Statistics
| Branch: | Revision:

root / vl.c @ f6d2a316

History | View | Annotate | Download (206.4 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#ifdef _BSD
46
#include <sys/stat.h>
47
#ifndef __APPLE__
48
#include <libutil.h>
49
#endif
50
#else
51
#ifndef __sun__
52
#include <linux/if.h>
53
#include <linux/if_tun.h>
54
#include <pty.h>
55
#include <malloc.h>
56
#include <linux/rtc.h>
57
#include <linux/ppdev.h>
58
#include <linux/parport.h>
59
#else
60
#include <sys/stat.h>
61
#include <sys/ethernet.h>
62
#include <sys/sockio.h>
63
#include <arpa/inet.h>
64
#include <netinet/arp.h>
65
#include <netinet/in.h>
66
#include <netinet/in_systm.h>
67
#include <netinet/ip.h>
68
#include <netinet/ip_icmp.h> // must come after ip.h
69
#include <netinet/udp.h>
70
#include <netinet/tcp.h>
71
#include <net/if.h>
72
#include <syslog.h>
73
#include <stropts.h>
74
#endif
75
#endif
76
#endif
77

    
78
#if defined(CONFIG_SLIRP)
79
#include "libslirp.h"
80
#endif
81

    
82
#ifdef _WIN32
83
#include <malloc.h>
84
#include <sys/timeb.h>
85
#include <windows.h>
86
#define getopt_long_only getopt_long
87
#define memalign(align, size) malloc(size)
88
#endif
89

    
90
#include "qemu_socket.h"
91

    
92
#ifdef CONFIG_SDL
93
#ifdef __APPLE__
94
#include <SDL/SDL.h>
95
#endif
96
#endif /* CONFIG_SDL */
97

    
98
#ifdef CONFIG_COCOA
99
#undef main
100
#define main qemu_main
101
#endif /* CONFIG_COCOA */
102

    
103
#include "disas.h"
104

    
105
#include "exec-all.h"
106

    
107
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108
#ifdef __sun__
109
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110
#else
111
#define SMBD_COMMAND "/usr/sbin/smbd"
112
#endif
113

    
114
//#define DEBUG_UNUSED_IOPORT
115
//#define DEBUG_IOPORT
116

    
117
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
118

    
119
#ifdef TARGET_PPC
120
#define DEFAULT_RAM_SIZE 144
121
#else
122
#define DEFAULT_RAM_SIZE 128
123
#endif
124
/* in ms */
125
#define GUI_REFRESH_INTERVAL 30
126

    
127
/* Max number of USB devices that can be specified on the commandline.  */
128
#define MAX_USB_CMDLINE 8
129

    
130
/* XXX: use a two level table to limit memory usage */
131
#define MAX_IOPORTS 65536
132

    
133
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134
char phys_ram_file[1024];
135
void *ioport_opaque[MAX_IOPORTS];
136
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139
   to store the VM snapshots */
140
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141
BlockDriverState *pflash_table[MAX_PFLASH];
142
BlockDriverState *sd_bdrv;
143
BlockDriverState *mtd_bdrv;
144
/* point to the block driver where the snapshots are managed */
145
BlockDriverState *bs_snapshots;
146
int vga_ram_size;
147
static DisplayState display_state;
148
int nographic;
149
const char* keyboard_layout = NULL;
150
int64_t ticks_per_sec;
151
int boot_device = 'c';
152
int ram_size;
153
int pit_min_timer_count = 0;
154
int nb_nics;
155
NICInfo nd_table[MAX_NICS];
156
int vm_running;
157
int rtc_utc = 1;
158
int cirrus_vga_enabled = 1;
159
int vmsvga_enabled = 0;
160
#ifdef TARGET_SPARC
161
int graphic_width = 1024;
162
int graphic_height = 768;
163
int graphic_depth = 8;
164
#else
165
int graphic_width = 800;
166
int graphic_height = 600;
167
int graphic_depth = 15;
168
#endif
169
int full_screen = 0;
170
int no_frame = 0;
171
int no_quit = 0;
172
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
173
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
174
#ifdef TARGET_I386
175
int win2k_install_hack = 0;
176
#endif
177
int usb_enabled = 0;
178
static VLANState *first_vlan;
179
int smp_cpus = 1;
180
const char *vnc_display;
181
#if defined(TARGET_SPARC)
182
#define MAX_CPUS 16
183
#elif defined(TARGET_I386)
184
#define MAX_CPUS 255
185
#else
186
#define MAX_CPUS 1
187
#endif
188
int acpi_enabled = 1;
189
int fd_bootchk = 1;
190
int no_reboot = 0;
191
int cursor_hide = 1;
192
int graphic_rotate = 0;
193
int daemonize = 0;
194
const char *option_rom[MAX_OPTION_ROMS];
195
int nb_option_roms;
196
int semihosting_enabled = 0;
197
int autostart = 1;
198
const char *qemu_name;
199
#ifdef TARGET_SPARC
200
unsigned int nb_prom_envs = 0;
201
const char *prom_envs[MAX_PROM_ENVS];
202
#endif
203

    
204
/***********************************************************/
205
/* x86 ISA bus support */
206

    
207
target_phys_addr_t isa_mem_base = 0;
208
PicState2 *isa_pic;
209

    
210
uint32_t default_ioport_readb(void *opaque, uint32_t address)
211
{
212
#ifdef DEBUG_UNUSED_IOPORT
213
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
214
#endif
215
    return 0xff;
216
}
217

    
218
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
219
{
220
#ifdef DEBUG_UNUSED_IOPORT
221
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
222
#endif
223
}
224

    
225
/* default is to make two byte accesses */
226
uint32_t default_ioport_readw(void *opaque, uint32_t address)
227
{
228
    uint32_t data;
229
    data = ioport_read_table[0][address](ioport_opaque[address], address);
230
    address = (address + 1) & (MAX_IOPORTS - 1);
231
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
232
    return data;
233
}
234

    
235
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
236
{
237
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
238
    address = (address + 1) & (MAX_IOPORTS - 1);
239
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
240
}
241

    
242
uint32_t default_ioport_readl(void *opaque, uint32_t address)
243
{
244
#ifdef DEBUG_UNUSED_IOPORT
245
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
246
#endif
247
    return 0xffffffff;
248
}
249

    
250
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
251
{
252
#ifdef DEBUG_UNUSED_IOPORT
253
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
254
#endif
255
}
256

    
257
void init_ioports(void)
258
{
259
    int i;
260

    
261
    for(i = 0; i < MAX_IOPORTS; i++) {
262
        ioport_read_table[0][i] = default_ioport_readb;
263
        ioport_write_table[0][i] = default_ioport_writeb;
264
        ioport_read_table[1][i] = default_ioport_readw;
265
        ioport_write_table[1][i] = default_ioport_writew;
266
        ioport_read_table[2][i] = default_ioport_readl;
267
        ioport_write_table[2][i] = default_ioport_writel;
268
    }
269
}
270

    
271
/* size is the word size in byte */
272
int register_ioport_read(int start, int length, int size, 
273
                         IOPortReadFunc *func, void *opaque)
274
{
275
    int i, bsize;
276

    
277
    if (size == 1) {
278
        bsize = 0;
279
    } else if (size == 2) {
280
        bsize = 1;
281
    } else if (size == 4) {
282
        bsize = 2;
283
    } else {
284
        hw_error("register_ioport_read: invalid size");
285
        return -1;
286
    }
287
    for(i = start; i < start + length; i += size) {
288
        ioport_read_table[bsize][i] = func;
289
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
290
            hw_error("register_ioport_read: invalid opaque");
291
        ioport_opaque[i] = opaque;
292
    }
293
    return 0;
294
}
295

    
296
/* size is the word size in byte */
297
int register_ioport_write(int start, int length, int size, 
298
                          IOPortWriteFunc *func, void *opaque)
299
{
300
    int i, bsize;
301

    
302
    if (size == 1) {
303
        bsize = 0;
304
    } else if (size == 2) {
305
        bsize = 1;
306
    } else if (size == 4) {
307
        bsize = 2;
308
    } else {
309
        hw_error("register_ioport_write: invalid size");
310
        return -1;
311
    }
312
    for(i = start; i < start + length; i += size) {
313
        ioport_write_table[bsize][i] = func;
314
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
315
            hw_error("register_ioport_write: invalid opaque");
316
        ioport_opaque[i] = opaque;
317
    }
318
    return 0;
319
}
320

    
321
void isa_unassign_ioport(int start, int length)
322
{
323
    int i;
324

    
325
    for(i = start; i < start + length; i++) {
326
        ioport_read_table[0][i] = default_ioport_readb;
327
        ioport_read_table[1][i] = default_ioport_readw;
328
        ioport_read_table[2][i] = default_ioport_readl;
329

    
330
        ioport_write_table[0][i] = default_ioport_writeb;
331
        ioport_write_table[1][i] = default_ioport_writew;
332
        ioport_write_table[2][i] = default_ioport_writel;
333
    }
334
}
335

    
336
/***********************************************************/
337

    
338
void cpu_outb(CPUState *env, int addr, int val)
339
{
340
#ifdef DEBUG_IOPORT
341
    if (loglevel & CPU_LOG_IOPORT)
342
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
343
#endif    
344
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
345
#ifdef USE_KQEMU
346
    if (env)
347
        env->last_io_time = cpu_get_time_fast();
348
#endif
349
}
350

    
351
void cpu_outw(CPUState *env, int addr, int val)
352
{
353
#ifdef DEBUG_IOPORT
354
    if (loglevel & CPU_LOG_IOPORT)
355
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
356
#endif    
357
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
358
#ifdef USE_KQEMU
359
    if (env)
360
        env->last_io_time = cpu_get_time_fast();
361
#endif
362
}
363

    
364
void cpu_outl(CPUState *env, int addr, int val)
365
{
366
#ifdef DEBUG_IOPORT
367
    if (loglevel & CPU_LOG_IOPORT)
368
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
369
#endif
370
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
371
#ifdef USE_KQEMU
372
    if (env)
373
        env->last_io_time = cpu_get_time_fast();
374
#endif
375
}
376

    
377
int cpu_inb(CPUState *env, int addr)
378
{
379
    int val;
380
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
381
#ifdef DEBUG_IOPORT
382
    if (loglevel & CPU_LOG_IOPORT)
383
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
384
#endif
385
#ifdef USE_KQEMU
386
    if (env)
387
        env->last_io_time = cpu_get_time_fast();
388
#endif
389
    return val;
390
}
391

    
392
int cpu_inw(CPUState *env, int addr)
393
{
394
    int val;
395
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
396
#ifdef DEBUG_IOPORT
397
    if (loglevel & CPU_LOG_IOPORT)
398
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
399
#endif
400
#ifdef USE_KQEMU
401
    if (env)
402
        env->last_io_time = cpu_get_time_fast();
403
#endif
404
    return val;
405
}
406

    
407
int cpu_inl(CPUState *env, int addr)
408
{
409
    int val;
410
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
411
#ifdef DEBUG_IOPORT
412
    if (loglevel & CPU_LOG_IOPORT)
413
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
414
#endif
415
#ifdef USE_KQEMU
416
    if (env)
417
        env->last_io_time = cpu_get_time_fast();
418
#endif
419
    return val;
420
}
421

    
422
/***********************************************************/
423
void hw_error(const char *fmt, ...)
424
{
425
    va_list ap;
426
    CPUState *env;
427

    
428
    va_start(ap, fmt);
429
    fprintf(stderr, "qemu: hardware error: ");
430
    vfprintf(stderr, fmt, ap);
431
    fprintf(stderr, "\n");
432
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
433
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
434
#ifdef TARGET_I386
435
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
436
#else
437
        cpu_dump_state(env, stderr, fprintf, 0);
438
#endif
439
    }
440
    va_end(ap);
441
    abort();
442
}
443

    
444
/***********************************************************/
445
/* keyboard/mouse */
446

    
447
static QEMUPutKBDEvent *qemu_put_kbd_event;
448
static void *qemu_put_kbd_event_opaque;
449
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
450
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
451

    
452
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
453
{
454
    qemu_put_kbd_event_opaque = opaque;
455
    qemu_put_kbd_event = func;
456
}
457

    
458
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
459
                                                void *opaque, int absolute,
460
                                                const char *name)
461
{
462
    QEMUPutMouseEntry *s, *cursor;
463

    
464
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
465
    if (!s)
466
        return NULL;
467

    
468
    s->qemu_put_mouse_event = func;
469
    s->qemu_put_mouse_event_opaque = opaque;
470
    s->qemu_put_mouse_event_absolute = absolute;
471
    s->qemu_put_mouse_event_name = qemu_strdup(name);
472
    s->next = NULL;
473

    
474
    if (!qemu_put_mouse_event_head) {
475
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
476
        return s;
477
    }
478

    
479
    cursor = qemu_put_mouse_event_head;
480
    while (cursor->next != NULL)
481
        cursor = cursor->next;
482

    
483
    cursor->next = s;
484
    qemu_put_mouse_event_current = s;
485

    
486
    return s;
487
}
488

    
489
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
490
{
491
    QEMUPutMouseEntry *prev = NULL, *cursor;
492

    
493
    if (!qemu_put_mouse_event_head || entry == NULL)
494
        return;
495

    
496
    cursor = qemu_put_mouse_event_head;
497
    while (cursor != NULL && cursor != entry) {
498
        prev = cursor;
499
        cursor = cursor->next;
500
    }
501

    
502
    if (cursor == NULL) // does not exist or list empty
503
        return;
504
    else if (prev == NULL) { // entry is head
505
        qemu_put_mouse_event_head = cursor->next;
506
        if (qemu_put_mouse_event_current == entry)
507
            qemu_put_mouse_event_current = cursor->next;
508
        qemu_free(entry->qemu_put_mouse_event_name);
509
        qemu_free(entry);
510
        return;
511
    }
512

    
513
    prev->next = entry->next;
514

    
515
    if (qemu_put_mouse_event_current == entry)
516
        qemu_put_mouse_event_current = prev;
517

    
518
    qemu_free(entry->qemu_put_mouse_event_name);
519
    qemu_free(entry);
520
}
521

    
522
void kbd_put_keycode(int keycode)
523
{
524
    if (qemu_put_kbd_event) {
525
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
526
    }
527
}
528

    
529
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
530
{
531
    QEMUPutMouseEvent *mouse_event;
532
    void *mouse_event_opaque;
533
    int width;
534

    
535
    if (!qemu_put_mouse_event_current) {
536
        return;
537
    }
538

    
539
    mouse_event =
540
        qemu_put_mouse_event_current->qemu_put_mouse_event;
541
    mouse_event_opaque =
542
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
543

    
544
    if (mouse_event) {
545
        if (graphic_rotate) {
546
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
547
                width = 0x7fff;
548
            else
549
                width = graphic_width;
550
            mouse_event(mouse_event_opaque,
551
                                 width - dy, dx, dz, buttons_state);
552
        } else
553
            mouse_event(mouse_event_opaque,
554
                                 dx, dy, dz, buttons_state);
555
    }
556
}
557

    
558
int kbd_mouse_is_absolute(void)
559
{
560
    if (!qemu_put_mouse_event_current)
561
        return 0;
562

    
563
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
564
}
565

    
566
void do_info_mice(void)
567
{
568
    QEMUPutMouseEntry *cursor;
569
    int index = 0;
570

    
571
    if (!qemu_put_mouse_event_head) {
572
        term_printf("No mouse devices connected\n");
573
        return;
574
    }
575

    
576
    term_printf("Mouse devices available:\n");
577
    cursor = qemu_put_mouse_event_head;
578
    while (cursor != NULL) {
579
        term_printf("%c Mouse #%d: %s\n",
580
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
581
                    index, cursor->qemu_put_mouse_event_name);
582
        index++;
583
        cursor = cursor->next;
584
    }
585
}
586

    
587
void do_mouse_set(int index)
588
{
589
    QEMUPutMouseEntry *cursor;
590
    int i = 0;
591

    
592
    if (!qemu_put_mouse_event_head) {
593
        term_printf("No mouse devices connected\n");
594
        return;
595
    }
596

    
597
    cursor = qemu_put_mouse_event_head;
598
    while (cursor != NULL && index != i) {
599
        i++;
600
        cursor = cursor->next;
601
    }
602

    
603
    if (cursor != NULL)
604
        qemu_put_mouse_event_current = cursor;
605
    else
606
        term_printf("Mouse at given index not found\n");
607
}
608

    
609
/* compute with 96 bit intermediate result: (a*b)/c */
610
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
611
{
612
    union {
613
        uint64_t ll;
614
        struct {
615
#ifdef WORDS_BIGENDIAN
616
            uint32_t high, low;
617
#else
618
            uint32_t low, high;
619
#endif            
620
        } l;
621
    } u, res;
622
    uint64_t rl, rh;
623

    
624
    u.ll = a;
625
    rl = (uint64_t)u.l.low * (uint64_t)b;
626
    rh = (uint64_t)u.l.high * (uint64_t)b;
627
    rh += (rl >> 32);
628
    res.l.high = rh / c;
629
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
630
    return res.ll;
631
}
632

    
633
/***********************************************************/
634
/* real time host monotonic timer */
635

    
636
#define QEMU_TIMER_BASE 1000000000LL
637

    
638
#ifdef WIN32
639

    
640
static int64_t clock_freq;
641

    
642
static void init_get_clock(void)
643
{
644
    LARGE_INTEGER freq;
645
    int ret;
646
    ret = QueryPerformanceFrequency(&freq);
647
    if (ret == 0) {
648
        fprintf(stderr, "Could not calibrate ticks\n");
649
        exit(1);
650
    }
651
    clock_freq = freq.QuadPart;
652
}
653

    
654
static int64_t get_clock(void)
655
{
656
    LARGE_INTEGER ti;
657
    QueryPerformanceCounter(&ti);
658
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
659
}
660

    
661
#else
662

    
663
static int use_rt_clock;
664

    
665
static void init_get_clock(void)
666
{
667
    use_rt_clock = 0;
668
#if defined(__linux__)
669
    {
670
        struct timespec ts;
671
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
672
            use_rt_clock = 1;
673
        }
674
    }
675
#endif
676
}
677

    
678
static int64_t get_clock(void)
679
{
680
#if defined(__linux__)
681
    if (use_rt_clock) {
682
        struct timespec ts;
683
        clock_gettime(CLOCK_MONOTONIC, &ts);
684
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
685
    } else 
686
#endif
687
    {
688
        /* XXX: using gettimeofday leads to problems if the date
689
           changes, so it should be avoided. */
690
        struct timeval tv;
691
        gettimeofday(&tv, NULL);
692
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
693
    }
694
}
695

    
696
#endif
697

    
698
/***********************************************************/
699
/* guest cycle counter */
700

    
701
static int64_t cpu_ticks_prev;
702
static int64_t cpu_ticks_offset;
703
static int64_t cpu_clock_offset;
704
static int cpu_ticks_enabled;
705

    
706
/* return the host CPU cycle counter and handle stop/restart */
707
int64_t cpu_get_ticks(void)
708
{
709
    if (!cpu_ticks_enabled) {
710
        return cpu_ticks_offset;
711
    } else {
712
        int64_t ticks;
713
        ticks = cpu_get_real_ticks();
714
        if (cpu_ticks_prev > ticks) {
715
            /* Note: non increasing ticks may happen if the host uses
716
               software suspend */
717
            cpu_ticks_offset += cpu_ticks_prev - ticks;
718
        }
719
        cpu_ticks_prev = ticks;
720
        return ticks + cpu_ticks_offset;
721
    }
722
}
723

    
724
/* return the host CPU monotonic timer and handle stop/restart */
725
static int64_t cpu_get_clock(void)
726
{
727
    int64_t ti;
728
    if (!cpu_ticks_enabled) {
729
        return cpu_clock_offset;
730
    } else {
731
        ti = get_clock();
732
        return ti + cpu_clock_offset;
733
    }
734
}
735

    
736
/* enable cpu_get_ticks() */
737
void cpu_enable_ticks(void)
738
{
739
    if (!cpu_ticks_enabled) {
740
        cpu_ticks_offset -= cpu_get_real_ticks();
741
        cpu_clock_offset -= get_clock();
742
        cpu_ticks_enabled = 1;
743
    }
744
}
745

    
746
/* disable cpu_get_ticks() : the clock is stopped. You must not call
747
   cpu_get_ticks() after that.  */
748
void cpu_disable_ticks(void)
749
{
750
    if (cpu_ticks_enabled) {
751
        cpu_ticks_offset = cpu_get_ticks();
752
        cpu_clock_offset = cpu_get_clock();
753
        cpu_ticks_enabled = 0;
754
    }
755
}
756

    
757
/***********************************************************/
758
/* timers */
759
 
760
#define QEMU_TIMER_REALTIME 0
761
#define QEMU_TIMER_VIRTUAL  1
762

    
763
struct QEMUClock {
764
    int type;
765
    /* XXX: add frequency */
766
};
767

    
768
struct QEMUTimer {
769
    QEMUClock *clock;
770
    int64_t expire_time;
771
    QEMUTimerCB *cb;
772
    void *opaque;
773
    struct QEMUTimer *next;
774
};
775

    
776
QEMUClock *rt_clock;
777
QEMUClock *vm_clock;
778

    
779
static QEMUTimer *active_timers[2];
780
#ifdef _WIN32
781
static MMRESULT timerID;
782
static HANDLE host_alarm = NULL;
783
static unsigned int period = 1;
784
#else
785
/* frequency of the times() clock tick */
786
static int timer_freq;
787
#endif
788

    
789
QEMUClock *qemu_new_clock(int type)
790
{
791
    QEMUClock *clock;
792
    clock = qemu_mallocz(sizeof(QEMUClock));
793
    if (!clock)
794
        return NULL;
795
    clock->type = type;
796
    return clock;
797
}
798

    
799
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
800
{
801
    QEMUTimer *ts;
802

    
803
    ts = qemu_mallocz(sizeof(QEMUTimer));
804
    ts->clock = clock;
805
    ts->cb = cb;
806
    ts->opaque = opaque;
807
    return ts;
808
}
809

    
810
void qemu_free_timer(QEMUTimer *ts)
811
{
812
    qemu_free(ts);
813
}
814

    
815
/* stop a timer, but do not dealloc it */
816
void qemu_del_timer(QEMUTimer *ts)
817
{
818
    QEMUTimer **pt, *t;
819

    
820
    /* NOTE: this code must be signal safe because
821
       qemu_timer_expired() can be called from a signal. */
822
    pt = &active_timers[ts->clock->type];
823
    for(;;) {
824
        t = *pt;
825
        if (!t)
826
            break;
827
        if (t == ts) {
828
            *pt = t->next;
829
            break;
830
        }
831
        pt = &t->next;
832
    }
833
}
834

    
835
/* modify the current timer so that it will be fired when current_time
836
   >= expire_time. The corresponding callback will be called. */
837
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
838
{
839
    QEMUTimer **pt, *t;
840

    
841
    qemu_del_timer(ts);
842

    
843
    /* add the timer in the sorted list */
844
    /* NOTE: this code must be signal safe because
845
       qemu_timer_expired() can be called from a signal. */
846
    pt = &active_timers[ts->clock->type];
847
    for(;;) {
848
        t = *pt;
849
        if (!t)
850
            break;
851
        if (t->expire_time > expire_time) 
852
            break;
853
        pt = &t->next;
854
    }
855
    ts->expire_time = expire_time;
856
    ts->next = *pt;
857
    *pt = ts;
858
}
859

