGW's default header and linker search paths.
2530 d0a96f3d Scott Tsai
2531 5fafdf24 ths
@item
2532 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2533 15a34c63 bellard
@example
2534 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2535 d0a96f3d Scott Tsai
@end example
2536 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2537 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2538 d0a96f3d Scott Tsai
We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2539 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2540 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2541 d0a96f3d Scott Tsai
2542 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2543 d0a96f3d Scott Tsai
@example
2544 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2545 15a34c63 bellard
@end example
2546 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2547 15a34c63 bellard
2548 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2549 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2550 5fafdf24 ths
installation directory.
2551 15a34c63 bellard
2552 15a34c63 bellard
@end itemize
2553 15a34c63 bellard
2554 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2555 15a34c63 bellard
2556 debc7065 bellard
@node Mac OS X
2557 15a34c63 bellard
@section Mac OS X
2558 15a34c63 bellard
2559 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2560 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2561 15a34c63 bellard
information.
2562 15a34c63 bellard
2563 47eacb4f Stefan Weil
@node Make targets
2564 47eacb4f Stefan Weil
@section Make targets
2565 47eacb4f Stefan Weil
2566 47eacb4f Stefan Weil
@table @code
2567 47eacb4f Stefan Weil
2568 47eacb4f Stefan Weil
@item make
2569 47eacb4f Stefan Weil
@item make all
2570 47eacb4f Stefan Weil
Make everything which is typically needed.
2571 47eacb4f Stefan Weil
2572 47eacb4f Stefan Weil
@item install
2573 47eacb4f Stefan Weil
TODO
2574 47eacb4f Stefan Weil
2575 47eacb4f Stefan Weil
@item install-doc
2576 47eacb4f Stefan Weil
TODO
2577 47eacb4f Stefan Weil
2578 47eacb4f Stefan Weil
@item make clean
2579 47eacb4f Stefan Weil
Remove most files which were built during make.
2580 47eacb4f Stefan Weil
2581 47eacb4f Stefan Weil
@item make distclean
2582 47eacb4f Stefan Weil
Remove everything which was built during make.
2583 47eacb4f Stefan Weil
2584 47eacb4f Stefan Weil
@item make dvi
2585 47eacb4f Stefan Weil
@item make html
2586 47eacb4f Stefan Weil
@item make info
2587 47eacb4f Stefan Weil
@item make pdf
2588 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2589 47eacb4f Stefan Weil
2590 47eacb4f Stefan Weil
@item make cscope
2591 47eacb4f Stefan Weil
TODO
2592 47eacb4f Stefan Weil
2593 47eacb4f Stefan Weil
@item make defconfig
2594 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2595 47eacb4f Stefan Weil
User made changes will be overwritten.
2596 47eacb4f Stefan Weil
2597 47eacb4f Stefan Weil
@item tar
2598 47eacb4f Stefan Weil
@item tarbin
2599 47eacb4f Stefan Weil
TODO
2600 47eacb4f Stefan Weil
2601 47eacb4f Stefan Weil
@end table
2602 47eacb4f Stefan Weil
2603 7544a042 Stefan Weil
@node License
2604 7544a042 Stefan Weil
@appendix License
2605 7544a042 Stefan Weil
2606 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2607 7544a042 Stefan Weil
2608 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2609 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2610 7544a042 Stefan Weil
2611 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2612 7544a042 Stefan Weil
2613 debc7065 bellard
@node Index
2614 7544a042 Stefan Weil
@appendix Index
2615 7544a042 Stefan Weil
@menu
2616 7544a042 Stefan Weil
* Concept Index::
2617 7544a042 Stefan Weil
* Function Index::
2618 7544a042 Stefan Weil
* Keystroke Index::
2619 7544a042 Stefan Weil
* Program Index::
2620 7544a042 Stefan Weil
* Data Type Index::
2621 7544a042 Stefan Weil
* Variable Index::
2622 7544a042 Stefan Weil
@end menu
2623 7544a042 Stefan Weil
2624 7544a042 Stefan Weil
@node Concept Index
2625 7544a042 Stefan Weil
@section Concept Index
2626 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2627 debc7065 bellard
@printindex cp
2628 debc7065 bellard
2629 7544a042 Stefan Weil
@node Function Index
2630 7544a042 Stefan Weil
@section Function Index
2631 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2632 7544a042 Stefan Weil
@printindex fn
2633 7544a042 Stefan Weil
2634 7544a042 Stefan Weil
@node Keystroke Index
2635 7544a042 Stefan Weil
@section Keystroke Index
2636 7544a042 Stefan Weil
2637 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2638 7544a042 Stefan Weil
in system emulation.
2639 7544a042 Stefan Weil
2640 7544a042 Stefan Weil
@printindex ky
2641 7544a042 Stefan Weil
2642 7544a042 Stefan Weil
@node Program Index
2643 7544a042 Stefan Weil
@section Program Index
2644 7544a042 Stefan Weil
@printindex pg
2645 7544a042 Stefan Weil
2646 7544a042 Stefan Weil
@node Data Type Index
2647 7544a042 Stefan Weil
@section Data Type Index
2648 7544a042 Stefan Weil
2649 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2650 7544a042 Stefan Weil
2651 7544a042 Stefan Weil
@printindex tp
2652 7544a042 Stefan Weil
2653 7544a042 Stefan Weil
@node Variable Index
2654 7544a042 Stefan Weil
@section Variable Index
2655 7544a042 Stefan Weil
@printindex vr
2656 7544a042 Stefan Weil
2657 debc7065 bellard
@bye