    
860
int qemu_timer_pending(QEMUTimer *ts)
861
{
862
    QEMUTimer *t;
863
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
864
        if (t == ts)
865
            return 1;
866
    }
867
    return 0;
868
}
869

    
870
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
871
{
872
    if (!timer_head)
873
        return 0;
874
    return (timer_head->expire_time <= current_time);
875
}
876

    
877
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
878
{
879
    QEMUTimer *ts;
880
    
881
    for(;;) {
882
        ts = *ptimer_head;
883
        if (!ts || ts->expire_time > current_time)
884
            break;
885
        /* remove timer from the list before calling the callback */
886
        *ptimer_head = ts->next;
887
        ts->next = NULL;
888
        
889
        /* run the callback (the timer list can be modified) */
890
        ts->cb(ts->opaque);
891
    }
892
}
893

    
894
int64_t qemu_get_clock(QEMUClock *clock)
895
{
896
    switch(clock->type) {
897
    case QEMU_TIMER_REALTIME:
898
        return get_clock() / 1000000;
899
    default:
900
    case QEMU_TIMER_VIRTUAL:
901
        return cpu_get_clock();
902
    }
903
}
904

    
905
static void init_timers(void)
906
{
907
    init_get_clock();
908
    ticks_per_sec = QEMU_TIMER_BASE;
909
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
910
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
911
}
912

    
913
/* save a timer */
914
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
915
{
916
    uint64_t expire_time;
917

    
918
    if (qemu_timer_pending(ts)) {
919
        expire_time = ts->expire_time;
920
    } else {
921
        expire_time = -1;
922
    }
923
    qemu_put_be64(f, expire_time);
924
}
925

    
926
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
927
{
928
    uint64_t expire_time;
929

    
930
    expire_time = qemu_get_be64(f);
931
    if (expire_time != -1) {
932
        qemu_mod_timer(ts, expire_time);
933
    } else {
934
        qemu_del_timer(ts);
935
    }
936
}
937

    
938
static void timer_save(QEMUFile *f, void *opaque)
939
{
940
    if (cpu_ticks_enabled) {
941
        hw_error("cannot save state if virtual timers are running");
942
    }
943
    qemu_put_be64s(f, &cpu_ticks_offset);
944
    qemu_put_be64s(f, &ticks_per_sec);
945
    qemu_put_be64s(f, &cpu_clock_offset);
946
}
947

    
948
static int timer_load(QEMUFile *f, void *opaque, int version_id)
949
{
950
    if (version_id != 1 && version_id != 2)
951
        return -EINVAL;
952
    if (cpu_ticks_enabled) {
953
        return -EINVAL;
954
    }
955
    qemu_get_be64s(f, &cpu_ticks_offset);
956
    qemu_get_be64s(f, &ticks_per_sec);
957
    if (version_id == 2) {
958
        qemu_get_be64s(f, &cpu_clock_offset);
959
    }
960
    return 0;
961
}
962

    
963
#ifdef _WIN32
964
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
965
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
966
#else
967
static void host_alarm_handler(int host_signum)
968
#endif
969
{
970
#if 0
971
#define DISP_FREQ 1000
972
    {
973
        static int64_t delta_min = INT64_MAX;
974
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
975
        static int count;
976
        ti = qemu_get_clock(vm_clock);
977
        if (last_clock != 0) {
978
            delta = ti - last_clock;
979
            if (delta < delta_min)
980
                delta_min = delta;
981
            if (delta > delta_max)
982
                delta_max = delta;
983
            delta_cum += delta;
984
            if (++count == DISP_FREQ) {
985
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
986
                       muldiv64(delta_min, 1000000, ticks_per_sec),
987
                       muldiv64(delta_max, 1000000, ticks_per_sec),
988
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
989
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
990
                count = 0;
991
                delta_min = INT64_MAX;
992
                delta_max = 0;
993
                delta_cum = 0;
994
            }
995
        }
996
        last_clock = ti;
997
    }
998
#endif
999
    if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1000
                           qemu_get_clock(vm_clock)) ||
1001
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1002
                           qemu_get_clock(rt_clock))) {
1003
#ifdef _WIN32
1004
        SetEvent(host_alarm);
1005
#endif
1006
        CPUState *env = cpu_single_env;
1007
        if (env) {
1008
            /* stop the currently executing cpu because a timer occured */
1009
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1010
#ifdef USE_KQEMU
1011
            if (env->kqemu_enabled) {
1012
                kqemu_cpu_interrupt(env);
1013
            }
1014
#endif
1015
        }
1016
    }
1017
}
1018

    
1019
#ifndef _WIN32
1020

    
1021
#if defined(__linux__)
1022

    
1023
#define RTC_FREQ 1024
1024

    
1025
static int rtc_fd;
1026

    
1027
static int start_rtc_timer(void)
1028
{
1029
    rtc_fd = open("/dev/rtc", O_RDONLY);
1030
    if (rtc_fd < 0)
1031
        return -1;
1032
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1033
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1034
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1035
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1036
        goto fail;
1037
    }
1038
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1039
    fail:
1040
        close(rtc_fd);
1041
        return -1;
1042
    }
1043
    pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1044
    return 0;
1045
}
1046

    
1047
#else
1048

    
1049
static int start_rtc_timer(void)
1050
{
1051
    return -1;
1052
}
1053

    
1054
#endif /* !defined(__linux__) */
1055

    
1056
#endif /* !defined(_WIN32) */
1057

    
1058
static void init_timer_alarm(void)
1059
{
1060
#ifdef _WIN32
1061
    {
1062
        int count=0;
1063
        TIMECAPS tc;
1064

    
1065
        ZeroMemory(&tc, sizeof(TIMECAPS));
1066
        timeGetDevCaps(&tc, sizeof(TIMECAPS));
1067
        if (period < tc.wPeriodMin)
1068
            period = tc.wPeriodMin;
1069
        timeBeginPeriod(period);
1070
        timerID = timeSetEvent(1,     // interval (ms)
1071
                               period,     // resolution
1072
                               host_alarm_handler, // function
1073
                               (DWORD)&count,  // user parameter
1074
                               TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1075
         if( !timerID ) {
1076
            perror("failed timer alarm");
1077
            exit(1);
1078
         }
1079
        host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1080
        if (!host_alarm) {
1081
            perror("failed CreateEvent");
1082
            exit(1);
1083
        }
1084
        qemu_add_wait_object(host_alarm, NULL, NULL);
1085
    }
1086
    pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1087
#else
1088
    {
1089
        struct sigaction act;
1090
        struct itimerval itv;
1091
        
1092
        /* get times() syscall frequency */
1093
        timer_freq = sysconf(_SC_CLK_TCK);
1094
        
1095
        /* timer signal */
1096
        sigfillset(&act.sa_mask);
1097
       act.sa_flags = 0;
1098
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1099
        act.sa_flags |= SA_ONSTACK;
1100
#endif
1101
        act.sa_handler = host_alarm_handler;
1102
        sigaction(SIGALRM, &act, NULL);
1103

    
1104
        itv.it_interval.tv_sec = 0;
1105
        itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1106
        itv.it_value.tv_sec = 0;
1107
        itv.it_value.tv_usec = 10 * 1000;
1108
        setitimer(ITIMER_REAL, &itv, NULL);
1109
        /* we probe the tick duration of the kernel to inform the user if
1110
           the emulated kernel requested a too high timer frequency */
1111
        getitimer(ITIMER_REAL, &itv);
1112

    
1113
#if defined(__linux__)
1114
        /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1115
           have timers with 1 ms resolution. The correct solution will
1116
           be to use the POSIX real time timers available in recent
1117
           2.6 kernels */
1118
        if (itv.it_interval.tv_usec > 1000 || 1) {
1119
            /* try to use /dev/rtc to have a faster timer */
1120
            if (start_rtc_timer() < 0)
1121
                goto use_itimer;
1122
            /* disable itimer */
1123
            itv.it_interval.tv_sec = 0;
1124
            itv.it_interval.tv_usec = 0;
1125
            itv.it_value.tv_sec = 0;
1126
            itv.it_value.tv_usec = 0;
1127
            setitimer(ITIMER_REAL, &itv, NULL);
1128

    
1129
            /* use the RTC */
1130
            sigaction(SIGIO, &act, NULL);
1131
            fcntl(rtc_fd, F_SETFL, O_ASYNC);
1132
            fcntl(rtc_fd, F_SETOWN, getpid());
1133
        } else 
1134
#endif /* defined(__linux__) */
1135
        {
1136
        use_itimer:
1137
            pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * 
1138
                                   PIT_FREQ) / 1000000;
1139
        }
1140
    }
1141
#endif
1142
}
1143

    
1144
void quit_timers(void)
1145
{
1146
#ifdef _WIN32
1147
    timeKillEvent(timerID);
1148
    timeEndPeriod(period);
1149
    if (host_alarm) {
1150
        CloseHandle(host_alarm);
1151
        host_alarm = NULL;
1152
    }
1153
#endif
1154
}
1155

    
1156
/***********************************************************/
1157
/* character device */
1158

    
1159
static void qemu_chr_event(CharDriverState *s, int event)
1160
{
1161
    if (!s->chr_event)
1162
        return;
1163
    s->chr_event(s->handler_opaque, event);
1164
}
1165

    
1166
static void qemu_chr_reset_bh(void *opaque)
1167
{
1168
    CharDriverState *s = opaque;
1169
    qemu_chr_event(s, CHR_EVENT_RESET);
1170
    qemu_bh_delete(s->bh);
1171
    s->bh = NULL;
1172
}
1173

    
1174
void qemu_chr_reset(CharDriverState *s)
1175
{
1176
    if (s->bh == NULL) {
1177
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1178
        qemu_bh_schedule(s->bh);
1179
    }
1180
}
1181

    
1182
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1183
{
1184
    return s->chr_write(s, buf, len);
1185
}
1186

    
1187
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1188
{
1189
    if (!s->chr_ioctl)
1190
        return -ENOTSUP;
1191
    return s->chr_ioctl(s, cmd, arg);
1192
}
1193

    
1194
int qemu_chr_can_read(CharDriverState *s)
1195
{
1196
    if (!s->chr_can_read)
1197
        return 0;
1198
    return s->chr_can_read(s->handler_opaque);
1199
}
1200

    
1201
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1202
{
1203
    s->chr_read(s->handler_opaque, buf, len);
1204
}
1205

    
1206

    
1207
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1208
{
1209
    char buf[4096];
1210
    va_list ap;
1211
    va_start(ap, fmt);
1212
    vsnprintf(buf, sizeof(buf), fmt, ap);
1213
    qemu_chr_write(s, buf, strlen(buf));
1214
    va_end(ap);
1215
}
1216

    
1217
void qemu_chr_send_event(CharDriverState *s, int event)
1218
{
1219
    if (s->chr_send_event)
1220
        s->chr_send_event(s, event);
1221
}
1222

    
1223
void qemu_chr_add_handlers(CharDriverState *s, 
1224
                           IOCanRWHandler *fd_can_read, 
1225
                           IOReadHandler *fd_read,
1226
                           IOEventHandler *fd_event,
1227
                           void *opaque)
1228
{
1229
    s->chr_can_read = fd_can_read;
1230
    s->chr_read = fd_read;
1231
    s->chr_event = fd_event;
1232
    s->handler_opaque = opaque;
1233
    if (s->chr_update_read_handler)
1234
        s->chr_update_read_handler(s);
1235
}
1236
             
1237
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1238
{
1239
    return len;
1240
}
1241

    
1242
static CharDriverState *qemu_chr_open_null(void)
1243
{
1244
    CharDriverState *chr;
1245

    
1246
    chr = qemu_mallocz(sizeof(CharDriverState));
1247
    if (!chr)
1248
        return NULL;
1249
    chr->chr_write = null_chr_write;
1250
    return chr;
1251
}
1252

    
1253
/* MUX driver for serial I/O splitting */
1254
static int term_timestamps;
1255
static int64_t term_timestamps_start;
1256
#define MAX_MUX 4
1257
typedef struct {
1258
    IOCanRWHandler *chr_can_read[MAX_MUX];
1259
    IOReadHandler *chr_read[MAX_MUX];
1260
    IOEventHandler *chr_event[MAX_MUX];
1261
    void *ext_opaque[MAX_MUX];
1262
    CharDriverState *drv;
1263
    int mux_cnt;
1264
    int term_got_escape;
1265
    int max_size;
1266
} MuxDriver;
1267

    
1268

    
1269
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1270
{
1271
    MuxDriver *d = chr->opaque;
1272
    int ret;
1273
    if (!term_timestamps) {
1274
        ret = d->drv->chr_write(d->drv, buf, len);
1275
    } else {
1276
        int i;
1277

    
1278
        ret = 0;
1279
        for(i = 0; i < len; i++) {
1280
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1281
            if (buf[i] == '\n') {
1282
                char buf1[64];
1283
                int64_t ti;
1284
                int secs;
1285

    
1286
                ti = get_clock();
1287
                if (term_timestamps_start == -1)
1288
                    term_timestamps_start = ti;
1289
                ti -= term_timestamps_start;
1290
                secs = ti / 1000000000;
1291
                snprintf(buf1, sizeof(buf1),
1292
                         "[%02d:%02d:%02d.%03d] ",
1293
                         secs / 3600,
1294
                         (secs / 60) % 60,
1295
                         secs % 60,
1296
                         (int)((ti / 1000000) % 1000));
1297
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1298
            }
1299
        }
1300
    }
1301
    return ret;
1302
}
1303

    
1304
static char *mux_help[] = {
1305
    "% h    print this help\n\r",
1306
    "% x    exit emulator\n\r",
1307
    "% s    save disk data back to file (if -snapshot)\n\r",
1308
    "% t    toggle console timestamps\n\r"
1309
    "% b    send break (magic sysrq)\n\r",
1310
    "% c    switch between console and monitor\n\r",
1311
    "% %  sends %\n\r",
1312
    NULL
1313
};
1314

    
1315
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1316
static void mux_print_help(CharDriverState *chr)
1317
{
1318
    int i, j;
1319
    char ebuf[15] = "Escape-Char";
1320
    char cbuf[50] = "\n\r";
1321

    
1322
    if (term_escape_char > 0 && term_escape_char < 26) {
1323
        sprintf(cbuf,"\n\r");
1324
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1325
    } else {
1326
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1327
    }
1328
    chr->chr_write(chr, cbuf, strlen(cbuf));
1329
    for (i = 0; mux_help[i] != NULL; i++) {
1330
        for (j=0; mux_help[i][j] != '\0'; j++) {
1331
            if (mux_help[i][j] == '%')
1332
                chr->chr_write(chr, ebuf, strlen(ebuf));
1333
            else
1334
                chr->chr_write(chr, &mux_help[i][j], 1);
1335
        }
1336
    }
1337
}
1338

    
1339
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1340
{
1341
    if (d->term_got_escape) {
1342
        d->term_got_escape = 0;
1343
        if (ch == term_escape_char)
1344
            goto send_char;
1345
        switch(ch) {
1346
        case '?':
1347
        case 'h':
1348
            mux_print_help(chr);
1349
            break;
1350
        case 'x':
1351
            {
1352
                 char *term =  "QEMU: Terminated\n\r";
1353
                 chr->chr_write(chr,term,strlen(term));
1354
                 exit(0);
1355
                 break;
1356
            }
1357
        case 's':
1358
            {
1359
                int i;
1360
                for (i = 0; i < MAX_DISKS; i++) {
1361
                    if (bs_table[i])
1362
                        bdrv_commit(bs_table[i]);
1363
                }
1364
                if (mtd_bdrv)
1365
                    bdrv_commit(mtd_bdrv);
1366
            }
1367
            break;
1368
        case 'b':
1369
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1370
            break;
1371
        case 'c':
1372
            /* Switch to the next registered device */
1373
            chr->focus++;
1374
            if (chr->focus >= d->mux_cnt)
1375
                chr->focus = 0;
1376
            break;
1377
       case 't':
1378
           term_timestamps = !term_timestamps;
1379
           term_timestamps_start = -1;
1380
           break;
1381
        }
1382
    } else if (ch == term_escape_char) {
1383
        d->term_got_escape = 1;
1384
    } else {
1385
    send_char:
1386
        return 1;
1387
    }
1388
    return 0;
1389
}
1390

    
1391
static int mux_chr_can_read(void *opaque)
1392
{
1393
    CharDriverState *chr = opaque;
1394
    MuxDriver *d = chr->opaque;
1395
    if (d->chr_can_read[chr->focus])
1396
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1397
    return 0;
1398
}
1399

    
1400
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1401
{
1402
    CharDriverState *chr = opaque;
1403
    MuxDriver *d = chr->opaque;
1404
    int i;
1405
    for(i = 0; i < size; i++)
1406
        if (mux_proc_byte(chr, d, buf[i]))
1407
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1408
}
1409

    
1410
static void mux_chr_event(void *opaque, int event)
1411
{
1412
    CharDriverState *chr = opaque;
1413
    MuxDriver *d = chr->opaque;
1414
    int i;
1415

    
1416
    /* Send the event to all registered listeners */
1417
    for (i = 0; i < d->mux_cnt; i++)
1418
        if (d->chr_event[i])
1419
            d->chr_event[i](d->ext_opaque[i], event);
1420
}
1421

    
1422
static void mux_chr_update_read_handler(CharDriverState *chr)
1423
{
1424
    MuxDriver *d = chr->opaque;
1425

    
1426
    if (d->mux_cnt >= MAX_MUX) {
1427
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1428
        return;
1429
    }
1430
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1431
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1432
    d->chr_read[d->mux_cnt] = chr->chr_read;
1433
    d->chr_event[d->mux_cnt] = chr->chr_event;
1434
    /* Fix up the real driver with mux routines */
1435
    if (d->mux_cnt == 0) {
1436
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1437
                              mux_chr_event, chr);
1438
    }
1439
    chr->focus = d->mux_cnt;
1440
    d->mux_cnt++;
1441
}
1442

    
1443
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1444
{
1445
    CharDriverState *chr;
1446
    MuxDriver *d;
1447

    
1448
    chr = qemu_mallocz(sizeof(CharDriverState));
1449
    if (!chr)
1450
        return NULL;
1451
    d = qemu_mallocz(sizeof(MuxDriver));
1452
    if (!d) {
1453
        free(chr);
1454
        return NULL;
1455
    }
1456

    
1457
    chr->opaque = d;
1458
    d->drv = drv;
1459
    chr->focus = -1;
1460
    chr->chr_write = mux_chr_write;
1461
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1462
    return chr;
1463
}
1464

    
1465

    
1466
#ifdef _WIN32
1467

    
1468
static void socket_cleanup(void)
1469
{
1470
    WSACleanup();
1471
}
1472

    
1473
static int socket_init(void)
1474
{
1475
    WSADATA Data;
1476
    int ret, err;
1477

    
1478
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1479
    if (ret != 0) {
1480
        err = WSAGetLastError();
1481
        fprintf(stderr, "WSAStartup: %d\n", err);
1482
        return -1;
1483
    }
1484
    atexit(socket_cleanup);
1485
    return 0;
1486
}
1487

    
1488
static int send_all(int fd, const uint8_t *buf, int len1)
1489
{
1490
    int ret, len;
1491
    
1492
    len = len1;
1493
    while (len > 0) {
1494
        ret = send(fd, buf, len, 0);
1495
        if (ret < 0) {
1496
            int errno;
1497
            errno = WSAGetLastError();
1498
            if (errno != WSAEWOULDBLOCK) {
1499
                return -1;
1500
            }
1501
        } else if (ret == 0) {
1502
            break;
1503
        } else {
1504
            buf += ret;
1505
            len -= ret;
1506
        }
1507
    }
1508
    return len1 - len;
1509
}
1510

    
1511
void socket_set_nonblock(int fd)
1512
{
1513
    unsigned long opt = 1;
1514
    ioctlsocket(fd, FIONBIO, &opt);
1515
}
1516

    
1517
#else
1518

    
1519
static int unix_write(int fd, const uint8_t *buf, int len1)
1520
{
1521
    int ret, len;
1522

    
1523
    len = len1;
1524
    while (len > 0) {
1525
        ret = write(fd, buf, len);
1526
        if (ret < 0) {
1527
            if (errno != EINTR && errno != EAGAIN)
1528
                return -1;
1529
        } else if (ret == 0) {
1530
            break;
1531
        } else {
1532
            buf += ret;
1533
            len -= ret;
1534
        }
1535
    }
1536
    return len1 - len;
1537
}
1538

    
1539
static inline int send_all(int fd, const uint8_t *buf, int len1)
1540
{
1541
    return unix_write(fd, buf, len1);
1542
}
1543

    
1544
void socket_set_nonblock(int fd)
1545
{
1546
    fcntl(fd, F_SETFL, O_NONBLOCK);
1547
}
1548
#endif /* !_WIN32 */
1549

    
1550
#ifndef _WIN32
1551

    
1552
typedef struct {
1553
    int fd_in, fd_out;
1554
    int max_size;
1555
} FDCharDriver;
1556

    
1557
#define STDIO_MAX_CLIENTS 1
1558
static int stdio_nb_clients = 0;
1559

    
1560
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1561
{
1562
    FDCharDriver *s = chr->opaque;
1563
    return unix_write(s->fd_out, buf, len);
1564
}
1565

    
1566
static int fd_chr_read_poll(void *opaque)
1567
{
1568
    CharDriverState *chr = opaque;
1569
    FDCharDriver *s = chr->opaque;
1570

    
1571
    s->max_size = qemu_chr_can_read(chr);
1572
    return s->max_size;
1573
}
1574

    
1575
static void fd_chr_read(void *opaque)
1576
{
1577
    CharDriverState *chr = opaque;
1578
    FDCharDriver *s = chr->opaque;
1579
    int size, len;
1580
    uint8_t buf[1024];
1581
    
1582
    len = sizeof(buf);
1583
    if (len > s->max_size)
1584
        len = s->max_size;
1585
    if (len == 0)
1586
        return;
1587
    size = read(s->fd_in, buf, len);
1588
    if (size == 0) {
1589
        /* FD has been closed. Remove it from the active list.  */
1590
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1591
        return;
1592
    }
1593
    if (size > 0) {
1594
        qemu_chr_read(chr, buf, size);
1595
    }
1596
}
1597

    
1598
static void fd_chr_update_read_handler(CharDriverState *chr)
1599
{
1600
    FDCharDriver *s = chr->opaque;
1601

    
1602
    if (s->fd_in >= 0) {
1603
        if (nographic && s->fd_in == 0) {
1604
        } else {
1605
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll, 
1606
                                 fd_chr_read, NULL, chr);
1607
        }
1608
    }
1609
}
1610

    
1611
/* open a character device to a unix fd */
1612
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1613
{
1614
    CharDriverState *chr;
1615
    FDCharDriver *s;
1616

    
1617
    chr = qemu_mallocz(sizeof(CharDriverState));
1618
    if (!chr)
1619
        return NULL;
1620
    s = qemu_mallocz(sizeof(FDCharDriver));
1621
    if (!s) {
1622
        free(chr);
1623
        return NULL;
1624
    }
1625
    s->fd_in = fd_in;
1626
    s->fd_out = fd_out;
1627
    chr->opaque = s;
1628
    chr->chr_write = fd_chr_write;
1629
    chr->chr_update_read_handler = fd_chr_update_read_handler;
1630

    
1631
    qemu_chr_reset(chr);
1632

    
1633
    return chr;
1634
}
1635

    
1636
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1637
{
1638
    int fd_out;
1639

    
1640
    fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1641
    if (fd_out < 0)
1642
        return NULL;
1643
    return qemu_chr_open_fd(-1, fd_out);
1644
}
1645

    
1646
static CharDriverState *qemu_chr_open_pipe(const char *filename)
1647
{
1648
    int fd_in, fd_out;
1649
    char filename_in[256], filename_out[256];
1650

    
1651
    snprintf(filename_in, 256, "%s.in", filename);
1652
    snprintf(filename_out, 256, "%s.out", filename);
1653
    fd_in = open(filename_in, O_RDWR | O_BINARY);
1654
    fd_out = open(filename_out, O_RDWR | O_BINARY);
1655
    if (fd_in < 0 || fd_out < 0) {
1656
        if (fd_in >= 0)
1657
            close(fd_in);
1658
        if (fd_out >= 0)
1659
            close(fd_out);
1660
        fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1661
        if (fd_in < 0)
1662
            return NULL;
1663
    }
1664
    return qemu_chr_open_fd(fd_in, fd_out);
1665
}
1666

    
1667

    
1668
/* for STDIO, we handle the case where several clients use it
1669
   (nographic mode) */
1670

    
1671
#define TERM_FIFO_MAX_SIZE 1
1672

    
1673
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1674
static int term_fifo_size;
1675

    
1676
static int stdio_read_poll(void *opaque)
1677
{
1678
    CharDriverState *chr = opaque;
1679

    
1680
    /* try to flush the queue if needed */
1681
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1682
        qemu_chr_read(chr, term_fifo, 1);
1683
        term_fifo_size = 0;
1684
    }
1685
    /* see if we can absorb more chars */
1686
    if (term_fifo_size == 0)
1687
        return 1;
1688
    else
1689
        return 0;
1690
}
1691

    
1692
static void stdio_read(void *opaque)
1693
{
1694
    int size;
1695
    uint8_t buf[1];
1696
    CharDriverState *chr = opaque;
1697

    
1698
    size = read(0, buf, 1);
1699
    if (size == 0) {
1700
        /* stdin has been closed. Remove it from the active list.  */
1701
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1702
        return;
1703
    }
1704
    if (size > 0) {
1705
        if (qemu_chr_can_read(chr) > 0) {
1706
            qemu_chr_read(chr, buf, 1);
1707
        } else if (term_fifo_size == 0) {
1708
            term_fifo[term_fifo_size++] = buf[0];
1709
        }
1710
    }
1711
}
1712

    
1713
/* init terminal so that we can grab keys */
1714
static struct termios oldtty;
1715
static int old_fd0_flags;
1716

    
1717
static void term_exit(void)
1718
{
1719
    tcsetattr (0, TCSANOW, &oldtty);
1720
    fcntl(0, F_SETFL, old_fd0_flags);
1721
}
1722

    
1723
static void term_init(void)
1724
{
1725
    struct termios tty;
1726

    
1727
    tcgetattr (0, &tty);
1728
    oldtty = tty;
1729
    old_fd0_flags = fcntl(0, F_GETFL);
1730

    
1731
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1732
                          |INLCR|IGNCR|ICRNL|IXON);
1733
    tty.c_oflag |= OPOST;
1734
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1735
    /* if graphical mode, we allow Ctrl-C handling */
1736
    if (nographic)
1737
        tty.c_lflag &= ~ISIG;
1738
    tty.c_cflag &= ~(CSIZE|PARENB);
1739
    tty.c_cflag |= CS8;
1740
    tty.c_cc[VMIN] = 1;
1741
    tty.c_cc[VTIME] = 0;
1742
    
1743
    tcsetattr (0, TCSANOW, &tty);
1744

    
1745
    atexit(term_exit);
1746

    
1747
    fcntl(0, F_SETFL, O_NONBLOCK);
1748
}
1749

    
1750
static CharDriverState *qemu_chr_open_stdio(void)
1751
{
1752
    CharDriverState *chr;
1753

    
1754
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1755
        return NULL;
1756
    chr = qemu_chr_open_fd(0, 1);
1757
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1758
    stdio_nb_clients++;
1759
    term_init();
1760

    
1761
    return chr;
1762
}
1763

    
1764
#if defined(__linux__)
1765
static CharDriverState *qemu_chr_open_pty(void)
1766
{
1767
    struct termios tty;
1768
    char slave_name[1024];
1769
    int master_fd, slave_fd;
1770
    
1771
    /* Not satisfying */
1772
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1773
        return NULL;
1774
    }
1775
    
1776
    /* Disabling local echo and line-buffered output */
1777
    tcgetattr (master_fd, &tty);
1778
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1779
    tty.c_cc[VMIN] = 1;
1780
    tty.c_cc[VTIME] = 0;
1781
    tcsetattr (master_fd, TCSAFLUSH, &tty);
1782

    
1783
    fprintf(stderr, "char device redirected to %s\n", slave_name);
1784
    return qemu_chr_open_fd(master_fd, master_fd);
1785
}
1786

    
1787
static void tty_serial_init(int fd, int speed, 
1788
                            int parity, int data_bits, int stop_bits)
1789
{
1790
    struct termios tty;
1791
    speed_t spd;
1792

    
1793
#if 0
1794
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n", 
1795
           speed, parity, data_bits, stop_bits);
1796
#endif
1797
    tcgetattr (fd, &tty);
1798

    
1799
    switch(speed) {
1800
    case 50:
1801
        spd = B50;
1802
        break;
1803
    case 75:
1804
        spd = B75;
1805
        break;
1806
    case 300:
1807
        spd = B300;
1808
        break;
1809
    case 600:
1810
        spd = B600;
1811
        break;
1812
    case 1200:
1813
        spd = B1200;
1814
        break;
1815
    case 2400:
1816
        spd = B2400;
1817
        break;
1818
    case 4800:
1819
        spd = B4800;
1820
        break;
1821
    case 9600:
1822
        spd = B9600;
1823
        break;
1824
    case 19200:
1825
        spd = B19200;
1826
        break;
1827
    case 38400:
1828
        spd = B38400;
1829
        break;
1830
    case 57600:
1831
        spd = B57600;
1832
        break;
1833
    default:
1834
    case 115200:
1835
        spd = B115200;
1836
        break;
1837
    }
1838

    
1839
    cfsetispeed(&tty, spd);
1840
    cfsetospeed(&tty, spd);
1841

    
1842
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1843
                          |INLCR|IGNCR|ICRNL|IXON);
1844
    tty.c_oflag |= OPOST;
1845
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1846
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1847
    switch(data_bits) {
1848
    default:
1849
    case 8:
1850
        tty.c_cflag |= CS8;
1851
        break;
1852
    case 7:
1853
        tty.c_cflag |= CS7;
1854
        break;
1855
    case 6:
1856
        tty.c_cflag |= CS6;
1857
        break;
1858
    case 5:
1859
        tty.c_cflag |= CS5;
1860
        break;
1861
    }
1862
    switch(parity) {
1863
    default:
1864
    case 'N':
1865
        break;
1866
    case 'E':
1867
        tty.c_cflag |= PARENB;
1868
        break;
1869
    case 'O':
1870
        tty.c_cflag |= PARENB | PARODD;
1871
        break;
1872
    }
1873
    if (stop_bits == 2)
1874
        tty.c_cflag |= CSTOPB;
1875
    
1876
    tcsetattr (fd, TCSANOW, &tty);
1877
}
1878

    
1879
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1880
{
1881
    FDCharDriver *s = chr->opaque;
1882
    
1883
    switch(cmd) {
1884
    case CHR_IOCTL_SERIAL_SET_PARAMS:
1885
        {
1886
            QEMUSerialSetParams *ssp = arg;
1887
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity, 
1888
                            ssp->data_bits, ssp->stop_bits);
1889
        }
1890
        break;
1891
    case CHR_IOCTL_SERIAL_SET_BREAK:
1892
        {
1893
            int enable = *(int *)arg;
1894
            if (enable)
1895
                tcsendbreak(s->fd_in, 1);
1896
        }
1897
        break;
1898
    default:
1899
        return -ENOTSUP;
1900
    }
1901
    return 0;
1902
}
1903

    
1904
static CharDriverState *qemu_chr_open_tty(const char *filename)
1905
{
1906
    CharDriverState *chr;
1907
    int fd;
1908

    
1909
    fd = open(filename, O_RDWR | O_NONBLOCK);
1910
    if (fd < 0)
1911
        return NULL;
1912
    fcntl(fd, F_SETFL, O_NONBLOCK);
1913
    tty_serial_init(fd, 115200, 'N', 8, 1);
1914
    chr = qemu_chr_open_fd(fd, fd);
1915
    if (!chr)
1916
        return NULL;
1917
    chr->chr_ioctl = tty_serial_ioctl;
1918
    qemu_chr_reset(chr);
1919
    return chr;
1920
}
1921

    
1922
typedef struct {
1923
    int fd;
1924
    int mode;
1925
} ParallelCharDriver;
1926

    
1927
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1928
{
1929
    if (s->mode != mode) {
1930
        int m = mode;
1931
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
1932
            return 0;
1933
        s->mode = mode;
1934
    }
1935
    return 1;
1936
}
1937

    
1938
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1939
{
1940
    ParallelCharDriver *drv = chr->opaque;
1941
    int fd = drv->fd;
1942
    uint8_t b;
1943

    
1944
    switch(cmd) {
1945
    case CHR_IOCTL_PP_READ_DATA:
1946
        if (ioctl(fd, PPRDATA, &b) < 0)
1947
            return -ENOTSUP;
1948
        *(uint8_t *)arg = b;
1949
        break;
1950
    case CHR_IOCTL_PP_WRITE_DATA:
1951
        b = *(uint8_t *)arg;
1952
        if (ioctl(fd, PPWDATA, &b) < 0)
1953
            return -ENOTSUP;
1954
        break;
1955
    case CHR_IOCTL_PP_READ_CONTROL:
1956
        if (ioctl(fd, PPRCONTROL, &b) < 0)
1957
            return -ENOTSUP;
1958
        /* Linux gives only the lowest bits, and no way to know data
1959
           direction! For better compatibility set the fixed upper
1960
           bits. */
1961
        *(uint8_t *)arg = b | 0xc0;
1962
        break;
1963
    case CHR_IOCTL_PP_WRITE_CONTROL:
1964
        b = *(uint8_t *)arg;
1965
        if (ioctl(fd, PPWCONTROL, &b) < 0)
1966
            return -ENOTSUP;
1967
        break;
1968
    case CHR_IOCTL_PP_READ_STATUS:
1969
        if (ioctl(fd, PPRSTATUS, &b) < 0)
1970
            return -ENOTSUP;
1971
        *(uint8_t *)arg = b;
1972
        break;
1973
    case CHR_IOCTL_PP_EPP_READ_ADDR:
1974
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1975
            struct ParallelIOArg *parg = arg;
1976
            int n = read(fd, parg->buffer, parg->count);
1977
            if (n != parg->count) {
1978
                return -EIO;
1979
            }
1980
        }
1981
        break;
1982
    case CHR_IOCTL_PP_EPP_READ:
1983
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1984
            struct ParallelIOArg *parg = arg;
1985
            int n = read(fd, parg->buffer, parg->count);
1986
            if (n != parg->count) {
1987
                return -EIO;
1988
            }
1989
        }
1990
        break;
1991
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1992
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1993
            struct ParallelIOArg *parg = arg;
1994
            int n = write(fd, parg->buffer, parg->count);
1995
            if (n != parg->count) {
1996
                return -EIO;
1997
            }
1998
        }
1999
        break;
2000
    case CHR_IOCTL_PP_EPP_WRITE:
2001
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2002
            struct ParallelIOArg *parg = arg;
2003
            int n = write(fd, parg->buffer, parg->count);
2004
            if (n != parg->count) {
2005
                return -EIO;
2006
            }
2007
        }
2008
        break;
2009
    default:
2010
        return -ENOTSUP;
2011
    }
2012
    return 0;
2013
}
2014

    
2015
static void pp_close(CharDriverState *chr)
2016
{
2017
    ParallelCharDriver *drv = chr->opaque;
2018
    int fd = drv->fd;
2019

    
2020
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2021
    ioctl(fd, PPRELEASE);
2022
    close(fd);
2023
    qemu_free(drv);
2024
}
2025

    
2026
static CharDriverState *qemu_chr_open_pp(const char *filename)
2027
{
2028
    CharDriverState *chr;
2029
    ParallelCharDriver *drv;
2030
    int fd;
2031

    
2032
    fd = open(filename, O_RDWR);
2033
    if (fd < 0)
2034
        return NULL;
2035

    
2036
    if (ioctl(fd, PPCLAIM) < 0) {
2037
        close(fd);
2038
        return NULL;
2039
    }
2040

    
2041
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2042
    if (!drv) {
2043
        close(fd);
2044
        return NULL;
2045
    }
2046
    drv->fd = fd;
2047
    drv->mode = IEEE1284_MODE_COMPAT;
2048

    
2049
    chr = qemu_mallocz(sizeof(CharDriverState));
2050
    if (!chr) {
2051
        qemu_free(drv);
2052
        close(fd);
2053
        return NULL;
2054
    }
2055
    chr->chr_write = null_chr_write;
2056
    chr->chr_ioctl = pp_ioctl;
2057
    chr->chr_close = pp_close;
2058
    chr->opaque = drv;
2059

    
2060
    qemu_chr_reset(chr);
2061

    
2062
    return chr;
2063
}
2064

    
2065
#else
2066
static CharDriverState *qemu_chr_open_pty(void)
2067
{
2068
    return NULL;
2069
}
2070
#endif
2071

    
2072
#endif /* !defined(_WIN32) */
2073

    
2074
#ifdef _WIN32
2075
typedef struct {
2076
    int max_size;
2077
    HANDLE hcom, hrecv, hsend;
2078
    OVERLAPPED orecv, osend;
2079
    BOOL fpipe;
2080
    DWORD len;
2081
} WinCharState;
2082

    
2083
#define NSENDBUF 2048
2084
#define NRECVBUF 2048
2085
#define MAXCONNECT 1
2086
#define NTIMEOUT 5000
2087

    
2088
static int win_chr_poll(void *opaque);
2089
static int win_chr_pipe_poll(void *opaque);
2090

    
2091
static void win_chr_close(CharDriverState *chr)
2092
{
2093
    WinCharState *s = chr->opaque;
2094

    
2095
    if (s->hsend) {
2096
        CloseHandle(s->hsend);
2097
        s->hsend = NULL;
2098
    }
2099
    if (s->hrecv) {
2100
        CloseHandle(s->hrecv);
2101
        s->hrecv = NULL;
2102
    }
2103
    if (s->hcom) {
2104
        CloseHandle(s->hcom);
2105
        s->hcom = NULL;
2106
    }
2107
    if (s->fpipe)
2108
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2109
    else
2110
        qemu_del_polling_cb(win_chr_poll, chr);
2111
}
2112

    
2113
static int win_chr_init(CharDriverState *chr, const char *filename)
2114
{
2115
    WinCharState *s = chr->opaque;
2116
    COMMCONFIG comcfg;
2117
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2118
    COMSTAT comstat;
2119
    DWORD size;
2120
    DWORD err;
2121
    
2122
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2123
    if (!s->hsend) {
2124
        fprintf(stderr, "Failed CreateEvent\n");
2125
        goto fail;
2126
    }
2127
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2128
    if (!s->hrecv) {
2129
        fprintf(stderr, "Failed CreateEvent\n");
2130
        goto fail;
2131
    }
2132

    
2133
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2134
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2135
    if (s->hcom == INVALID_HANDLE_VALUE) {
2136
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2137
        s->hcom = NULL;
2138
        goto fail;
2139
    }
2140
    
2141
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2142
        fprintf(stderr, "Failed SetupComm\n");
2143
        goto fail;
2144
    }
2145
    
2146
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2147
    size = sizeof(COMMCONFIG);
2148
    GetDefaultCommConfig(filename, &comcfg, &size);
2149
    comcfg.dcb.DCBlength = sizeof(DCB);
2150
    CommConfigDialog(filename, NULL, &comcfg);
2151

    
2152
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2153
        fprintf(stderr, "Failed SetCommState\n");
2154
        goto fail;
2155
    }
2156

    
2157
    if (!SetCommMask(s->hcom, EV_ERR)) {
2158
        fprintf(stderr, "Failed SetCommMask\n");
2159
        goto fail;
2160
    }
2161

    
2162
    cto.ReadIntervalTimeout = MAXDWORD;
2163
    if (!SetCommTimeouts(s->hcom, &cto)) {
2164
        fprintf(stderr, "Failed SetCommTimeouts\n");
2165
        goto fail;
2166
    }
2167
    
2168
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2169
        fprintf(stderr, "Failed ClearCommError\n");
2170
        goto fail;
2171
    }
2172
    qemu_add_polling_cb(win_chr_poll, chr);
2173
    return 0;
2174

    
2175
 fail:
2176
    win_chr_close(chr);
2177
    return -1;
2178
}
2179

    
2180
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2181
{
2182
    WinCharState *s = chr->opaque;
2183
    DWORD len, ret, size, err;
2184

    
2185
    len = len1;
2186
    ZeroMemory(&s->osend, sizeof(s->osend));
2187
    s->osend.hEvent = s->hsend;
2188
    while (len > 0) {
2189
        if (s->hsend)
2190
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2191
        else
2192
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2193
        if (!ret) {
2194
            err = GetLastError();
2195
            if (err == ERROR_IO_PENDING) {
2196
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2197
                if (ret) {
2198
                    buf += size;
2199
                    len -= size;
2200
                } else {
2201
                    break;
2202
                }
2203
            } else {
2204
                break;
2205
            }
2206
        } else {
2207
            buf += size;
2208
            len -= size;
2209
        }
2210
    }
2211
    return len1 - len;
2212
}
2213

    
2214
static int win_chr_read_poll(CharDriverState *chr)
2215
{
2216
    WinCharState *s = chr->opaque;
2217

    
2218
    s->max_size = qemu_chr_can_read(chr);
2219
    return s->max_size;
2220
}
2221

    
2222
static void win_chr_readfile(CharDriverState *chr)
2223
{
2224
    WinCharState *s = chr->opaque;
2225
    int ret, err;
2226
    uint8_t buf[1024];
2227
    DWORD size;
2228
    
2229
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2230
    s->orecv.hEvent = s->hrecv;
2231
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2232
    if (!ret) {
2233
        err = GetLastError();
2234
        if (err == ERROR_IO_PENDING) {
2235
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2236
        }
2237
    }
2238

    
2239
    if (size > 0) {
2240
        qemu_chr_read(chr, buf, size);
2241
    }
2242
}
2243

    
2244
static void win_chr_read(CharDriverState *chr)
2245
{
2246
    WinCharState *s = chr->opaque;
2247

    
2248
    if (s->len > s->max_size)
2249
        s->len = s->max_size;
2250
    if (s->len == 0)
2251
        return;
2252
    
2253
    win_chr_readfile(chr);
2254
}
2255

    
2256
static int win_chr_poll(void *opaque)
2257
{
2258
    CharDriverState *chr = opaque;
2259
    WinCharState *s = chr->opaque;
2260
    COMSTAT status;
2261
    DWORD comerr;
2262
    
2263
    ClearCommError(s->hcom, &comerr, &status);
2264
    if (status.cbInQue > 0) {
2265
        s->len = status.cbInQue;
2266
        win_chr_read_poll(chr);
2267
        win_chr_read(chr);
2268
        return 1;
2269
    }
2270
    return 0;
2271
}
2272

    
2273
static CharDriverState *qemu_chr_open_win(const char *filename)
2274
{
2275
    CharDriverState *chr;
2276
    WinCharState *s;
2277
    
2278
    chr = qemu_mallocz(sizeof(CharDriverState));
2279
    if (!chr)
2280
        return NULL;
2281
    s = qemu_mallocz(sizeof(WinCharState));
2282
    if (!s) {
2283
        free(chr);
2284
        return NULL;
2285
    }
2286
    chr->opaque = s;
2287
    chr->chr_write = win_chr_write;
2288
    chr->chr_close = win_chr_close;
2289

    
2290
    if (win_chr_init(chr, filename) < 0) {
2291
        free(s);
2292
        free(chr);
2293
        return NULL;
2294
    }
2295
    qemu_chr_reset(chr);
2296
    return chr;
2297
}
2298

    
2299
static int win_chr_pipe_poll(void *opaque)
2300
{
2301
    CharDriverState *chr = opaque;
2302
    WinCharState *s = chr->opaque;
2303
    DWORD size;
2304

    
2305
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2306
    if (size > 0) {
2307
        s->len = size;
2308
        win_chr_read_poll(chr);
2309
        win_chr_read(chr);
2310
        return 1;
2311
    }
2312
    return 0;
2313
}
2314

    
2315
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2316
{
2317
    WinCharState *s = chr->opaque;
2318
    OVERLAPPED ov;
2319
    int ret;
2320
    DWORD size;
2321
    char openname[256];
2322
    
2323
    s->fpipe = TRUE;
2324

    
2325
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2326
    if (!s->hsend) {
2327
        fprintf(stderr, "Failed CreateEvent\n");
2328
        goto fail;
2329
    }
2330
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2331
    if (!s->hrecv) {
2332
        fprintf(stderr, "Failed CreateEvent\n");
2333
        goto fail;
2334
    }
2335
    
2336
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2337
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2338
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2339
                              PIPE_WAIT,
2340
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2341
    if (s->hcom == INVALID_HANDLE_VALUE) {
2342
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2343
        s->hcom = NULL;
2344
        goto fail;
2345
    }
2346

    
2347
    ZeroMemory(&ov, sizeof(ov));
2348
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2349
    ret = ConnectNamedPipe(s->hcom, &ov);
2350
    if (ret) {
2351
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2352
        goto fail;
2353
    }
2354

    
2355
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2356
    if (!ret) {
2357
        fprintf(stderr, "Failed GetOverlappedResult\n");
2358
        if (ov.hEvent) {
2359
            CloseHandle(ov.hEvent);
2360
            ov.hEvent = NULL;
2361
        }
2362
        goto fail;
2363
    }
2364

    
2365
    if (ov.hEvent) {
2366
        CloseHandle(ov.hEvent);
2367
        ov.hEvent = NULL;
2368
    }
2369
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2370
    return 0;
2371

    
2372
 fail:
2373
    win_chr_close(chr);
2374
    return -1;
2375
}
2376

    
2377

    
2378
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2379
{
2380
    CharDriverState *chr;
2381
    WinCharState *s;
2382

    
2383
    chr = qemu_mallocz(sizeof(CharDriverState));
2384
    if (!chr)
2385
        return NULL;
2386
    s = qemu_mallocz(sizeof(WinCharState));
2387
    if (!s) {
2388
        free(chr);
2389
        return NULL;
2390
    }
2391
    chr->opaque = s;
2392
    chr->chr_write = win_chr_write;
2393
    chr->chr_close = win_chr_close;
2394
    
2395
    if (win_chr_pipe_init(chr, filename) < 0) {
2396
        free(s);
2397
        free(chr);
2398
        return NULL;
2399
    }
2400
    qemu_chr_reset(chr);
2401
    return chr;
2402
}
2403

    
2404
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2405
{
2406
    CharDriverState *chr;
2407
    WinCharState *s;
2408

    
2409
    chr = qemu_mallocz(sizeof(CharDriverState));
2410
    if (!chr)
2411
        return NULL;
2412
    s = qemu_mallocz(sizeof(WinCharState));
2413
    if (!s) {
2414
        free(chr);
2415
        return NULL;
2416
    }
2417
    s->hcom = fd_out;
2418
    chr->opaque = s;
2419
    chr->chr_write = win_chr_write;
2420
    qemu_chr_reset(chr);
2421
    return chr;
2422
}
2423

    
2424
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2425
{
2426
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2427
}
2428

    
2429
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2430
{
2431
    HANDLE fd_out;
2432
    
2433
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2434
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2435
    if (fd_out == INVALID_HANDLE_VALUE)
2436
        return NULL;
2437

    
2438
    return qemu_chr_open_win_file(fd_out);
2439
}
2440
#endif
2441

    
2442
/***********************************************************/
2443
/* UDP Net console */
2444

    
2445
typedef struct {
2446
    int fd;
2447
    struct sockaddr_in daddr;
2448
    char buf[1024];
2449
    int bufcnt;
2450
    int bufptr;
2451
    int max_size;
2452
} NetCharDriver;
2453

    
2454
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2455
{
2456
    NetCharDriver *s = chr->opaque;
2457

    
2458
    return sendto(s->fd, buf, len, 0,
2459
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2460
}
2461

    
2462
static int udp_chr_read_poll(void *opaque)
2463
{
2464
    CharDriverState *chr = opaque;
2465
    NetCharDriver *s = chr->opaque;
2466

    
2467
    s->max_size = qemu_chr_can_read(chr);
2468

    
2469
    /* If there were any stray characters in the queue process them
2470
     * first
2471
     */
2472
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2473
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2474
        s->bufptr++;
2475
        s->max_size = qemu_chr_can_read(chr);
2476
    }
2477
    return s->max_size;
2478
}
2479

    
2480
static void udp_chr_read(void *opaque)
2481
{
2482
    CharDriverState *chr = opaque;
2483
    NetCharDriver *s = chr->opaque;
2484

    
2485
    if (s->max_size == 0)
2486
        return;
2487
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2488
    s->bufptr = s->bufcnt;
2489
    if (s->bufcnt <= 0)
2490
        return;
2491

    
2492
    s->bufptr = 0;
2493
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2494
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2495
        s->bufptr++;
2496
        s->max_size = qemu_chr_can_read(chr);
2497
    }
2498
}
2499

    
2500
static void udp_chr_update_read_handler(CharDriverState *chr)
2501
{
2502
    NetCharDriver *s = chr->opaque;
2503

    
2504
    if (s->fd >= 0) {
2505
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2506
                             udp_chr_read, NULL, chr);
2507
    }
2508
}
2509

    
2510
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2511
#ifndef _WIN32
2512
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2513
#endif
2514
int parse_host_src_port(struct sockaddr_in *haddr,
2515
                        struct sockaddr_in *saddr,
2516
                        const char *str);
2517

    
2518
static CharDriverState *qemu_chr_open_udp(const char *def)
2519
{
2520
    CharDriverState *chr = NULL;
2521
    NetCharDriver *s = NULL;
2522
    int fd = -1;
2523
    struct sockaddr_in saddr;
2524

    
2525
    chr = qemu_mallocz(sizeof(CharDriverState));
2526
    if (!chr)
2527
        goto return_err;
2528
    s = qemu_mallocz(sizeof(NetCharDriver));
2529
    if (!s)
2530
        goto return_err;
2531

    
2532
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2533
    if (fd < 0) {
2534
        perror("socket(PF_INET, SOCK_DGRAM)");
2535
        goto return_err;
2536
    }
2537

    
2538
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2539
        printf("Could not parse: %s\n", def);
2540
        goto return_err;
2541
    }
2542

    
2543
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2544
    {
2545
        perror("bind");
2546
        goto return_err;
2547
    }
2548

    
2549
    s->fd = fd;
2550
    s->bufcnt = 0;
2551
    s->bufptr = 0;
2552
    chr->opaque = s;
2553
    chr->chr_write = udp_chr_write;
2554
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2555
    return chr;
2556

    
2557
return_err:
2558
    if (chr)
2559
        free(chr);
2560
    if (s)
2561
        free(s);
2562
    if (fd >= 0)
2563
        closesocket(fd);
2564
    return NULL;
2565
}
2566

    
2567
/***********************************************************/
2568
/* TCP Net console */
2569

    
2570
typedef struct {
2571
    int fd, listen_fd;
2572
    int connected;
2573
    int max_size;
2574
    int do_telnetopt;
2575
    int do_nodelay;
2576
    int is_unix;
2577
} TCPCharDriver;
2578

    
2579
static void tcp_chr_accept(void *opaque);
2580

    
2581
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2582
{
2583
    TCPCharDriver *s = chr->opaque;
2584
    if (s->connected) {
2585
        return send_all(s->fd, buf, len);
2586
    } else {
2587
        /* XXX: indicate an error ? */
2588
        return len;
2589
    }
2590
}
2591

    
2592
static int tcp_chr_read_poll(void *opaque)
2593
{
2594
    CharDriverState *chr = opaque;
2595
    TCPCharDriver *s = chr->opaque;
2596
    if (!s->connected)
2597
        return 0;
2598
    s->max_size = qemu_chr_can_read(chr);
2599
    return s->max_size;
2600
}
2601

    
2602
#define IAC 255
2603
#define IAC_BREAK 243
2604
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2605
                                      TCPCharDriver *s,
2606
                                      char *buf, int *size)
2607
{
2608
    /* Handle any telnet client's basic IAC options to satisfy char by
2609
     * char mode with no echo.  All IAC options will be removed from
2610
     * the buf and the do_telnetopt variable will be used to track the
2611
     * state of the width of the IAC information.
2612
     *
2613
     * IAC commands come in sets of 3 bytes with the exception of the
2614
     * "IAC BREAK" command and the double IAC.
2615
     */
2616

    
2617
    int i;
2618
    int j = 0;
2619

    
2620
    for (i = 0; i < *size; i++) {
2621
        if (s->do_telnetopt > 1) {
2622
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2623
                /* Double IAC means send an IAC */
2624
                if (j != i)
2625
                    buf[j] = buf[i];
2626
                j++;
2627
                s->do_telnetopt = 1;
2628
            } else {
2629
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2630
                    /* Handle IAC break commands by sending a serial break */
2631
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
2632
                    s->do_telnetopt++;
2633
                }
2634
                s->do_telnetopt++;
2635
            }
2636
            if (s->do_telnetopt >= 4) {
2637
                s->do_telnetopt = 1;
2638
            }
2639
        } else {
2640
            if ((unsigned char)buf[i] == IAC) {
2641
                s->do_telnetopt = 2;
2642
            } else {
2643
                if (j != i)
2644
                    buf[j] = buf[i];
2645
                j++;
2646
            }
2647
        }
2648
    }
2649
    *size = j;
2650
}
2651

    
2652
static void tcp_chr_read(void *opaque)
2653
{
2654
    CharDriverState *chr = opaque;
2655
    TCPCharDriver *s = chr->opaque;
2656
    uint8_t buf[1024];
2657
    int len, size;
2658

    
2659
    if (!s->connected || s->max_size <= 0)
2660
        return;
2661
    len = sizeof(buf);
2662
    if (len > s->max_size)
2663
        len = s->max_size;
2664
    size = recv(s->fd, buf, len, 0);
2665
    if (size == 0) {
2666
        /* connection closed */
2667
        s->connected = 0;
2668
        if (s->listen_fd >= 0) {
2669
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2670
        }
2671
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2672
        closesocket(s->fd);
2673
        s->fd = -1;
2674
    } else if (size > 0) {
2675
        if (s->do_telnetopt)
2676
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2677
        if (size > 0)
2678
            qemu_chr_read(chr, buf, size);
2679
    }
2680
}
2681

    
2682
static void tcp_chr_connect(void *opaque)
2683
{
2684
    CharDriverState *chr = opaque;
2685
    TCPCharDriver *s = chr->opaque;
2686

    
2687
    s->connected = 1;
2688
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2689
                         tcp_chr_read, NULL, chr);
2690
    qemu_chr_reset(chr);
2691
}
2692

    
2693
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2694
static void tcp_chr_telnet_init(int fd)
2695
{
2696
    char buf[3];
2697
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2698
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
2699
    send(fd, (char *)buf, 3, 0);
2700
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
2701
    send(fd, (char *)buf, 3, 0);
2702
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
2703
    send(fd, (char *)buf, 3, 0);
2704
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
2705
    send(fd, (char *)buf, 3, 0);
2706
}
2707

    
2708
static void socket_set_nodelay(int fd)
2709
{
2710
    int val = 1;
2711
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2712
}
2713

    
2714
static void tcp_chr_accept(void *opaque)
2715
{
2716
    CharDriverState *chr = opaque;
2717
    TCPCharDriver *s = chr->opaque;
2718
    struct sockaddr_in saddr;
2719
#ifndef _WIN32
2720
    struct sockaddr_un uaddr;
2721
#endif
2722
    struct sockaddr *addr;
2723
    socklen_t len;
2724
    int fd;
2725

    
2726
    for(;;) {
2727
#ifndef _WIN32
2728
        if (s->is_unix) {
2729
            len = sizeof(uaddr);
2730
            addr = (struct sockaddr *)&uaddr;
2731
        } else
2732
#endif
2733
        {
2734
            len = sizeof(saddr);
2735
            addr = (struct sockaddr *)&saddr;
2736
        }
2737
        fd = accept(s->listen_fd, addr, &len);
2738
        if (fd < 0 && errno != EINTR) {
2739
            return;
2740
        } else if (fd >= 0) {
2741
            if (s->do_telnetopt)
2742
                tcp_chr_telnet_init(fd);
2743
            break;
2744
        }
2745
    }
2746
    socket_set_nonblock(fd);
2747
    if (s->do_nodelay)
2748
        socket_set_nodelay(fd);
2749
    s->fd = fd;
2750
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2751
    tcp_chr_connect(chr);
2752
}
2753

    
2754
static void tcp_chr_close(CharDriverState *chr)
2755
{
2756
    TCPCharDriver *s = chr->opaque;
2757
    if (s->fd >= 0)
2758
        closesocket(s->fd);
2759
    if (s->listen_fd >= 0)
2760
        closesocket(s->listen_fd);
2761
    qemu_free(s);
2762
}
2763

    
2764
static CharDriverState *qemu_chr_open_tcp(const char *host_str, 
2765
                                          int is_telnet,
2766
                                          int is_unix)
2767
{
2768
    CharDriverState *chr = NULL;
2769
    TCPCharDriver *s = NULL;
2770
    int fd = -1, ret, err, val;
2771
    int is_listen = 0;
2772
    int is_waitconnect = 1;
2773
    int do_nodelay = 0;
2774
    const char *ptr;
2775
    struct sockaddr_in saddr;
2776
#ifndef _WIN32
2777
    struct sockaddr_un uaddr;
2778
#endif
2779
    struct sockaddr *addr;
2780
    socklen_t addrlen;
2781

    
2782
#ifndef _WIN32
2783
    if (is_unix) {
2784
        addr = (struct sockaddr *)&uaddr;
2785
        addrlen = sizeof(uaddr);
2786
        if (parse_unix_path(&uaddr, host_str) < 0)
2787
            goto fail;
2788
    } else
2789
#endif
2790
    {
2791
        addr = (struct sockaddr *)&saddr;
2792
        addrlen = sizeof(saddr);
2793
        if (parse_host_port(&saddr, host_str) < 0)
2794
            goto fail;
2795
    }
2796

    
2797
    ptr = host_str;
2798
    while((ptr = strchr(ptr,','))) {
2799
        ptr++;
2800
        if (!strncmp(ptr,"server",6)) {
2801
            is_listen = 1;
2802
        } else if (!strncmp(ptr,"nowait",6)) {
2803
            is_waitconnect = 0;
2804
        } else if (!strncmp(ptr,"nodelay",6)) {
2805
            do_nodelay = 1;
2806
        } else {
2807
            printf("Unknown option: %s\n", ptr);
2808
            goto fail;
2809
        }
2810
    }
2811
    if (!is_listen)
2812
        is_waitconnect = 0;
2813

    
2814
    chr = qemu_mallocz(sizeof(CharDriverState));
2815
    if (!chr)
2816
        goto fail;
2817
    s = qemu_mallocz(sizeof(TCPCharDriver));
2818
    if (!s)
2819
        goto fail;
2820

    
2821
#ifndef _WIN32
2822
    if (is_unix)
2823
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
2824
    else
2825
#endif
2826
        fd = socket(PF_INET, SOCK_STREAM, 0);
2827
        
2828
    if (fd < 0) 
2829
        goto fail;
2830

    
2831
    if (!is_waitconnect)
2832
        socket_set_nonblock(fd);
2833

    
2834
    s->connected = 0;
2835
    s->fd = -1;
2836
    s->listen_fd = -1;
2837
    s->is_unix = is_unix;
2838
    s->do_nodelay = do_nodelay && !is_unix;
2839

    
2840
    chr->opaque = s;
2841
    chr->chr_write = tcp_chr_write;
2842
    chr->chr_close = tcp_chr_close;
2843

    
2844
    if (is_listen) {
2845
        /* allow fast reuse */
2846
#ifndef _WIN32
2847
        if (is_unix) {
2848
            char path[109];
2849
            strncpy(path, uaddr.sun_path, 108);
2850
            path[108] = 0;
2851
            unlink(path);
2852
        } else
2853
#endif
2854
        {
2855
            val = 1;
2856
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2857
        }
2858
        
2859
        ret = bind(fd, addr, addrlen);
2860
        if (ret < 0)
2861
            goto fail;
2862

    
2863
        ret = listen(fd, 0);
2864
        if (ret < 0)
2865
            goto fail;
2866

    
2867
        s->listen_fd = fd;
2868
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2869
        if (is_telnet)
2870
            s->do_telnetopt = 1;
2871
    } else {
2872
        for(;;) {
2873
            ret = connect(fd, addr, addrlen);
2874
            if (ret < 0) {
2875
                err = socket_error();
2876
                if (err == EINTR || err == EWOULDBLOCK) {
2877
                } else if (err == EINPROGRESS) {
2878
                    break;
2879
#ifdef _WIN32
2880
                } else if (err == WSAEALREADY) {
2881
                    break;
2882
#endif
2883
                } else {
2884
                    goto fail;
2885
                }
2886
            } else {
2887
                s->connected = 1;
2888
                break;
2889
            }
2890
        }
2891
        s->fd = fd;
2892
        socket_set_nodelay(fd);
2893
        if (s->connected)
2894
            tcp_chr_connect(chr);
2895
        else
2896
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2897
    }
2898
    
2899
    if (is_listen && is_waitconnect) {
2900
        printf("QEMU waiting for connection on: %s\n", host_str);
2901
        tcp_chr_accept(chr);
2902
        socket_set_nonblock(s->listen_fd);
2903
    }
2904

    
2905
    return chr;
2906
 fail:
2907
    if (fd >= 0)
2908
        closesocket(fd);
2909
    qemu_free(s);
2910
    qemu_free(chr);
2911
    return NULL;
2912
}
2913

    
2914
CharDriverState *qemu_chr_open(const char *filename)
2915
{
2916
    const char *p;
2917

    
2918
    if (!strcmp(filename, "vc")) {
2919
        return text_console_init(&display_state);
2920
    } else if (!strcmp(filename, "null")) {
2921
        return qemu_chr_open_null();
2922
    } else 
2923
    if (strstart(filename, "tcp:", &p)) {
2924
        return qemu_chr_open_tcp(p, 0, 0);
2925
    } else
2926
    if (strstart(filename, "telnet:", &p)) {
2927
        return qemu_chr_open_tcp(p, 1, 0);
2928
    } else
2929
    if (strstart(filename, "udp:", &p)) {
2930
        return qemu_chr_open_udp(p);
2931
    } else
2932
    if (strstart(filename, "mon:", &p)) {
2933
        CharDriverState *drv = qemu_chr_open(p);
2934
        if (drv) {
2935
            drv = qemu_chr_open_mux(drv);
2936
            monitor_init(drv, !nographic);
2937
            return drv;
2938
        }
2939
        printf("Unable to open driver: %s\n", p);
2940
        return 0;
2941
    } else
2942
#ifndef _WIN32
2943
    if (strstart(filename, "unix:", &p)) {
2944
        return qemu_chr_open_tcp(p, 0, 1);
2945
    } else if (strstart(filename, "file:", &p)) {
2946
        return qemu_chr_open_file_out(p);
2947
    } else if (strstart(filename, "pipe:", &p)) {
2948
        return qemu_chr_open_pipe(p);
2949
    } else if (!strcmp(filename, "pty")) {
2950
        return qemu_chr_open_pty();
2951
    } else if (!strcmp(filename, "stdio")) {
2952
        return qemu_chr_open_stdio();
2953
    } else 
2954
#endif
2955
#if defined(__linux__)
2956
    if (strstart(filename, "/dev/parport", NULL)) {
2957
        return qemu_chr_open_pp(filename);
2958
    } else 
2959
    if (strstart(filename, "/dev/", NULL)) {
2960
        return qemu_chr_open_tty(filename);
2961
    } else 
2962
#endif
2963
#ifdef _WIN32
2964
    if (strstart(filename, "COM", NULL)) {
2965
        return qemu_chr_open_win(filename);
2966
    } else
2967
    if (strstart(filename, "pipe:", &p)) {
2968
        return qemu_chr_open_win_pipe(p);
2969
    } else
2970
    if (strstart(filename, "con:", NULL)) {
2971
        return qemu_chr_open_win_con(filename);
2972
    } else
2973
    if (strstart(filename, "file:", &p)) {
2974
        return qemu_chr_open_win_file_out(p);
2975
    }
2976
#endif
2977
    {
2978
        return NULL;
2979
    }
2980
}
2981

    
2982
void qemu_chr_close(CharDriverState *chr)
2983
{
2984
    if (chr->chr_close)
2985
        chr->chr_close(chr);
2986
}
2987

    
2988
/***********************************************************/
2989
/* network device redirectors */
2990

    
2991
void hex_dump(FILE *f, const uint8_t *buf, int size)
2992
{
2993
    int len, i, j, c;
2994

    
2995
    for(i=0;i<size;i+=16) {
2996
        len = size - i;
2997
        if (len > 16)
2998
            len = 16;
2999
        fprintf(f, "%08x ", i);
3000
        for(j=0;j<16;j++) {
3001
            if (j < len)
3002
                fprintf(f, " %02x", buf[i+j]);
3003
            else
3004
                fprintf(f, "   ");
3005
        }
3006
        fprintf(f, " ");
3007
        for(j=0;j<len;j++) {
3008
            c = buf[i+j];
3009
            if (c < ' ' || c > '~')
3010
                c = '.';
3011
            fprintf(f, "%c", c);
3012
        }
3013
        fprintf(f, "\n");
3014
    }
3015
}
3016

    
3017
static int parse_macaddr(uint8_t *macaddr, const char *p)
3018
{
3019
    int i;
3020
    for(i = 0; i < 6; i++) {
3021
        macaddr[i] = strtol(p, (char **)&p, 16);
3022
        if (i == 5) {
3023
            if (*p != '\0') 
3024
                return -1;
3025
        } else {
3026
            if (*p != ':') 
3027
                return -1;
3028
            p++;
3029
        }
3030
    }
3031
    return 0;
3032
}
3033

    
3034
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3035
{
3036
    const char *p, *p1;
3037
    int len;
3038
    p = *pp;
3039
    p1 = strchr(p, sep);
3040
    if (!p1)
3041
        return -1;
3042
    len = p1 - p;
3043
    p1++;
3044
    if (buf_size > 0) {
3045
        if (len > buf_size - 1)
3046
            len = buf_size - 1;
3047
        memcpy(buf, p, len);
3048
        buf[len] = '\0';
3049
    }
3050
    *pp = p1;
3051
    return 0;
3052
}
3053

    
3054
int parse_host_src_port(struct sockaddr_in *haddr,
3055
                        struct sockaddr_in *saddr,
3056
                        const char *input_str)
3057
{
3058
    char *str = strdup(input_str);
3059
    char *host_str = str;
3060
    char *src_str;
3061
    char *ptr;
3062

    
3063
    /*
3064
     * Chop off any extra arguments at the end of the string which
3065
     * would start with a comma, then fill in the src port information
3066
     * if it was provided else use the "any address" and "any port".
3067
     */
3068
    if ((ptr = strchr(str,',')))
3069
        *ptr = '\0';
3070

    
3071
    if ((src_str = strchr(input_str,'@'))) {
3072
        *src_str = '\0';
3073
        src_str++;
3074
    }
3075

    
3076
    if (parse_host_port(haddr, host_str) < 0)
3077
        goto fail;
3078

    
3079
    if (!src_str || *src_str == '\0')
3080
        src_str = ":0";
3081

    
3082
    if (parse_host_port(saddr, src_str) < 0)
3083
        goto fail;
3084

    
3085
    free(str);
3086
    return(0);
3087

    
3088
fail:
3089
    free(str);
3090
    return -1;
3091
}
3092

    
3093
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3094
{
3095
    char buf[512];
3096
    struct hostent *he;
3097
    const char *p, *r;
3098
    int port;
3099

    
3100
    p = str;
3101
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3102
        return -1;
3103
    saddr->sin_family = AF_INET;
3104
    if (buf[0] == '\0') {
3105
        saddr->sin_addr.s_addr = 0;
3106
    } else {
3107
        if (isdigit(buf[0])) {
3108
            if (!inet_aton(buf, &saddr->sin_addr))
3109
                return -1;
3110
        } else {
3111
            if ((he = gethostbyname(buf)) == NULL)
3112
                return - 1;
3113
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3114
        }
3115
    }
3116
    port = strtol(p, (char **)&r, 0);
3117
    if (r == p)
3118
        return -1;
3119
    saddr->sin_port = htons(port);
3120
    return 0;
3121
}
3122

    
3123
#ifndef _WIN32
3124
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3125
{
3126
    const char *p;
3127
    int len;
3128

    
3129
    len = MIN(108, strlen(str));
3130
    p = strchr(str, ',');
3131
    if (p)
3132
        len = MIN(len, p - str);
3133

    
3134
    memset(uaddr, 0, sizeof(*uaddr));
3135

    
3136
    uaddr->sun_family = AF_UNIX;
3137
    memcpy(uaddr->sun_path, str, len);
3138

    
3139
    return 0;
3140
}
3141
#endif
3142

    
3143
/* find or alloc a new VLAN */
3144
VLANState *qemu_find_vlan(int id)
3145
{
3146
    VLANState **pvlan, *vlan;
3147
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3148
        if (vlan->id == id)
3149
            return vlan;
3150
    }
3151
    vlan = qemu_mallocz(sizeof(VLANState));
3152
    if (!vlan)
3153
        return NULL;
3154
    vlan->id = id;
3155
    vlan->next = NULL;
3156
    pvlan = &first_vlan;
3157
    while (*pvlan != NULL)
3158
        pvlan = &(*pvlan)->next;
3159
    *pvlan = vlan;
3160
    return vlan;
3161
}
3162

    
3163
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3164
                                      IOReadHandler *fd_read,
3165
                                      IOCanRWHandler *fd_can_read,
3166
                                      void *opaque)
3167
{
3168
    VLANClientState *vc, **pvc;
3169
    vc = qemu_mallocz(sizeof(VLANClientState));
3170
    if (!vc)
3171
        return NULL;
3172
    vc->fd_read = fd_read;
3173
    vc->fd_can_read = fd_can_read;
3174
    vc->opaque = opaque;
3175
    vc->vlan = vlan;
3176

    
3177
    vc->next = NULL;
3178
    pvc = &vlan->first_client;
3179
    while (*pvc != NULL)
3180
        pvc = &(*pvc)->next;
3181
    *pvc = vc;
3182
    return vc;
3183
}
3184

    
3185
int qemu_can_send_packet(VLANClientState *vc1)
3186
{
3187
    VLANState *vlan = vc1->vlan;
3188
    VLANClientState *vc;
3189

    
3190
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3191
        if (vc != vc1) {
3192
            if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3193
                return 0;
3194
        }
3195
    }
3196
    return 1;
3197
}
3198

    
3199
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3200
{
3201
    VLANState *vlan = vc1->vlan;
3202
    VLANClientState *vc;
3203

    
3204
#if 0
3205
    printf("vlan %d send:\n", vlan->id);
3206
    hex_dump(stdout, buf, size);
3207
#endif
3208
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3209
        if (vc != vc1) {
3210
            vc->fd_read(vc->opaque, buf, size);
3211
        }
3212
    }
3213
}
3214

    
3215
#if defined(CONFIG_SLIRP)
3216

    
3217
/* slirp network adapter */
3218

    
3219
static int slirp_inited;
3220
static VLANClientState *slirp_vc;
3221

    
3222
int slirp_can_output(void)
3223
{
3224
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3225
}
3226

    
3227
void slirp_output(const uint8_t *pkt, int pkt_len)
3228
{
3229
#if 0
3230
    printf("slirp output:\n");
3231
    hex_dump(stdout, pkt, pkt_len);
3232
#endif
3233
    if (!slirp_vc)
3234
        return;
3235
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3236
}
3237

    
3238
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3239
{
3240
#if 0
3241
    printf("slirp input:\n");
3242
    hex_dump(stdout, buf, size);
3243
#endif
3244
    slirp_input(buf, size);
3245
}
3246

    
3247
static int net_slirp_init(VLANState *vlan)
3248
{
3249
    if (!slirp_inited) {
3250
        slirp_inited = 1;
3251
        slirp_init();
3252
    }
3253
    slirp_vc = qemu_new_vlan_client(vlan, 
3254
                                    slirp_receive, NULL, NULL);
3255
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3256
    return 0;
3257
}
3258

    
3259
static void net_slirp_redir(const char *redir_str)
3260
{
3261
    int is_udp;
3262
    char buf[256], *r;
3263
    const char *p;
3264
    struct in_addr guest_addr;
3265
    int host_port, guest_port;
3266
    
3267
    if (!slirp_inited) {
3268
        slirp_inited = 1;
3269
        slirp_init();
3270
    }
3271

    
3272
    p = redir_str;
3273
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3274
        goto fail;
3275
    if (!strcmp(buf, "tcp")) {
3276
        is_udp = 0;
3277
    } else if (!strcmp(buf, "udp")) {
3278
        is_udp = 1;
3279
    } else {
3280
        goto fail;
3281
    }
3282

    
3283
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3284
        goto fail;
3285
    host_port = strtol(buf, &r, 0);
3286
    if (r == buf)
3287
        goto fail;
3288

    
3289
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3290
        goto fail;
3291
    if (buf[0] == '\0') {
3292
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3293
    }
3294
    if (!inet_aton(buf, &guest_addr))
3295
        goto fail;
3296
    
3297
    guest_port = strtol(p, &r, 0);
3298
    if (r == p)
3299
        goto fail;
3300
    
3301
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3302
        fprintf(stderr, "qemu: could not set up redirection\n");
3303
        exit(1);
3304
    }
3305
    return;
3306
 fail:
3307
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3308
    exit(1);
3309
}
3310
    
3311
#ifndef _WIN32
3312

    
3313
char smb_dir[1024];
3314

    
3315
static void smb_exit(void)
3316
{
3317
    DIR *d;
3318
    struct dirent *de;
3319
    char filename[1024];
3320

    
3321
    /* erase all the files in the directory */
3322
    d = opendir(smb_dir);
3323
    for(;;) {
3324
        de = readdir(d);
3325
        if (!de)
3326
            break;
3327
        if (strcmp(de->d_name, ".") != 0 &&
3328
            strcmp(de->d_name, "..") != 0) {
3329
            snprintf(filename, sizeof(filename), "%s/%s", 
3330
                     smb_dir, de->d_name);
3331
            unlink(filename);
3332
        }
3333
    }
3334
    closedir(d);
3335
    rmdir(smb_dir);
3336
}
3337

    
3338
/* automatic user mode samba server configuration */
3339
void net_slirp_smb(const char *exported_dir)
3340
{
3341
    char smb_conf[1024];
3342
    char smb_cmdline[1024];
3343
    FILE *f;
3344

    
3345
    if (!slirp_inited) {
3346
        slirp_inited = 1;
3347
        slirp_init();
3348
    }
3349

    
3350
    /* XXX: better tmp dir construction */
3351
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3352
    if (mkdir(smb_dir, 0700) < 0) {
3353
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3354
        exit(1);
3355
    }
3356
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3357
    
3358
    f = fopen(smb_conf, "w");
3359
    if (!f) {
3360
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3361
        exit(1);
3362
    }
3363
    fprintf(f, 
3364
            "[global]\n"
3365
            "private dir=%s\n"
3366
            "smb ports=0\n"
3367
            "socket address=127.0.0.1\n"
3368
            "pid directory=%s\n"
3369
            "lock directory=%s\n"
3370
            "log file=%s/log.smbd\n"
3371
            "smb passwd file=%s/smbpasswd\n"
3372
            "security = share\n"
3373
            "[qemu]\n"
3374
            "path=%s\n"
3375
            "read only=no\n"
3376
            "guest ok=yes\n",
3377
            smb_dir,
3378
            smb_dir,
3379
            smb_dir,
3380
            smb_dir,
3381
            smb_dir,
3382
            exported_dir
3383
            );
3384
    fclose(f);
3385
    atexit(smb_exit);
3386

    
3387
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3388
             SMBD_COMMAND, smb_conf);
3389
    
3390
    slirp_add_exec(0, smb_cmdline, 4, 139);
3391
}
3392

    
3393
#endif /* !defined(_WIN32) */
3394

    
3395
#endif /* CONFIG_SLIRP */
3396

    
3397
#if !defined(_WIN32)
3398

    
3399
typedef struct TAPState {
3400
    VLANClientState *vc;
3401
    int fd;
3402
} TAPState;
3403

    
3404
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3405
{
3406
    TAPState *s = opaque;
3407
    int ret;
3408
    for(;;) {
3409
        ret = write(s->fd, buf, size);
3410
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3411
        } else {
3412
            break;
3413
        }
3414
    }
3415
}
3416

    
3417
static void tap_send(void *opaque)
3418
{
3419
    TAPState *s = opaque;
3420
    uint8_t buf[4096];
3421
    int size;
3422

    
3423
#ifdef __sun__
3424
    struct strbuf sbuf;
3425
    int f = 0;
3426
    sbuf.maxlen = sizeof(buf);
3427
    sbuf.buf = buf;
3428
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3429
#else
3430
    size = read(s->fd, buf, sizeof(buf));
3431
#endif
3432
    if (size > 0) {
3433
        qemu_send_packet(s->vc, buf, size);
3434
    }
3435
}
3436

    
3437
/* fd support */
3438

    
3439
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3440
{
3441
    TAPState *s;
3442

    
3443
    s = qemu_mallocz(sizeof(TAPState));
3444
    if (!s)
3445
        return NULL;
3446
    s->fd = fd;
3447
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3448
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3449
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3450
    return s;
3451
}
3452

    
3453
#ifdef _BSD
3454
static int tap_open(char *ifname, int ifname_size)
3455
{
3456
    int fd;
3457
    char *dev;
3458
    struct stat s;
3459

    
3460
    fd = open("/dev/tap", O_RDWR);
3461
    if (fd < 0) {
3462
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3463
        return -1;
3464
    }
3465

    
3466
    fstat(fd, &s);
3467
    dev = devname(s.st_rdev, S_IFCHR);
3468
    pstrcpy(ifname, ifname_size, dev);
3469

    
3470
    fcntl(fd, F_SETFL, O_NONBLOCK);
3471
    return fd;
3472
}
3473
#elif defined(__sun__)
3474
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3475
/* 
3476
 * Allocate TAP device, returns opened fd. 
3477
 * Stores dev name in the first arg(must be large enough).
3478
 */  
3479
int tap_alloc(char *dev)
3480
{
3481
    int tap_fd, if_fd, ppa = -1;
3482
    static int ip_fd = 0;
3483
    char *ptr;
3484

    
3485
    static int arp_fd = 0;
3486
    int ip_muxid, arp_muxid;
3487
    struct strioctl  strioc_if, strioc_ppa;
3488
    int link_type = I_PLINK;;
3489
    struct lifreq ifr;
3490
    char actual_name[32] = "";
3491

    
3492
    memset(&ifr, 0x0, sizeof(ifr));
3493

    
3494
    if( *dev ){
3495
       ptr = dev;        
3496
       while( *ptr && !isdigit((int)*ptr) ) ptr++; 
3497
       ppa = atoi(ptr);
3498
    }
3499

    
3500
    /* Check if IP device was opened */
3501
    if( ip_fd )
3502
       close(ip_fd);
3503

    
3504
    if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3505
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3506
       return -1;
3507
    }
3508

    
3509
    if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3510
       syslog(LOG_ERR, "Can't open /dev/tap");
3511
       return -1;
3512
    }
3513

    
3514
    /* Assign a new PPA and get its unit number. */
3515
    strioc_ppa.ic_cmd = TUNNEWPPA;
3516
    strioc_ppa.ic_timout = 0;
3517
    strioc_ppa.ic_len = sizeof(ppa);
3518
    strioc_ppa.ic_dp = (char *)&ppa;
3519
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3520
       syslog (LOG_ERR, "Can't assign new interface");
3521

    
3522
    if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3523
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3524
       return -1;
3525
    }
3526
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3527
       syslog(LOG_ERR, "Can't push IP module");
3528
       return -1;
3529
    }
3530

    
3531
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3532
        syslog(LOG_ERR, "Can't get flags\n");
3533

    
3534
    snprintf (actual_name, 32, "tap%d", ppa);
3535
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3536

    
3537
    ifr.lifr_ppa = ppa;
3538
    /* Assign ppa according to the unit number returned by tun device */
3539

    
3540
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3541
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3542
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3543
        syslog (LOG_ERR, "Can't get flags\n");
3544
    /* Push arp module to if_fd */
3545
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3546
        syslog (LOG_ERR, "Can't push ARP module (2)");
3547

    
3548
    /* Push arp module to ip_fd */
3549
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3550
        syslog (LOG_ERR, "I_POP failed\n");
3551
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3552
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3553
    /* Open arp_fd */
3554
    if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3555
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3556

    
3557
    /* Set ifname to arp */
3558
    strioc_if.ic_cmd = SIOCSLIFNAME;
3559
    strioc_if.ic_timout = 0;
3560
    strioc_if.ic_len = sizeof(ifr);
3561
    strioc_if.ic_dp = (char *)&ifr;
3562
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3563
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3564
    }
3565

    
3566
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3567
       syslog(LOG_ERR, "Can't link TAP device to IP");
3568
       return -1;
3569
    }
3570

    
3571
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3572
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3573

    
3574
    close (if_fd);
3575

    
3576
    memset(&ifr, 0x0, sizeof(ifr));
3577
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3578
    ifr.lifr_ip_muxid  = ip_muxid;
3579
    ifr.lifr_arp_muxid = arp_muxid;
3580

    
3581
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3582
    {
3583
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3584
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3585
      syslog (LOG_ERR, "Can't set multiplexor id");
3586
    }
3587

    
3588
    sprintf(dev, "tap%d", ppa);
3589
    return tap_fd;
3590
}
3591

    
3592
static int tap_open(char *ifname, int ifname_size)
3593
{
3594
    char  dev[10]="";
3595
    int fd;
3596
    if( (fd = tap_alloc(dev)) < 0 ){
3597
       fprintf(stderr, "Cannot allocate TAP device\n");
3598
       return -1;
3599
    }
3600
    pstrcpy(ifname, ifname_size, dev);
3601
    fcntl(fd, F_SETFL, O_NONBLOCK);
3602
    return fd;
3603
}
3604
#else
3605
static int tap_open(char *ifname, int ifname_size)
3606
{
3607
    struct ifreq ifr;
3608
    int fd, ret;
3609
    
3610
    fd = open("/dev/net/tun", O_RDWR);
3611
    if (fd < 0) {
3612
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3613
        return -1;
3614
    }
3615
    memset(&ifr, 0, sizeof(ifr));
3616
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3617
    if (ifname[0] != '\0')
3618
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3619
    else
3620
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3621
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3622
    if (ret != 0) {
3623
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3624
        close(fd);
3625
        return -1;
3626
    }
3627
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
3628
    fcntl(fd, F_SETFL, O_NONBLOCK);
3629
    return fd;
3630
}
3631
#endif
3632

    
3633
static int net_tap_init(VLANState *vlan, const char *ifname1,
3634
                        const char *setup_script)
3635
{
3636
    TAPState *s;
3637
    int pid, status, fd;
3638
    char *args[3];
3639
    char **parg;
3640
    char ifname[128];
3641

    
3642
    if (ifname1 != NULL)
3643
        pstrcpy(ifname, sizeof(ifname), ifname1);
3644
    else
3645
        ifname[0] = '\0';
3646
    fd = tap_open(ifname, sizeof(ifname));
3647
    if (fd < 0)
3648
        return -1;
3649

    
3650
    if (!setup_script || !strcmp(setup_script, "no"))
3651
        setup_script = "";
3652
    if (setup_script[0] != '\0') {
3653
        /* try to launch network init script */
3654
        pid = fork();
3655
        if (pid >= 0) {
3656
            if (pid == 0) {
3657
                int open_max = sysconf (_SC_OPEN_MAX), i;
3658
                for (i = 0; i < open_max; i++)
3659
                    if (i != STDIN_FILENO &&
3660
                        i != STDOUT_FILENO &&
3661
                        i != STDERR_FILENO &&
3662
                        i != fd)
3663
                        close(i);
3664

    
3665
                parg = args;
3666
                *parg++ = (char *)setup_script;
3667
                *parg++ = ifname;
3668
                *parg++ = NULL;
3669
                execv(setup_script, args);
3670
                _exit(1);
3671
            }
3672
            while (waitpid(pid, &status, 0) != pid);
3673
            if (!WIFEXITED(status) ||
3674
                WEXITSTATUS(status) != 0) {
3675
                fprintf(stderr, "%s: could not launch network script\n",
3676
                        setup_script);
3677
                return -1;
3678
            }
3679
        }
3680
    }
3681
    s = net_tap_fd_init(vlan, fd);
3682
    if (!s)
3683
        return -1;
3684
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), 
3685
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
3686
    return 0;
3687
}
3688

    
3689
#endif /* !_WIN32 */
3690

    
3691
/* network connection */
3692
typedef struct NetSocketState {
3693
    VLANClientState *vc;
3694
    int fd;
3695
    int state; /* 0 = getting length, 1 = getting data */
3696
    int index;
3697
    int packet_len;
3698
    uint8_t buf[4096];
3699
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3700
} NetSocketState;
3701

    
3702
typedef struct NetSocketListenState {
3703
    VLANState *vlan;
3704
    int fd;
3705
} NetSocketListenState;
3706

    
3707
/* XXX: we consider we can send the whole packet without blocking */
3708
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3709
{
3710
    NetSocketState *s = opaque;
3711
    uint32_t len;
3712
    len = htonl(size);
3713

    
3714
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3715
    send_all(s->fd, buf, size);
3716
}
3717

    
3718
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3719
{
3720
    NetSocketState *s = opaque;
3721
    sendto(s->fd, buf, size, 0, 
3722
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3723
}
3724

    
3725
static void net_socket_send(void *opaque)
3726
{
3727
    NetSocketState *s = opaque;
3728
    int l, size, err;
3729
    uint8_t buf1[4096];
3730
    const uint8_t *buf;
3731

    
3732
    size = recv(s->fd, buf1, sizeof(buf1), 0);
3733
    if (size < 0) {
3734
        err = socket_error();
3735
        if (err != EWOULDBLOCK) 
3736
            goto eoc;
3737
    } else if (size == 0) {
3738
        /* end of connection */
3739
    eoc:
3740
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3741
        closesocket(s->fd);
3742
        return;
3743
    }
3744
    buf = buf1;
3745
    while (size > 0) {
3746
        /* reassemble a packet from the network */
3747
        switch(s->state) {
3748
        case 0:
3749
            l = 4 - s->index;
3750
            if (l > size)
3751
                l = size;
3752
            memcpy(s->buf + s->index, buf, l);
3753
            buf += l;
3754
            size -= l;
3755
            s->index += l;
3756
            if (s->index == 4) {
3757
                /* got length */
3758
                s->packet_len = ntohl(*(uint32_t *)s->buf);
3759
                s->index = 0;
3760
                s->state = 1;
3761
            }
3762
            break;
3763
        case 1:
3764
            l = s->packet_len - s->index;
3765
            if (l > size)
3766
                l = size;
3767
            memcpy(s->buf + s->index, buf, l);
3768
            s->index += l;
3769
            buf += l;
3770
            size -= l;
3771
            if (s->index >= s->packet_len) {
3772
                qemu_send_packet(s->vc, s->buf, s->packet_len);
3773
                s->index = 0;
3774
                s->state = 0;
3775
            }
3776
            break;
3777
        }
3778
    }
3779
}
3780

    
3781
static void net_socket_send_dgram(void *opaque)
3782
{
3783
    NetSocketState *s = opaque;
3784
    int size;
3785

    
3786
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3787
    if (size < 0) 
3788
        return;
3789
    if (size == 0) {
3790
        /* end of connection */
3791
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3792
        return;
3793
    }
3794
    qemu_send_packet(s->vc, s->buf, size);
3795
}
3796

    
3797
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3798
{
3799
    struct ip_mreq imr;
3800
    int fd;
3801
    int val, ret;
3802
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3803
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3804
                inet_ntoa(mcastaddr->sin_addr), 
3805
                (int)ntohl(mcastaddr->sin_addr.s_addr));
3806
        return -1;
3807

    
3808
    }
3809
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3810
    if (fd < 0) {
3811
        perror("socket(PF_INET, SOCK_DGRAM)");
3812
        return -1;
3813
    }
3814

    
3815
    val = 1;
3816
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, 
3817
                   (const char *)&val, sizeof(val));
3818
    if (ret < 0) {
3819
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3820
        goto fail;
3821
    }
3822

    
3823
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3824
    if (ret < 0) {
3825
        perror("bind");
3826
        goto fail;
3827
    }
3828
    
3829
    /* Add host to multicast group */
3830
    imr.imr_multiaddr = mcastaddr->sin_addr;
3831
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
3832

    
3833
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, 
3834
                     (const char *)&imr, sizeof(struct ip_mreq));
3835
    if (ret < 0) {
3836
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
3837
        goto fail;
3838
    }
3839

    
3840
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3841
    val = 1;
3842
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, 
3843
                   (const char *)&val, sizeof(val));
3844
    if (ret < 0) {
3845
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3846
        goto fail;
3847
    }
3848

    
3849
    socket_set_nonblock(fd);
3850
    return fd;
3851
fail:
3852
    if (fd >= 0) 
3853
        closesocket(fd);
3854
    return -1;
3855
}
3856

    
3857
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, 
3858
                                          int is_connected)
3859
{
3860
    struct sockaddr_in saddr;
3861
    int newfd;
3862
    socklen_t saddr_len;
3863
    NetSocketState *s;
3864

    
3865
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3866
     * Because this may be "shared" socket from a "master" process, datagrams would be recv() 
3867
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
3868
     */
3869

    
3870
    if (is_connected) {
3871
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3872
            /* must be bound */
3873
            if (saddr.sin_addr.s_addr==0) {
3874
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3875
                        fd);
3876
                return NULL;
3877
            }
3878
            /* clone dgram socket */
3879
            newfd = net_socket_mcast_create(&saddr);
3880
            if (newfd < 0) {
3881
                /* error already reported by net_socket_mcast_create() */
3882
                close(fd);
3883
                return NULL;
3884
            }
3885
            /* clone newfd to fd, close newfd */
3886
            dup2(newfd, fd);
3887
            close(newfd);
3888
        
3889
        } else {
3890
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3891
                    fd, strerror(errno));
3892
            return NULL;
3893
        }
3894
    }
3895

    
3896
    s = qemu_mallocz(sizeof(NetSocketState));
3897
    if (!s)
3898
        return NULL;
3899
    s->fd = fd;
3900

    
3901
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3902
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3903

    
3904
    /* mcast: save bound address as dst */
3905
    if (is_connected) s->dgram_dst=saddr;
3906

    
3907
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3908
            "socket: fd=%d (%s mcast=%s:%d)", 
3909
            fd, is_connected? "cloned" : "",
3910
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3911
    return s;
3912
}
3913

    
3914
static void net_socket_connect(void *opaque)
3915
{
3916
    NetSocketState *s = opaque;
3917
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3918
}
3919

    
3920
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, 
3921
                                          int is_connected)
3922
{
3923
    NetSocketState *s;
3924
    s = qemu_mallocz(sizeof(NetSocketState));
3925
    if (!s)
3926
        return NULL;
3927
    s->fd = fd;
3928
    s->vc = qemu_new_vlan_client(vlan, 
3929
                                 net_socket_receive, NULL, s);
3930
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3931
             "socket: fd=%d", fd);
3932
    if (is_connected) {
3933
        net_socket_connect(s);
3934
    } else {
3935
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3936
    }
3937
    return s;
3938
}
3939

    
3940
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, 
3941
                                          int is_connected)
3942
{
3943
    int so_type=-1, optlen=sizeof(so_type);
3944

    
3945
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3946
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3947
        return NULL;
3948
    }
3949
    switch(so_type) {
3950
    case SOCK_DGRAM:
3951
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
3952
    case SOCK_STREAM:
3953
        return net_socket_fd_init_stream(vlan, fd, is_connected);
3954
    default:
3955
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3956
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3957
        return net_socket_fd_init_stream(vlan, fd, is_connected);
3958
    }
3959
    return NULL;
3960
}
3961

    
3962
static void net_socket_accept(void *opaque)
3963
{
3964
    NetSocketListenState *s = opaque;    
3965
    NetSocketState *s1;
3966
    struct sockaddr_in saddr;
3967
    socklen_t len;
3968
    int fd;
3969

    
3970
    for(;;) {
3971
        len = sizeof(saddr);
3972
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3973
        if (fd < 0 && errno != EINTR) {
3974
            return;
3975
        } else if (fd >= 0) {
3976
            break;
3977
        }
3978
    }
3979
    s1 = net_socket_fd_init(s->vlan, fd, 1); 
3980
    if (!s1) {
3981
        closesocket(fd);
3982
    } else {
3983
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3984
                 "socket: connection from %s:%d", 
3985
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3986
    }
3987
}
3988

    
3989
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3990
{
3991
    NetSocketListenState *s;
3992
    int fd, val, ret;
3993
    struct sockaddr_in saddr;
3994

    
3995
    if (parse_host_port(&saddr, host_str) < 0)
3996
        return -1;
3997
    
3998
    s = qemu_mallocz(sizeof(NetSocketListenState));
3999
    if (!s)
4000
        return -1;
4001

    
4002
    fd = socket(PF_INET, SOCK_STREAM, 0);
4003
    if (fd < 0) {
4004
        perror("socket");
4005
        return -1;
4006
    }
4007
    socket_set_nonblock(fd);
4008

    
4009
    /* allow fast reuse */
4010
    val = 1;
4011
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4012
    
4013
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4014
    if (ret < 0) {
4015
        perror("bind");
4016
        return -1;
4017
    }
4018
    ret = listen(fd, 0);
4019
    if (ret < 0) {
4020
        perror("listen");
4021
        return -1;
4022
    }
4023
    s->vlan = vlan;
4024
    s->fd = fd;
4025
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4026
    return 0;
4027
}
4028

    
4029
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4030
{
4031
    NetSocketState *s;
4032
    int fd, connected, ret, err;
4033
    struct sockaddr_in saddr;
4034

    
4035
    if (parse_host_port(&saddr, host_str) < 0)
4036
        return -1;
4037

    
4038
    fd = socket(PF_INET, SOCK_STREAM, 0);
4039
    if (fd < 0) {
4040
        perror("socket");
4041
        return -1;
4042
    }
4043
    socket_set_nonblock(fd);
4044

    
4045
    connected = 0;
4046
    for(;;) {
4047
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4048
        if (ret < 0) {
4049
            err = socket_error();
4050
            if (err == EINTR || err == EWOULDBLOCK) {
4051
            } else if (err == EINPROGRESS) {
4052
                break;
4053
#ifdef _WIN32
4054
            } else if (err == WSAEALREADY) {
4055
                break;
4056
#endif
4057
            } else {
4058
                perror("connect");
4059
                closesocket(fd);
4060
                return -1;
4061
            }
4062
        } else {
4063
            connected = 1;
4064
            break;
4065
        }
4066
    }
4067
    s = net_socket_fd_init(vlan, fd, connected);
4068
    if (!s)
4069
        return -1;
4070
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4071
             "socket: connect to %s:%d", 
4072
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4073
    return 0;
4074
}
4075

    
4076
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4077
{
4078
    NetSocketState *s;
4079
    int fd;
4080
    struct sockaddr_in saddr;
4081

    
4082
    if (parse_host_port(&saddr, host_str) < 0)
4083
        return -1;
4084

    
4085

    
4086
    fd = net_socket_mcast_create(&saddr);
4087
    if (fd < 0)
4088
        return -1;
4089

    
4090
    s = net_socket_fd_init(vlan, fd, 0);
4091
    if (!s)
4092
        return -1;
4093

    
4094
    s->dgram_dst = saddr;
4095
    
4096
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4097
             "socket: mcast=%s:%d", 
4098
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4099
    return 0;
4100

    
4101
}
4102

    
4103
static int get_param_value(char *buf, int buf_size,
4104
                           const char *tag, const char *str)
4105
{
4106
    const char *p;
4107
    char *q;
4108
    char option[128];
4109

    
4110
    p = str;
4111
    for(;;) {
4112
        q = option;
4113
        while (*p != '\0' && *p != '=') {
4114
            if ((q - option) < sizeof(option) - 1)
4115
                *q++ = *p;
4116
            p++;
4117
        }
4118
        *q = '\0';
4119
        if (*p != '=')
4120
            break;
4121
        p++;
4122
        if (!strcmp(tag, option)) {
4123
            q = buf;
4124
            while (*p != '\0' && *p != ',') {
4125
                if ((q - buf) < buf_size - 1)
4126
                    *q++ = *p;
4127
                p++;
4128
            }
4129
            *q = '\0';
4130
            return q - buf;
4131
        } else {
4132
            while (*p != '\0' && *p != ',') {
4133
                p++;
4134
            }
4135
        }
4136
        if (*p != ',')
4137
            break;
4138
        p++;
4139
    }
4140
    return 0;
4141
}
4142

    
4143
static int net_client_init(const char *str)
4144
{
4145
    const char *p;
4146
    char *q;
4147
    char device[64];
4148
    char buf[1024];
4149
    int vlan_id, ret;
4150
    VLANState *vlan;
4151

    
4152
    p = str;
4153
    q = device;
4154
    while (*p != '\0' && *p != ',') {
4155
        if ((q - device) < sizeof(device) - 1)
4156
            *q++ = *p;
4157
        p++;
4158
    }
4159
    *q = '\0';
4160
    if (*p == ',')
4161
        p++;
4162
    vlan_id = 0;
4163
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4164
        vlan_id = strtol(buf, NULL, 0);
4165
    }
4166
    vlan = qemu_find_vlan(vlan_id);
4167
    if (!vlan) {
4168
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4169
        return -1;
4170
    }
4171
    if (!strcmp(device, "nic")) {
4172
        NICInfo *nd;
4173
        uint8_t *macaddr;
4174

    
4175
        if (nb_nics >= MAX_NICS) {
4176
            fprintf(stderr, "Too Many NICs\n");
4177
            return -1;
4178
        }
4179
        nd = &nd_table[nb_nics];
4180
        macaddr = nd->macaddr;
4181
        macaddr[0] = 0x52;
4182
        macaddr[1] = 0x54;
4183
        macaddr[2] = 0x00;
4184
        macaddr[3] = 0x12;
4185
        macaddr[4] = 0x34;
4186
        macaddr[5] = 0x56 + nb_nics;
4187

    
4188
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4189
            if (parse_macaddr(macaddr, buf) < 0) {
4190
                fprintf(stderr, "invalid syntax for ethernet address\n");
4191
                return -1;
4192
            }
4193
        }
4194
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4195
            nd->model = strdup(buf);
4196
        }
4197
        nd->vlan = vlan;
4198
        nb_nics++;
4199
        vlan->nb_guest_devs++;
4200
        ret = 0;
4201
    } else
4202
    if (!strcmp(device, "none")) {
4203
        /* does nothing. It is needed to signal that no network cards
4204
           are wanted */
4205
        ret = 0;
4206
    } else
4207
#ifdef CONFIG_SLIRP
4208
    if (!strcmp(device, "user")) {
4209
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4210
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4211
        }
4212
        vlan->nb_host_devs++;
4213
        ret = net_slirp_init(vlan);
4214
    } else
4215
#endif
4216
#ifdef _WIN32
4217
    if (!strcmp(device, "tap")) {
4218
        char ifname[64];
4219
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4220
            fprintf(stderr, "tap: no interface name\n");
4221
            return -1;
4222
        }
4223
        vlan->nb_host_devs++;
4224
        ret = tap_win32_init(vlan, ifname);
4225
    } else
4226
#else
4227
    if (!strcmp(device, "tap")) {
4228
        char ifname[64];
4229
        char setup_script[1024];
4230
        int fd;
4231
        vlan->nb_host_devs++;
4232
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4233
            fd = strtol(buf, NULL, 0);
4234
            ret = -1;
4235
            if (net_tap_fd_init(vlan, fd))
4236
                ret = 0;
4237
        } else {
4238
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4239
                ifname[0] = '\0';
4240
            }
4241
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4242
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4243
            }
4244
            ret = net_tap_init(vlan, ifname, setup_script);
4245
        }
4246
    } else
4247
#endif
4248
    if (!strcmp(device, "socket")) {
4249
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4250
            int fd;
4251
            fd = strtol(buf, NULL, 0);
4252
            ret = -1;
4253
            if (net_socket_fd_init(vlan, fd, 1))
4254
                ret = 0;
4255
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4256
            ret = net_socket_listen_init(vlan, buf);
4257
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4258
            ret = net_socket_connect_init(vlan, buf);
4259
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4260
            ret = net_socket_mcast_init(vlan, buf);
4261
        } else {
4262
            fprintf(stderr, "Unknown socket options: %s\n", p);
4263
            return -1;
4264
        }
4265
        vlan->nb_host_devs++;
4266
    } else
4267
    {
4268
        fprintf(stderr, "Unknown network device: %s\n", device);
4269
        return -1;
4270
    }
4271
    if (ret < 0) {
4272
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4273
    }
4274
    
4275
    return ret;
4276
}
4277

    
4278
void do_info_network(void)
4279
{
4280
    VLANState *vlan;
4281
    VLANClientState *vc;
4282

    
4283
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4284
        term_printf("VLAN %d devices:\n", vlan->id);
4285
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4286
            term_printf("  %s\n", vc->info_str);
4287
    }
4288
}
4289

    
4290
/***********************************************************/
4291
/* USB devices */
4292

    
4293
static USBPort *used_usb_ports;
4294
static USBPort *free_usb_ports;
4295

    
4296
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4297
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4298
                            usb_attachfn attach)
4299
{
4300
    port->opaque = opaque;
4301
    port->index = index;
4302
    port->attach = attach;
4303
    port->next = free_usb_ports;
4304
    free_usb_ports = port;
4305
}
4306

    
4307
static int usb_device_add(const char *devname)
4308
{
4309
    const char *p;
4310
    USBDevice *dev;
4311
    USBPort *port;
4312

    
4313
    if (!free_usb_ports)
4314
        return -1;
4315

    
4316
    if (strstart(devname, "host:", &p)) {
4317
        dev = usb_host_device_open(p);
4318
    } else if (!strcmp(devname, "mouse")) {
4319
        dev = usb_mouse_init();
4320
    } else if (!strcmp(devname, "tablet")) {
4321
        dev = usb_tablet_init();
4322
    } else if (strstart(devname, "disk:", &p)) {
4323
        dev = usb_msd_init(p);
4324
    } else if (!strcmp(devname, "wacom-tablet")) {
4325
        dev = usb_wacom_init();
4326
    } else {
4327
        return -1;
4328
    }
4329
    if (!dev)
4330
        return -1;
4331

    
4332
    /* Find a USB port to add the device to.  */
4333
    port = free_usb_ports;
4334
    if (!port->next) {
4335
        USBDevice *hub;
4336

    
4337
        /* Create a new hub and chain it on.  */
4338
        free_usb_ports = NULL;
4339
        port->next = used_usb_ports;
4340
        used_usb_ports = port;
4341

    
4342
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4343
        usb_attach(port, hub);
4344
        port = free_usb_ports;
4345
    }
4346

    
4347
    free_usb_ports = port->next;
4348
    port->next = used_usb_ports;
4349
    used_usb_ports = port;
4350
    usb_attach(port, dev);
4351
    return 0;
4352
}
4353

    
4354
static int usb_device_del(const char *devname)
4355
{
4356
    USBPort *port;
4357
    USBPort **lastp;
4358
    USBDevice *dev;
4359
    int bus_num, addr;
4360
    const char *p;
4361

    
4362
    if (!used_usb_ports)
4363
        return -1;
4364

    
4365
    p = strchr(devname, '.');
4366
    if (!p) 
4367
        return -1;
4368
    bus_num = strtoul(devname, NULL, 0);
4369
    addr = strtoul(p + 1, NULL, 0);
4370
    if (bus_num != 0)
4371
        return -1;
4372

    
4373
    lastp = &used_usb_ports;
4374
    port = used_usb_ports;
4375
    while (port && port->dev->addr != addr) {
4376
        lastp = &port->next;
4377
        port = port->next;
4378
    }
4379

    
4380
    if (!port)
4381
        return -1;
4382

    
4383
    dev = port->dev;
4384
    *lastp = port->next;
4385
    usb_attach(port, NULL);
4386
    dev->handle_destroy(dev);
4387
    port->next = free_usb_ports;
4388
    free_usb_ports = port;
4389
    return 0;
4390
}
4391

    
4392
void do_usb_add(const char *devname)
4393
{
4394
    int ret;
4395
    ret = usb_device_add(devname);
4396
    if (ret < 0) 
4397
        term_printf("Could not add USB device '%s'\n", devname);
4398
}
4399

    
4400
void do_usb_del(const char *devname)
4401
{
4402
    int ret;
4403
    ret = usb_device_del(devname);
4404
    if (ret < 0) 
4405
        term_printf("Could not remove USB device '%s'\n", devname);
4406
}
4407

    
4408
void usb_info(void)
4409
{
4410
    USBDevice *dev;
4411
    USBPort *port;
4412
    const char *speed_str;
4413

    
4414
    if (!usb_enabled) {
4415
        term_printf("USB support not enabled\n");
4416
        return;
4417
    }
4418

    
4419
    for (port = used_usb_ports; port; port = port->next) {
4420
        dev = port->dev;
4421
        if (!dev)
4422
            continue;
4423
        switch(dev->speed) {
4424
        case USB_SPEED_LOW: 
4425
            speed_str = "1.5"; 
4426
            break;
4427
        case USB_SPEED_FULL: 
4428
            speed_str = "12"; 
4429
            break;
4430
        case USB_SPEED_HIGH: 
4431
            speed_str = "480"; 
4432
            break;
4433
        default:
4434
            speed_str = "?"; 
4435
            break;
4436
        }
4437
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n", 
4438
                    0, dev->addr, speed_str, dev->devname);
4439
    }
4440
}
4441

    
4442
/***********************************************************/
4443
/* PCMCIA/Cardbus */
4444

    
4445
static struct pcmcia_socket_entry_s {
4446
    struct pcmcia_socket_s *socket;
4447
    struct pcmcia_socket_entry_s *next;
4448
} *pcmcia_sockets = 0;
4449

    
4450
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4451
{
4452
    struct pcmcia_socket_entry_s *entry;
4453

    
4454
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4455
    entry->socket = socket;
4456
    entry->next = pcmcia_sockets;
4457
    pcmcia_sockets = entry;
4458
}
4459

    
4460
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4461
{
4462
    struct pcmcia_socket_entry_s *entry, **ptr;
4463

    
4464
    ptr = &pcmcia_sockets;
4465
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4466
        if (entry->socket == socket) {
4467
            *ptr = entry->next;
4468
            qemu_free(entry);
4469
        }
4470
}
4471

    
4472
void pcmcia_info(void)
4473
{
4474
    struct pcmcia_socket_entry_s *iter;
4475
    if (!pcmcia_sockets)
4476
        term_printf("No PCMCIA sockets\n");
4477

    
4478
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4479
        term_printf("%s: %s\n", iter->socket->slot_string,
4480
                    iter->socket->attached ? iter->socket->card_string :
4481
                    "Empty");
4482
}
4483

    
4484
/***********************************************************/
4485
/* I/O handling */
4486

    
4487
#define MAX_IO_HANDLERS 64
4488

    
4489
typedef struct IOHandlerRecord {
4490
    int fd;
4491
    IOCanRWHandler *fd_read_poll;
4492
    IOHandler *fd_read;
4493
    IOHandler *fd_write;
4494
    int deleted;
4495
    void *opaque;
4496
    /* temporary data */
4497
    struct pollfd *ufd;
4498
    struct IOHandlerRecord *next;
4499
} IOHandlerRecord;
4500

    
4501
static IOHandlerRecord *first_io_handler;
4502

    
4503
/* XXX: fd_read_poll should be suppressed, but an API change is
4504
   necessary in the character devices to suppress fd_can_read(). */
4505
int qemu_set_fd_handler2(int fd, 
4506
                         IOCanRWHandler *fd_read_poll, 
4507
                         IOHandler *fd_read, 
4508
                         IOHandler *fd_write, 
4509
                         void *opaque)
4510
{
4511
    IOHandlerRecord **pioh, *ioh;
4512

    
4513
    if (!fd_read && !fd_write) {
4514
        pioh = &first_io_handler;
4515
        for(;;) {
4516
            ioh = *pioh;
4517
            if (ioh == NULL)
4518
                break;
4519
            if (ioh->fd == fd) {
4520
                ioh->deleted = 1;
4521
                break;
4522
            }
4523
            pioh = &ioh->next;
4524
        }
4525
    } else {
4526
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4527
            if (ioh->fd == fd)
4528
                goto found;
4529
        }
4530
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4531
        if (!ioh)
4532
            return -1;
4533
        ioh->next = first_io_handler;
4534
        first_io_handler = ioh;
4535
    found:
4536
        ioh->fd = fd;
4537
        ioh->fd_read_poll = fd_read_poll;
4538
        ioh->fd_read = fd_read;
4539
        ioh->fd_write = fd_write;
4540
        ioh->opaque = opaque;
4541
        ioh->deleted = 0;
4542
    }
4543
    return 0;
4544
}
4545

    
4546
int qemu_set_fd_handler(int fd, 
4547
                        IOHandler *fd_read, 
4548
                        IOHandler *fd_write, 
4549
                        void *opaque)
4550
{
4551
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4552
}
4553

    
4554
/***********************************************************/
4555
/* Polling handling */
4556

    
4557
typedef struct PollingEntry {
4558
    PollingFunc *func;
4559
    void *opaque;
4560
    struct PollingEntry *next;
4561
} PollingEntry;
4562

    
4563
static PollingEntry *first_polling_entry;
4564

    
4565
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4566
{
4567
    PollingEntry **ppe, *pe;
4568
    pe = qemu_mallocz(sizeof(PollingEntry));
4569
    if (!pe)
4570
        return -1;
4571
    pe->func = func;
4572
    pe->opaque = opaque;
4573
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4574
    *ppe = pe;
4575
    return 0;
4576
}
4577

    
4578
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4579
{
4580
    PollingEntry **ppe, *pe;
4581
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4582
        pe = *ppe;
4583
        if (pe->func == func && pe->opaque == opaque) {
4584
            *ppe = pe->next;
4585
            qemu_free(pe);
4586
            break;
4587
        }
4588
    }
4589
}
4590

    
4591
#ifdef _WIN32
4592
/***********************************************************/
4593
/* Wait objects support */
4594
typedef struct WaitObjects {
4595
    int num;
4596
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4597
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4598
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4599
} WaitObjects;
4600

    
4601
static WaitObjects wait_objects = {0};
4602
    
4603
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4604
{
4605
    WaitObjects *w = &wait_objects;
4606

    
4607
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
4608
        return -1;
4609
    w->events[w->num] = handle;
4610
    w->func[w->num] = func;
4611
    w->opaque[w->num] = opaque;
4612
    w->num++;
4613
    return 0;
4614
}
4615

    
4616
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4617
{
4618
    int i, found;
4619
    WaitObjects *w = &wait_objects;
4620

    
4621
    found = 0;
4622
    for (i = 0; i < w->num; i++) {
4623
        if (w->events[i] == handle)
4624
            found = 1;
4625
        if (found) {
4626
            w->events[i] = w->events[i + 1];
4627
            w->func[i] = w->func[i + 1];
4628
            w->opaque[i] = w->opaque[i + 1];
4629
        }            
4630
    }
4631
    if (found)
4632
        w->num--;
4633
}
4634
#endif
4635

    
4636
/***********************************************************/
4637
/* savevm/loadvm support */
4638

    
4639
#define IO_BUF_SIZE 32768
4640

    
4641
struct QEMUFile {
4642
    FILE *outfile;
4643
    BlockDriverState *bs;
4644
    int is_file;
4645
    int is_writable;
4646
    int64_t base_offset;
4647
    int64_t buf_offset; /* start of buffer when writing, end of buffer
4648
                           when reading */
4649
    int buf_index;
4650
    int buf_size; /* 0 when writing */
4651
    uint8_t buf[IO_BUF_SIZE];
4652
};
4653

    
4654
QEMUFile *qemu_fopen(const char *filename, const char *mode)
4655
{
4656
    QEMUFile *f;
4657

    
4658
    f = qemu_mallocz(sizeof(QEMUFile));
4659
    if (!f)
4660
        return NULL;
4661
    if (!strcmp(mode, "wb")) {
4662
        f->is_writable = 1;
4663
    } else if (!strcmp(mode, "rb")) {
4664
        f->is_writable = 0;
4665
    } else {
4666
        goto fail;
4667
    }
4668
    f->outfile = fopen(filename, mode);
4669
    if (!f->outfile)
4670
        goto fail;
4671
    f->is_file = 1;
4672
    return f;
4673
 fail:
4674
    if (f->outfile)
4675
        fclose(f->outfile);
4676
    qemu_free(f);
4677
    return NULL;
4678
}
4679

    
4680
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4681
{
4682
    QEMUFile *f;
4683

    
4684
    f = qemu_mallocz(sizeof(QEMUFile));
4685
    if (!f)
4686
        return NULL;
4687
    f->is_file = 0;
4688
    f->bs = bs;
4689
    f->is_writable = is_writable;
4690
    f->base_offset = offset;
4691
    return f;
4692
}
4693

    
4694
void qemu_fflush(QEMUFile *f)
4695
{
4696
    if (!f->is_writable)
4697
        return;
4698
    if (f->buf_index > 0) {
4699
        if (f->is_file) {
4700
            fseek(f->outfile, f->buf_offset, SEEK_SET);
4701
            fwrite(f->buf, 1, f->buf_index, f->outfile);
4702
        } else {
4703
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset, 
4704
                        f->buf, f->buf_index);
4705
        }
4706
        f->buf_offset += f->buf_index;
4707
        f->buf_index = 0;
4708
    }
4709
}
4710

    
4711
static void qemu_fill_buffer(QEMUFile *f)
4712
{
4713
    int len;
4714

    
4715
    if (f->is_writable)
4716
        return;
4717
    if (f->is_file) {
4718
        fseek(f->outfile, f->buf_offset, SEEK_SET);
4719
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4720
        if (len < 0)
4721
            len = 0;
4722
    } else {
4723
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset, 
4724
                         f->buf, IO_BUF_SIZE);
4725
        if (len < 0)
4726
            len = 0;
4727
    }
4728
    f->buf_index = 0;
4729
    f->buf_size = len;
4730
    f->buf_offset += len;
4731
}
4732

    
4733
void qemu_fclose(QEMUFile *f)
4734
{
4735
    if (f->is_writable)
4736
        qemu_fflush(f);
4737
    if (f->is_file) {
4738
        fclose(f->outfile);
4739
    }
4740
    qemu_free(f);
4741
}
4742

    
4743
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4744
{
4745
    int l;
4746
    while (size > 0) {
4747
        l = IO_BUF_SIZE - f->buf_index;
4748
        if (l > size)
4749
            l = size;
4750
        memcpy(f->buf + f->buf_index, buf, l);
4751
        f->buf_index += l;
4752
        buf += l;
4753
        size -= l;
4754
        if (f->buf_index >= IO_BUF_SIZE)
4755
            qemu_fflush(f);
4756
    }
4757
}
4758

    
4759
void qemu_put_byte(QEMUFile *f, int v)
4760
{
4761
    f->buf[f->buf_index++] = v;
4762
    if (f->buf_index >= IO_BUF_SIZE)
4763
        qemu_fflush(f);
4764
}
4765

    
4766
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4767
{
4768
    int size, l;
4769

    
4770
    size = size1;
4771
    while (size > 0) {
4772
        l = f->buf_size - f->buf_index;
4773
        if (l == 0) {
4774
            qemu_fill_buffer(f);
4775
            l = f->buf_size - f->buf_index;
4776
            if (l == 0)
4777
                break;
4778
        }
4779
        if (l > size)
4780
            l = size;
4781
        memcpy(buf, f->buf + f->buf_index, l);
4782
        f->buf_index += l;
4783
        buf += l;
4784
        size -= l;
4785
    }
4786
    return size1 - size;
4787
}
4788

    
4789
int qemu_get_byte(QEMUFile *f)
4790
{
4791
    if (f->buf_index >= f->buf_size) {
4792
        qemu_fill_buffer(f);
4793
        if (f->buf_index >= f->buf_size)
4794
            return 0;
4795
    }
4796
    return f->buf[f->buf_index++];
4797
}
4798

    
4799
int64_t qemu_ftell(QEMUFile *f)
4800
{
4801
    return f->buf_offset - f->buf_size + f->buf_index;
4802
}
4803

    
4804
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4805
{
4806
    if (whence == SEEK_SET) {
4807
        /* nothing to do */
4808
    } else if (whence == SEEK_CUR) {
4809
        pos += qemu_ftell(f);
4810
    } else {
4811
        /* SEEK_END not supported */
4812
        return -1;
4813
    }
4814
    if (f->is_writable) {
4815
        qemu_fflush(f);
4816
        f->buf_offset = pos;
4817
    } else {
4818
        f->buf_offset = pos;
4819
        f->buf_index = 0;
4820
        f->buf_size = 0;
4821
    }
4822
    return pos;
4823
}
4824

    
4825
void qemu_put_be16(QEMUFile *f, unsigned int v)
4826
{
4827
    qemu_put_byte(f, v >> 8);
4828
    qemu_put_byte(f, v);
4829
}
4830

    
4831
void qemu_put_be32(QEMUFile *f, unsigned int v)
4832
{
4833
    qemu_put_byte(f, v >> 24);
4834
    qemu_put_byte(f, v >> 16);
4835
    qemu_put_byte(f, v >> 8);
4836
    qemu_put_byte(f, v);
4837
}
4838

    
4839
void qemu_put_be64(QEMUFile *f, uint64_t v)
4840
{
4841
    qemu_put_be32(f, v >> 32);
4842
    qemu_put_be32(f, v);
4843
}
4844

    
4845
unsigned int qemu_get_be16(QEMUFile *f)
4846
{
4847
    unsigned int v;
4848
    v = qemu_get_byte(f) << 8;
4849
    v |= qemu_get_byte(f);
4850
    return v;
4851
}
4852

    
4853
unsigned int qemu_get_be32(QEMUFile *f)
4854
{
4855
    unsigned int v;
4856
    v = qemu_get_byte(f) << 24;
4857
    v |= qemu_get_byte(f) << 16;
4858
    v |= qemu_get_byte(f) << 8;
4859
    v |= qemu_get_byte(f);
4860
    return v;
4861
}
4862

    
4863
uint64_t qemu_get_be64(QEMUFile *f)
4864
{
4865
    uint64_t v;
4866
    v = (uint64_t)qemu_get_be32(f) << 32;
4867
    v |= qemu_get_be32(f);
4868
    return v;
4869
}
4870

    
4871
typedef struct SaveStateEntry {
4872
    char idstr[256];
4873
    int instance_id;
4874
    int version_id;
4875
    SaveStateHandler *save_state;
4876
    LoadStateHandler *load_state;
4877
    void *opaque;
4878
    struct SaveStateEntry *next;
4879
} SaveStateEntry;
4880

    
4881
static SaveStateEntry *first_se;
4882

    
4883
int register_savevm(const char *idstr, 
4884
                    int instance_id, 
4885
                    int version_id,
4886
                    SaveStateHandler *save_state,
4887
                    LoadStateHandler *load_state,
4888
                    void *opaque)
4889
{
4890
    SaveStateEntry *se, **pse;
4891

    
4892
    se = qemu_malloc(sizeof(SaveStateEntry));
4893
    if (!se)
4894
        return -1;
4895
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4896
    se->instance_id = instance_id;
4897
    se->version_id = version_id;
4898
    se->save_state = save_state;
4899
    se->load_state = load_state;
4900
    se->opaque = opaque;
4901
    se->next = NULL;
4902

    
4903
    /* add at the end of list */
4904
    pse = &first_se;
4905
    while (*pse != NULL)
4906
        pse = &(*pse)->next;
4907
    *pse = se;
4908
    return 0;
4909
}
4910

    
4911
#define QEMU_VM_FILE_MAGIC   0x5145564d
4912
#define QEMU_VM_FILE_VERSION 0x00000002
4913

    
4914
int qemu_savevm_state(QEMUFile *f)
4915
{
4916
    SaveStateEntry *se;
4917
    int len, ret;
4918
    int64_t cur_pos, len_pos, total_len_pos;
4919

    
4920
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4921
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4922
    total_len_pos = qemu_ftell(f);
4923
    qemu_put_be64(f, 0); /* total size */
4924

    
4925
    for(se = first_se; se != NULL; se = se->next) {
4926
        /* ID string */
4927
        len = strlen(se->idstr);
4928
        qemu_put_byte(f, len);
4929
        qemu_put_buffer(f, se->idstr, len);
4930

    
4931
        qemu_put_be32(f, se->instance_id);
4932
        qemu_put_be32(f, se->version_id);
4933

    
4934
        /* record size: filled later */
4935
        len_pos = qemu_ftell(f);
4936
        qemu_put_be32(f, 0);
4937
        
4938
        se->save_state(f, se->opaque);
4939

    
4940
        /* fill record size */
4941
        cur_pos = qemu_ftell(f);
4942
        len = cur_pos - len_pos - 4;
4943
        qemu_fseek(f, len_pos, SEEK_SET);
4944
        qemu_put_be32(f, len);
4945
        qemu_fseek(f, cur_pos, SEEK_SET);
4946
    }
4947
    cur_pos = qemu_ftell(f);
4948
    qemu_fseek(f, total_len_pos, SEEK_SET);
4949
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
4950
    qemu_fseek(f, cur_pos, SEEK_SET);
4951

    
4952
    ret = 0;
4953
    return ret;
4954
}
4955

    
4956
static SaveStateEntry *find_se(const char *idstr, int instance_id)
4957
{
4958
    SaveStateEntry *se;
4959

    
4960
    for(se = first_se; se != NULL; se = se->next) {
4961
        if (!strcmp(se->idstr, idstr) && 
4962
            instance_id == se->instance_id)
4963
            return se;
4964
    }
4965
    return NULL;
4966
}
4967

    
4968
int qemu_loadvm_state(QEMUFile *f)
4969
{
4970
    SaveStateEntry *se;
4971
    int len, ret, instance_id, record_len, version_id;
4972
    int64_t total_len, end_pos, cur_pos;
4973
    unsigned int v;
4974
    char idstr[256];
4975
    
4976
    v = qemu_get_be32(f);
4977
    if (v != QEMU_VM_FILE_MAGIC)
4978
        goto fail;
4979
    v = qemu_get_be32(f);
4980
    if (v != QEMU_VM_FILE_VERSION) {
4981
    fail:
4982
        ret = -1;
4983
        goto the_end;
4984
    }
4985
    total_len = qemu_get_be64(f);
4986
    end_pos = total_len + qemu_ftell(f);
4987
    for(;;) {
4988
        if (qemu_ftell(f) >= end_pos)
4989
            break;
4990
        len = qemu_get_byte(f);
4991
        qemu_get_buffer(f, idstr, len);
4992
        idstr[len] = '\0';
4993
        instance_id = qemu_get_be32(f);
4994
        version_id = qemu_get_be32(f);
4995
        record_len = qemu_get_be32(f);
4996
#if 0
4997
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
4998
               idstr, instance_id, version_id, record_len);
4999
#endif
5000
        cur_pos = qemu_ftell(f);
5001
        se = find_se(idstr, instance_id);
5002
        if (!se) {
5003
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
5004
                    instance_id, idstr);
5005
        } else {
5006
            ret = se->load_state(f, se->opaque, version_id);
5007
            if (ret < 0) {
5008
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
5009
                        instance_id, idstr);
5010
            }
5011
        }
5012
        /* always seek to exact end of record */
5013
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5014
    }
5015
    ret = 0;
5016
 the_end:
5017
    return ret;
5018
}
5019

    
5020
/* device can contain snapshots */
5021
static int bdrv_can_snapshot(BlockDriverState *bs)
5022
{
5023
    return (bs &&
5024
            !bdrv_is_removable(bs) &&
5025
            !bdrv_is_read_only(bs));
5026
}
5027

    
5028
/* device must be snapshots in order to have a reliable snapshot */
5029
static int bdrv_has_snapshot(BlockDriverState *bs)
5030
{
5031
    return (bs &&
5032
            !bdrv_is_removable(bs) &&
5033
            !bdrv_is_read_only(bs));
5034
}
5035

    
5036
static BlockDriverState *get_bs_snapshots(void)
5037
{
5038
    BlockDriverState *bs;
5039
    int i;
5040

    
5041
    if (bs_snapshots)
5042
        return bs_snapshots;
5043
    for(i = 0; i <= MAX_DISKS; i++) {
5044
        bs = bs_table[i];
5045
        if (bdrv_can_snapshot(bs))
5046
            goto ok;
5047
    }
5048
    return NULL;
5049
 ok:
5050
    bs_snapshots = bs;
5051
    return bs;
5052
}
5053

    
5054
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5055
                              const char *name)
5056
{
5057
    QEMUSnapshotInfo *sn_tab, *sn;
5058
    int nb_sns, i, ret;
5059
    
5060
    ret = -ENOENT;
5061
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5062
    if (nb_sns < 0)
5063
        return ret;
5064
    for(i = 0; i < nb_sns; i++) {
5065
        sn = &sn_tab[i];
5066
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5067
            *sn_info = *sn;
5068
            ret = 0;
5069
            break;
5070
        }
5071
    }
5072
    qemu_free(sn_tab);
5073
    return ret;
5074
}
5075

    
5076
void do_savevm(const char *name)
5077
{
5078
    BlockDriverState *bs, *bs1;
5079
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5080
    int must_delete, ret, i;
5081
    BlockDriverInfo bdi1, *bdi = &bdi1;
5082
    QEMUFile *f;
5083
    int saved_vm_running;
5084
#ifdef _WIN32
5085
    struct _timeb tb;
5086
#else
5087
    struct timeval tv;
5088
#endif
5089

    
5090
    bs = get_bs_snapshots();
5091
    if (!bs) {
5092
        term_printf("No block device can accept snapshots\n");
5093
        return;
5094
    }
5095

    
5096
    /* ??? Should this occur after vm_stop?  */
5097
    qemu_aio_flush();
5098

    
5099
    saved_vm_running = vm_running;
5100
    vm_stop(0);
5101
    
5102
    must_delete = 0;
5103
    if (name) {
5104
        ret = bdrv_snapshot_find(bs, old_sn, name);
5105
        if (ret >= 0) {
5106
            must_delete = 1;
5107
        }
5108
    }
5109
    memset(sn, 0, sizeof(*sn));
5110
    if (must_delete) {
5111
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5112
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5113
    } else {
5114
        if (name)
5115
            pstrcpy(sn->name, sizeof(sn->name), name);
5116
    }
5117

    
5118
    /* fill auxiliary fields */
5119
#ifdef _WIN32
5120
    _ftime(&tb);
5121
    sn->date_sec = tb.time;
5122
    sn->date_nsec = tb.millitm * 1000000;
5123
#else
5124
    gettimeofday(&tv, NULL);
5125
    sn->date_sec = tv.tv_sec;
5126
    sn->date_nsec = tv.tv_usec * 1000;
5127
#endif
5128
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5129
    
5130
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5131
        term_printf("Device %s does not support VM state snapshots\n",
5132
                    bdrv_get_device_name(bs));
5133
        goto the_end;
5134
    }
5135
    
5136
    /* save the VM state */
5137
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5138
    if (!f) {
5139
        term_printf("Could not open VM state file\n");
5140
        goto the_end;
5141
    }
5142
    ret = qemu_savevm_state(f);
5143
    sn->vm_state_size = qemu_ftell(f);
5144
    qemu_fclose(f);
5145
    if (ret < 0) {
5146
        term_printf("Error %d while writing VM\n", ret);
5147
        goto the_end;
5148
    }
5149
    
5150
    /* create the snapshots */
5151

    
5152
    for(i = 0; i < MAX_DISKS; i++) {
5153
        bs1 = bs_table[i];
5154
        if (bdrv_has_snapshot(bs1)) {
5155
            if (must_delete) {
5156
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5157
                if (ret < 0) {
5158
                    term_printf("Error while deleting snapshot on '%s'\n",
5159
                                bdrv_get_device_name(bs1));
5160
                }
5161
            }
5162
            ret = bdrv_snapshot_create(bs1, sn);
5163
            if (ret < 0) {
5164
                term_printf("Error while creating snapshot on '%s'\n",
5165
                            bdrv_get_device_name(bs1));
5166
            }
5167
        }
5168
    }
5169

    
5170
 the_end:
5171
    if (saved_vm_running)
5172
        vm_start();
5173
}
5174

    
5175
void do_loadvm(const char *name)
5176
{
5177
    BlockDriverState *bs, *bs1;
5178
    BlockDriverInfo bdi1, *bdi = &bdi1;
5179
    QEMUFile *f;
5180
    int i, ret;
5181
    int saved_vm_running;
5182

    
5183
    bs = get_bs_snapshots();
5184
    if (!bs) {
5185
        term_printf("No block device supports snapshots\n");
5186
        return;
5187
    }
5188
    
5189
    /* Flush all IO requests so they don't interfere with the new state.  */
5190
    qemu_aio_flush();
5191

    
5192
    saved_vm_running = vm_running;
5193
    vm_stop(0);
5194

    
5195
    for(i = 0; i <= MAX_DISKS; i++) {
5196
        bs1 = bs_table[i];
5197
        if (bdrv_has_snapshot(bs1)) {
5198
            ret = bdrv_snapshot_goto(bs1, name);
5199
            if (ret < 0) {
5200
                if (bs != bs1)
5201
                    term_printf("Warning: ");
5202
                switch(ret) {
5203
                case -ENOTSUP:
5204
                    term_printf("Snapshots not supported on device '%s'\n",
5205
                                bdrv_get_device_name(bs1));
5206
                    break;
5207
                case -ENOENT:
5208
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5209
                                name, bdrv_get_device_name(bs1));
5210
                    break;
5211
                default:
5212
                    term_printf("Error %d while activating snapshot on '%s'\n",
5213
                                ret, bdrv_get_device_name(bs1));
5214
                    break;
5215
                }
5216
                /* fatal on snapshot block device */
5217
                if (bs == bs1)
5218
                    goto the_end;
5219
            }
5220
        }
5221
    }
5222

    
5223
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5224
        term_printf("Device %s does not support VM state snapshots\n",
5225
                    bdrv_get_device_name(bs));
5226
        return;
5227
    }
5228
    
5229
    /* restore the VM state */
5230
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5231
    if (!f) {
5232
        term_printf("Could not open VM state file\n");
5233
        goto the_end;
5234
    }
5235
    ret = qemu_loadvm_state(f);
5236
    qemu_fclose(f);
5237
    if (ret < 0) {
5238
        term_printf("Error %d while loading VM state\n", ret);
5239
    }
5240
 the_end:
5241
    if (saved_vm_running)
5242
        vm_start();
5243
}
5244

    
5245
void do_delvm(const char *name)
5246
{
5247
    BlockDriverState *bs, *bs1;
5248
    int i, ret;
5249

    
5250
    bs = get_bs_snapshots();
5251
    if (!bs) {
5252
        term_printf("No block device supports snapshots\n");
5253
        return;
5254
    }
5255
    
5256
    for(i = 0; i <= MAX_DISKS; i++) {
5257
        bs1 = bs_table[i];
5258
        if (bdrv_has_snapshot(bs1)) {
5259
            ret = bdrv_snapshot_delete(bs1, name);
5260
            if (ret < 0) {
5261
                if (ret == -ENOTSUP)
5262
                    term_printf("Snapshots not supported on device '%s'\n",
5263
                                bdrv_get_device_name(bs1));
5264
                else
5265
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5266
                                ret, bdrv_get_device_name(bs1));
5267
            }
5268
        }
5269
    }
5270
}
5271

    
5272
void do_info_snapshots(void)
5273
{
5274
    BlockDriverState *bs, *bs1;
5275
    QEMUSnapshotInfo *sn_tab, *sn;
5276
    int nb_sns, i;
5277
    char buf[256];
5278

    
5279
    bs = get_bs_snapshots();
5280
    if (!bs) {
5281
        term_printf("No available block device supports snapshots\n");
5282
        return;
5283
    }
5284
    term_printf("Snapshot devices:");
5285
    for(i = 0; i <= MAX_DISKS; i++) {
5286
        bs1 = bs_table[i];
5287
        if (bdrv_has_snapshot(bs1)) {
5288
            if (bs == bs1)
5289
                term_printf(" %s", bdrv_get_device_name(bs1));
5290
        }
5291
    }
5292
    term_printf("\n");
5293

    
5294
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5295
    if (nb_sns < 0) {
5296
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5297
        return;
5298
    }
5299
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5300
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5301
    for(i = 0; i < nb_sns; i++) {
5302
        sn = &sn_tab[i];
5303
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5304
    }
5305
    qemu_free(sn_tab);
5306
}
5307

    
5308
/***********************************************************/
5309
/* cpu save/restore */
5310

    
5311
#if defined(TARGET_I386)
5312

    
5313
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5314
{
5315
    qemu_put_be32(f, dt->selector);
5316
    qemu_put_betl(f, dt->base);
5317
    qemu_put_be32(f, dt->limit);
5318
    qemu_put_be32(f, dt->flags);
5319
}
5320

    
5321
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5322
{
5323
    dt->selector = qemu_get_be32(f);
5324
    dt->base = qemu_get_betl(f);
5325
    dt->limit = qemu_get_be32(f);
5326
    dt->flags = qemu_get_be32(f);
5327
}
5328

    
5329
void cpu_save(QEMUFile *f, void *opaque)
5330
{
5331
    CPUState *env = opaque;
5332
    uint16_t fptag, fpus, fpuc, fpregs_format;
5333
    uint32_t hflags;
5334
    int i;
5335
    
5336
    for(i = 0; i < CPU_NB_REGS; i++)
5337
        qemu_put_betls(f, &env->regs[i]);
5338
    qemu_put_betls(f, &env->eip);
5339
    qemu_put_betls(f, &env->eflags);
5340
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5341
    qemu_put_be32s(f, &hflags);
5342
    
5343
    /* FPU */
5344
    fpuc = env->fpuc;
5345
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5346
    fptag = 0;
5347
    for(i = 0; i < 8; i++) {
5348
        fptag |= ((!env->fptags[i]) << i);
5349
    }
5350
    
5351
    qemu_put_be16s(f, &fpuc);
5352
    qemu_put_be16s(f, &fpus);
5353
    qemu_put_be16s(f, &fptag);
5354

    
5355
#ifdef USE_X86LDOUBLE
5356
    fpregs_format = 0;
5357
#else
5358
    fpregs_format = 1;
5359
#endif
5360
    qemu_put_be16s(f, &fpregs_format);
5361
    
5362
    for(i = 0; i < 8; i++) {
5363
#ifdef USE_X86LDOUBLE
5364
        {
5365
            uint64_t mant;
5366
            uint16_t exp;
5367
            /* we save the real CPU data (in case of MMX usage only 'mant'
5368
               contains the MMX register */
5369
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5370
            qemu_put_be64(f, mant);
5371
            qemu_put_be16(f, exp);
5372
        }
5373
#else
5374
        /* if we use doubles for float emulation, we save the doubles to
5375
           avoid losing information in case of MMX usage. It can give
5376
           problems if the image is restored on a CPU where long
5377
           doubles are used instead. */
5378
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5379
#endif
5380
    }
5381

    
5382
    for(i = 0; i < 6; i++)
5383
        cpu_put_seg(f, &env->segs[i]);
5384
    cpu_put_seg(f, &env->ldt);
5385
    cpu_put_seg(f, &env->tr);
5386
    cpu_put_seg(f, &env->gdt);
5387
    cpu_put_seg(f, &env->idt);
5388
    
5389
    qemu_put_be32s(f, &env->sysenter_cs);
5390
    qemu_put_be32s(f, &env->sysenter_esp);
5391
    qemu_put_be32s(f, &env->sysenter_eip);
5392
    
5393
    qemu_put_betls(f, &env->cr[0]);
5394
    qemu_put_betls(f, &env->cr[2]);
5395
    qemu_put_betls(f, &env->cr[3]);
5396
    qemu_put_betls(f, &env->cr[4]);
5397
    
5398
    for(i = 0; i < 8; i++)
5399
        qemu_put_betls(f, &env->dr[i]);
5400

    
5401
    /* MMU */
5402
    qemu_put_be32s(f, &env->a20_mask);
5403

    
5404
    /* XMM */
5405
    qemu_put_be32s(f, &env->mxcsr);
5406
    for(i = 0; i < CPU_NB_REGS; i++) {
5407
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5408
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5409
    }
5410

    
5411
#ifdef TARGET_X86_64
5412
    qemu_put_be64s(f, &env->efer);
5413
    qemu_put_be64s(f, &env->star);
5414
    qemu_put_be64s(f, &env->lstar);
5415
    qemu_put_be64s(f, &env->cstar);
5416
    qemu_put_be64s(f, &env->fmask);
5417
    qemu_put_be64s(f, &env->kernelgsbase);
5418
#endif
5419
    qemu_put_be32s(f, &env->smbase);
5420
}
5421

    
5422
#ifdef USE_X86LDOUBLE
5423
/* XXX: add that in a FPU generic layer */
5424
union x86_longdouble {
5425
    uint64_t mant;
5426
    uint16_t exp;
5427
};
5428

    
5429
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5430
#define EXPBIAS1 1023
5431
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5432
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5433

    
5434
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5435
{
5436
    int e;
5437
    /* mantissa */
5438
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5439
    /* exponent + sign */
5440
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5441
    e |= SIGND1(temp) >> 16;
5442
    p->exp = e;
5443
}
5444
#endif
5445

    
5446
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5447
{
5448
    CPUState *env = opaque;
5449
    int i, guess_mmx;
5450
    uint32_t hflags;
5451
    uint16_t fpus, fpuc, fptag, fpregs_format;
5452

    
5453
    if (version_id != 3 && version_id != 4)
5454
        return -EINVAL;
5455
    for(i = 0; i < CPU_NB_REGS; i++)
5456
        qemu_get_betls(f, &env->regs[i]);
5457
    qemu_get_betls(f, &env->eip);
5458
    qemu_get_betls(f, &env->eflags);
5459
    qemu_get_be32s(f, &hflags);
5460

    
5461
    qemu_get_be16s(f, &fpuc);
5462
    qemu_get_be16s(f, &fpus);
5463
    qemu_get_be16s(f, &fptag);
5464
    qemu_get_be16s(f, &fpregs_format);
5465
    
5466
    /* NOTE: we cannot always restore the FPU state if the image come
5467
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5468
       if we are in an MMX state to restore correctly in that case. */
5469
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5470
    for(i = 0; i < 8; i++) {
5471
        uint64_t mant;
5472
        uint16_t exp;
5473
        
5474
        switch(fpregs_format) {
5475
        case 0:
5476
            mant = qemu_get_be64(f);
5477
            exp = qemu_get_be16(f);
5478
#ifdef USE_X86LDOUBLE
5479
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5480
#else
5481
            /* difficult case */
5482
            if (guess_mmx)
5483
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5484
            else
5485
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5486
#endif
5487
            break;
5488
        case 1:
5489
            mant = qemu_get_be64(f);
5490
#ifdef USE_X86LDOUBLE
5491
            {
5492
                union x86_longdouble *p;
5493
                /* difficult case */
5494
                p = (void *)&env->fpregs[i];
5495
                if (guess_mmx) {
5496
                    p->mant = mant;
5497
                    p->exp = 0xffff;
5498
                } else {
5499
                    fp64_to_fp80(p, mant);
5500
                }
5501
            }
5502
#else
5503
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5504
#endif            
5505
            break;
5506
        default:
5507
            return -EINVAL;
5508
        }
5509
    }
5510

    
5511
    env->fpuc = fpuc;
5512
    /* XXX: restore FPU round state */
5513
    env->fpstt = (fpus >> 11) & 7;
5514
    env->fpus = fpus & ~0x3800;
5515
    fptag ^= 0xff;
5516
    for(i = 0; i < 8; i++) {
5517
        env->fptags[i] = (fptag >> i) & 1;
5518
    }
5519
    
5520
    for(i = 0; i < 6; i++)
5521
        cpu_get_seg(f, &env->segs[i]);
5522
    cpu_get_seg(f, &env->ldt);
5523
    cpu_get_seg(f, &env->tr);
5524
    cpu_get_seg(f, &env->gdt);
5525
    cpu_get_seg(f, &env->idt);
5526
    
5527
    qemu_get_be32s(f, &env->sysenter_cs);
5528
    qemu_get_be32s(f, &env->sysenter_esp);
5529
    qemu_get_be32s(f, &env->sysenter_eip);
5530
    
5531
    qemu_get_betls(f, &env->cr[0]);
5532
    qemu_get_betls(f, &env->cr[2]);
5533
    qemu_get_betls(f, &env->cr[3]);
5534
    qemu_get_betls(f, &env->cr[4]);
5535
    
5536
    for(i = 0; i < 8; i++)
5537
        qemu_get_betls(f, &env->dr[i]);
5538

    
5539
    /* MMU */
5540
    qemu_get_be32s(f, &env->a20_mask);
5541

    
5542
    qemu_get_be32s(f, &env->mxcsr);
5543
    for(i = 0; i < CPU_NB_REGS; i++) {
5544
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5545
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5546
    }
5547

    
5548
#ifdef TARGET_X86_64
5549
    qemu_get_be64s(f, &env->efer);
5550
    qemu_get_be64s(f, &env->star);
5551
    qemu_get_be64s(f, &env->lstar);
5552
    qemu_get_be64s(f, &env->cstar);
5553
    qemu_get_be64s(f, &env->fmask);
5554
    qemu_get_be64s(f, &env->kernelgsbase);
5555
#endif
5556
    if (version_id >= 4) 
5557
        qemu_get_be32s(f, &env->smbase);
5558

    
5559
    /* XXX: compute hflags from scratch, except for CPL and IIF */
5560
    env->hflags = hflags;
5561
    tlb_flush(env, 1);
5562
    return 0;
5563
}
5564

    
5565
#elif defined(TARGET_PPC)
5566
void cpu_save(QEMUFile *f, void *opaque)
5567
{
5568
}
5569

    
5570
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5571
{
5572
    return 0;
5573
}
5574

    
5575
#elif defined(TARGET_MIPS)
5576
void cpu_save(QEMUFile *f, void *opaque)
5577
{
5578
}
5579

    
5580
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5581
{
5582
    return 0;
5583
}
5584

    
5585
#elif defined(TARGET_SPARC)
5586
void cpu_save(QEMUFile *f, void *opaque)
5587
{
5588
    CPUState *env = opaque;
5589
    int i;
5590
    uint32_t tmp;
5591

    
5592
    for(i = 0; i < 8; i++)
5593
        qemu_put_betls(f, &env->gregs[i]);
5594
    for(i = 0; i < NWINDOWS * 16; i++)
5595
        qemu_put_betls(f, &env->regbase[i]);
5596

    
5597
    /* FPU */
5598
    for(i = 0; i < TARGET_FPREGS; i++) {
5599
        union {
5600
            float32 f;
5601
            uint32_t i;
5602
        } u;
5603
        u.f = env->fpr[i];
5604
        qemu_put_be32(f, u.i);
5605
    }
5606

    
5607
    qemu_put_betls(f, &env->pc);
5608
    qemu_put_betls(f, &env->npc);
5609
    qemu_put_betls(f, &env->y);
5610
    tmp = GET_PSR(env);
5611
    qemu_put_be32(f, tmp);
5612
    qemu_put_betls(f, &env->fsr);
5613
    qemu_put_betls(f, &env->tbr);
5614
#ifndef TARGET_SPARC64
5615
    qemu_put_be32s(f, &env->wim);
5616
    /* MMU */
5617
    for(i = 0; i < 16; i++)
5618
        qemu_put_be32s(f, &env->mmuregs[i]);
5619
#endif
5620
}
5621

    
5622
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5623
{
5624
    CPUState *env = opaque;
5625
    int i;
5626
    uint32_t tmp;
5627

    
5628
    for(i = 0; i < 8; i++)
5629
        qemu_get_betls(f, &env->gregs[i]);
5630
    for(i = 0; i < NWINDOWS * 16; i++)
5631
        qemu_get_betls(f, &env->regbase[i]);
5632

    
5633
    /* FPU */
5634
    for(i = 0; i < TARGET_FPREGS; i++) {
5635
        union {
5636
            float32 f;
5637
            uint32_t i;
5638
        } u;
5639
        u.i = qemu_get_be32(f);
5640
        env->fpr[i] = u.f;
5641
    }
5642

    
5643
    qemu_get_betls(f, &env->pc);
5644
    qemu_get_betls(f, &env->npc);
5645
    qemu_get_betls(f, &env->y);
5646
    tmp = qemu_get_be32(f);
5647
    env->cwp = 0; /* needed to ensure that the wrapping registers are
5648
                     correctly updated */
5649
    PUT_PSR(env, tmp);
5650
    qemu_get_betls(f, &env->fsr);
5651
    qemu_get_betls(f, &env->tbr);
5652
#ifndef TARGET_SPARC64
5653
    qemu_get_be32s(f, &env->wim);
5654
    /* MMU */
5655
    for(i = 0; i < 16; i++)
5656
        qemu_get_be32s(f, &env->mmuregs[i]);
5657
#endif
5658
    tlb_flush(env, 1);
5659
    return 0;
5660
}
5661

    
5662
#elif defined(TARGET_ARM)
5663

    
5664
void cpu_save(QEMUFile *f, void *opaque)
5665
{
5666
    int i;
5667
    CPUARMState *env = (CPUARMState *)opaque;
5668

    
5669
    for (i = 0; i < 16; i++) {
5670
        qemu_put_be32(f, env->regs[i]);
5671
    }
5672
    qemu_put_be32(f, cpsr_read(env));
5673
    qemu_put_be32(f, env->spsr);
5674
    for (i = 0; i < 6; i++) {
5675
        qemu_put_be32(f, env->banked_spsr[i]);
5676
        qemu_put_be32(f, env->banked_r13[i]);
5677
        qemu_put_be32(f, env->banked_r14[i]);
5678
    }
5679
    for (i = 0; i < 5; i++) {
5680
        qemu_put_be32(f, env->usr_regs[i]);
5681
        qemu_put_be32(f, env->fiq_regs[i]);
5682
    }
5683
    qemu_put_be32(f, env->cp15.c0_cpuid);
5684
    qemu_put_be32(f, env->cp15.c0_cachetype);
5685
    qemu_put_be32(f, env->cp15.c1_sys);
5686
    qemu_put_be32(f, env->cp15.c1_coproc);
5687
    qemu_put_be32(f, env->cp15.c2_base);
5688
    qemu_put_be32(f, env->cp15.c2_data);
5689
    qemu_put_be32(f, env->cp15.c2_insn);
5690
    qemu_put_be32(f, env->cp15.c3);
5691
    qemu_put_be32(f, env->cp15.c5_insn);
5692
    qemu_put_be32(f, env->cp15.c5_data);
5693
    for (i = 0; i < 8; i++) {
5694
        qemu_put_be32(f, env->cp15.c6_region[i]);
5695
    }
5696
    qemu_put_be32(f, env->cp15.c6_insn);
5697
    qemu_put_be32(f, env->cp15.c6_data);
5698
    qemu_put_be32(f, env->cp15.c9_insn);
5699
    qemu_put_be32(f, env->cp15.c9_data);
5700
    qemu_put_be32(f, env->cp15.c13_fcse);
5701
    qemu_put_be32(f, env->cp15.c13_context);
5702
    qemu_put_be32(f, env->cp15.c15_cpar);
5703

    
5704
    qemu_put_be32(f, env->features);
5705

    
5706
    if (arm_feature(env, ARM_FEATURE_VFP)) {
5707
        for (i = 0;  i < 16; i++) {
5708
            CPU_DoubleU u;
5709
            u.d = env->vfp.regs[i];
5710
            qemu_put_be32(f, u.l.upper);
5711
            qemu_put_be32(f, u.l.lower);
5712
        }
5713
        for (i = 0; i < 16; i++) {
5714
            qemu_put_be32(f, env->vfp.xregs[i]);
5715
        }
5716

    
5717
        /* TODO: Should use proper FPSCR access functions.  */
5718
        qemu_put_be32(f, env->vfp.vec_len);
5719
        qemu_put_be32(f, env->vfp.vec_stride);
5720
    }
5721

    
5722
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5723
        for (i = 0; i < 16; i++) {
5724
            qemu_put_be64(f, env->iwmmxt.regs[i]);
5725
        }
5726
        for (i = 0; i < 16; i++) {
5727
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
5728
        }
5729
    }
5730
}
5731

    
5732
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5733
{
5734
    CPUARMState *env = (CPUARMState *)opaque;
5735
    int i;
5736

    
5737
    if (version_id != 0)
5738
        return -EINVAL;
5739

    
5740
    for (i = 0; i < 16; i++) {
5741
        env->regs[i] = qemu_get_be32(f);
5742
    }
5743
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
5744
    env->spsr = qemu_get_be32(f);
5745
    for (i = 0; i < 6; i++) {
5746
        env->banked_spsr[i] = qemu_get_be32(f);
5747
        env->banked_r13[i] = qemu_get_be32(f);
5748
        env->banked_r14[i] = qemu_get_be32(f);
5749
    }
5750
    for (i = 0; i < 5; i++) {
5751
        env->usr_regs[i] = qemu_get_be32(f);
5752
        env->fiq_regs[i] = qemu_get_be32(f);
5753
    }
5754
    env->cp15.c0_cpuid = qemu_get_be32(f);
5755
    env->cp15.c0_cachetype = qemu_get_be32(f);
5756
    env->cp15.c1_sys = qemu_get_be32(f);
5757
    env->cp15.c1_coproc = qemu_get_be32(f);
5758
    env->cp15.c2_base = qemu_get_be32(f);
5759
    env->cp15.c2_data = qemu_get_be32(f);
5760
    env->cp15.c2_insn = qemu_get_be32(f);
5761
    env->cp15.c3 = qemu_get_be32(f);
5762
    env->cp15.c5_insn = qemu_get_be32(f);
5763
    env->cp15.c5_data = qemu_get_be32(f);
5764
    for (i = 0; i < 8; i++) {
5765
        env->cp15.c6_region[i] = qemu_get_be32(f);
5766
    }
5767
    env->cp15.c6_insn = qemu_get_be32(f);
5768
    env->cp15.c6_data = qemu_get_be32(f);
5769
    env->cp15.c9_insn = qemu_get_be32(f);
5770
    env->cp15.c9_data = qemu_get_be32(f);
5771
    env->cp15.c13_fcse = qemu_get_be32(f);
5772
    env->cp15.c13_context = qemu_get_be32(f);
5773
    env->cp15.c15_cpar = qemu_get_be32(f);
5774

    
5775
    env->features = qemu_get_be32(f);
5776

    
5777
    if (arm_feature(env, ARM_FEATURE_VFP)) {
5778
        for (i = 0;  i < 16; i++) {
5779
            CPU_DoubleU u;
5780
            u.l.upper = qemu_get_be32(f);
5781
            u.l.lower = qemu_get_be32(f);
5782
            env->vfp.regs[i] = u.d;
5783
        }
5784
        for (i = 0; i < 16; i++) {
5785
            env->vfp.xregs[i] = qemu_get_be32(f);
5786
        }
5787

    
5788
        /* TODO: Should use proper FPSCR access functions.  */
5789
        env->vfp.vec_len = qemu_get_be32(f);
5790
        env->vfp.vec_stride = qemu_get_be32(f);
5791
    }
5792

    
5793
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5794
        for (i = 0; i < 16; i++) {
5795
            env->iwmmxt.regs[i] = qemu_get_be64(f);
5796
        }
5797
        for (i = 0; i < 16; i++) {
5798
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
5799
        }
5800
    }
5801

    
5802
    return 0;
5803
}
5804

    
5805
#else
5806

    
5807
#warning No CPU save/restore functions
5808

    
5809
#endif
5810

    
5811
/***********************************************************/
5812
/* ram save/restore */
5813

    
5814
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5815
{
5816
    int v;
5817

    
5818
    v = qemu_get_byte(f);
5819
    switch(v) {
5820
    case 0:
5821
        if (qemu_get_buffer(f, buf, len) != len)
5822
            return -EIO;
5823
        break;
5824
    case 1:
5825
        v = qemu_get_byte(f);
5826
        memset(buf, v, len);
5827
        break;
5828
    default:
5829
        return -EINVAL;
5830
    }
5831
    return 0;
5832
}
5833

    
5834
static int ram_load_v1(QEMUFile *f, void *opaque)
5835
{
5836
    int i, ret;
5837

    
5838
    if (qemu_get_be32(f) != phys_ram_size)
5839
        return -EINVAL;
5840
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5841
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5842
        if (ret)
5843
            return ret;
5844
    }
5845
    return 0;
5846
}
5847

    
5848
#define BDRV_HASH_BLOCK_SIZE 1024
5849
#define IOBUF_SIZE 4096
5850
#define RAM_CBLOCK_MAGIC 0xfabe
5851

    
5852
typedef struct RamCompressState {
5853
    z_stream zstream;
5854
    QEMUFile *f;
5855
    uint8_t buf[IOBUF_SIZE];
5856
} RamCompressState;
5857

    
5858
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5859
{
5860
    int ret;
5861
    memset(s, 0, sizeof(*s));
5862
    s->f = f;
5863
    ret = deflateInit2(&s->zstream, 1,
5864
                       Z_DEFLATED, 15, 
5865
                       9, Z_DEFAULT_STRATEGY);
5866
    if (ret != Z_OK)
5867
        return -1;
5868
    s->zstream.avail_out = IOBUF_SIZE;
5869
    s->zstream.next_out = s->buf;
5870
    return 0;
5871
}
5872

    
5873
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5874
{
5875
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5876
    qemu_put_be16(s->f, len);
5877
    qemu_put_buffer(s->f, buf, len);
5878
}
5879

    
5880
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5881
{
5882
    int ret;
5883

    
5884
    s->zstream.avail_in = len;
5885
    s->zstream.next_in = (uint8_t *)buf;
5886
    while (s->zstream.avail_in > 0) {
5887
        ret = deflate(&s->zstream, Z_NO_FLUSH);
5888
        if (ret != Z_OK)
5889
            return -1;
5890
        if (s->zstream.avail_out == 0) {
5891
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
5892
            s->zstream.avail_out = IOBUF_SIZE;
5893
            s->zstream.next_out = s->buf;
5894
        }
5895
    }
5896
    return 0;
5897
}
5898

    
5899
static void ram_compress_close(RamCompressState *s)
5900
{
5901
    int len, ret;
5902

    
5903
    /* compress last bytes */
5904
    for(;;) {
5905
        ret = deflate(&s->zstream, Z_FINISH);
5906
        if (ret == Z_OK || ret == Z_STREAM_END) {
5907
            len = IOBUF_SIZE - s->zstream.avail_out;
5908
            if (len > 0) {
5909
                ram_put_cblock(s, s->buf, len);
5910
            }
5911
            s->zstream.avail_out = IOBUF_SIZE;
5912
            s->zstream.next_out = s->buf;
5913
            if (ret == Z_STREAM_END)
5914
                break;
5915
        } else {
5916
            goto fail;
5917
        }
5918
    }
5919
fail:
5920
    deflateEnd(&s->zstream);
5921
}
5922

    
5923
typedef struct RamDecompressState {
5924
    z_stream zstream;
5925
    QEMUFile *f;
5926
    uint8_t buf[IOBUF_SIZE];
5927
} RamDecompressState;
5928

    
5929
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5930
{
5931
    int ret;
5932
    memset(s, 0, sizeof(*s));
5933
    s->f = f;
5934
    ret = inflateInit(&s->zstream);
5935
    if (ret != Z_OK)
5936
        return -1;
5937
    return 0;
5938
}
5939

    
5940
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5941
{
5942
    int ret, clen;
5943

    
5944
    s->zstream.avail_out = len;
5945
    s->zstream.next_out = buf;
5946
    while (s->zstream.avail_out > 0) {
5947
        if (s->zstream.avail_in == 0) {
5948
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5949
                return -1;
5950
            clen = qemu_get_be16(s->f);
5951
            if (clen > IOBUF_SIZE)
5952
                return -1;
5953
            qemu_get_buffer(s->f, s->buf, clen);
5954
            s->zstream.avail_in = clen;
5955
            s->zstream.next_in = s->buf;
5956
        }
5957
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5958
        if (ret != Z_OK && ret != Z_STREAM_END) {
5959
            return -1;
5960
        }
5961
    }
5962
    return 0;
5963
}
5964

    
5965
static void ram_decompress_close(RamDecompressState *s)
5966
{
5967
    inflateEnd(&s->zstream);
5968
}
5969

    
5970
static void ram_save(QEMUFile *f, void *opaque)
5971
{
5972
    int i;
5973
    RamCompressState s1, *s = &s1;
5974
    uint8_t buf[10];
5975
    
5976
    qemu_put_be32(f, phys_ram_size);
5977
    if (ram_compress_open(s, f) < 0)
5978
        return;
5979
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5980
#if 0
5981
        if (tight_savevm_enabled) {
5982
            int64_t sector_num;
5983
            int j;
5984

5985
            /* find if the memory block is available on a virtual
5986
               block device */
5987
            sector_num = -1;
5988
            for(j = 0; j < MAX_DISKS; j++) {
5989
                if (bs_table[j]) {
5990
                    sector_num = bdrv_hash_find(bs_table[j], 
5991
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5992
                    if (sector_num >= 0)
5993
                        break;
5994
                }
5995
            }
5996
            if (j == MAX_DISKS)
5997
                goto normal_compress;
5998
            buf[0] = 1;
5999
            buf[1] = j;
6000
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6001
            ram_compress_buf(s, buf, 10);
6002
        } else 
6003
#endif
6004
        {
6005
            //        normal_compress:
6006
            buf[0] = 0;
6007
            ram_compress_buf(s, buf, 1);
6008
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6009
        }
6010
    }
6011
    ram_compress_close(s);
6012
}
6013

    
6014
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6015
{
6016
    RamDecompressState s1, *s = &s1;
6017
    uint8_t buf[10];
6018
    int i;
6019

    
6020
    if (version_id == 1)
6021
        return ram_load_v1(f, opaque);
6022
    if (version_id != 2)
6023
        return -EINVAL;
6024
    if (qemu_get_be32(f) != phys_ram_size)
6025
        return -EINVAL;
6026
    if (ram_decompress_open(s, f) < 0)
6027
        return -EINVAL;
6028
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6029
        if (ram_decompress_buf(s, buf, 1) < 0) {
6030
            fprintf(stderr, "Error while reading ram block header\n");
6031
            goto error;
6032
        }
6033
        if (buf[0] == 0) {
6034
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6035
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6036
                goto error;
6037
            }
6038
        } else 
6039
#if 0
6040
        if (buf[0] == 1) {
6041
            int bs_index;
6042
            int64_t sector_num;
6043

6044
            ram_decompress_buf(s, buf + 1, 9);
6045
            bs_index = buf[1];
6046
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6047
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6048
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6049
                goto error;
6050
            }
6051
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i, 
6052
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6053
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n", 
6054
                        bs_index, sector_num);
6055
                goto error;
6056
            }
6057
        } else 
6058
#endif
6059
        {
6060
        error:
6061
            printf("Error block header\n");
6062
            return -EINVAL;
6063
        }
6064
    }
6065
    ram_decompress_close(s);
6066
    return 0;
6067
}
6068

    
6069
/***********************************************************/
6070
/* bottom halves (can be seen as timers which expire ASAP) */
6071

    
6072
struct QEMUBH {
6073
    QEMUBHFunc *cb;
6074
    void *opaque;
6075
    int scheduled;
6076
    QEMUBH *next;
6077
};
6078

    
6079
static QEMUBH *first_bh = NULL;
6080

    
6081
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6082
{
6083
    QEMUBH *bh;
6084
    bh = qemu_mallocz(sizeof(QEMUBH));
6085
    if (!bh)
6086
        return NULL;
6087
    bh->cb = cb;
6088
    bh->opaque = opaque;
6089
    return bh;
6090
}
6091

    
6092
int qemu_bh_poll(void)
6093
{
6094
    QEMUBH *bh, **pbh;
6095
    int ret;
6096

    
6097
    ret = 0;
6098
    for(;;) {
6099
        pbh = &first_bh;
6100
        bh = *pbh;
6101
        if (!bh)
6102
            break;
6103
        ret = 1;
6104
        *pbh = bh->next;
6105
        bh->scheduled = 0;
6106
        bh->cb(bh->opaque);
6107
    }
6108
    return ret;
6109
}
6110

    
6111
void qemu_bh_schedule(QEMUBH *bh)
6112
{
6113
    CPUState *env = cpu_single_env;
6114
    if (bh->scheduled)
6115
        return;
6116
    bh->scheduled = 1;
6117
    bh->next = first_bh;
6118
    first_bh = bh;
6119

    
6120
    /* stop the currently executing CPU to execute the BH ASAP */
6121
    if (env) {
6122
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6123
    }
6124
}
6125

    
6126
void qemu_bh_cancel(QEMUBH *bh)
6127
{
6128
    QEMUBH **pbh;
6129
    if (bh->scheduled) {
6130
        pbh = &first_bh;
6131
        while (*pbh != bh)
6132
            pbh = &(*pbh)->next;
6133
        *pbh = bh->next;
6134
        bh->scheduled = 0;
6135
    }
6136
}
6137

    
6138
void qemu_bh_delete(QEMUBH *bh)
6139
{
6140
    qemu_bh_cancel(bh);
6141
    qemu_free(bh);
6142
}
6143

    
6144
/***********************************************************/
6145
/* machine registration */
6146

    
6147
QEMUMachine *first_machine = NULL;
6148

    
6149
int qemu_register_machine(QEMUMachine *m)
6150
{
6151
    QEMUMachine **pm;
6152
    pm = &first_machine;
6153
    while (*pm != NULL)
6154
        pm = &(*pm)->next;
6155
    m->next = NULL;
6156
    *pm = m;
6157
    return 0;
6158
}
6159

    
6160
QEMUMachine *find_machine(const char *name)
6161
{
6162
    QEMUMachine *m;
6163

    
6164
    for(m = first_machine; m != NULL; m = m->next) {
6165
        if (!strcmp(m->name, name))
6166
            return m;
6167
    }
6168
    return NULL;
6169
}
6170

    
6171
/***********************************************************/
6172
/* main execution loop */
6173

    
6174
void gui_update(void *opaque)
6175
{
6176
    DisplayState *ds = opaque;
6177
    ds->dpy_refresh(ds);
6178
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6179
}
6180

    
6181
struct vm_change_state_entry {
6182
    VMChangeStateHandler *cb;
6183
    void *opaque;
6184
    LIST_ENTRY (vm_change_state_entry) entries;
6185
};
6186

    
6187
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6188

    
6189
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6190
                                                     void *opaque)
6191
{
6192
    VMChangeStateEntry *e;
6193

    
6194
    e = qemu_mallocz(sizeof (*e));
6195
    if (!e)
6196
        return NULL;
6197

    
6198
    e->cb = cb;
6199
    e->opaque = opaque;
6200
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6201
    return e;
6202
}
6203

    
6204
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6205
{
6206
    LIST_REMOVE (e, entries);
6207
    qemu_free (e);
6208
}
6209

    
6210
static void vm_state_notify(int running)
6211
{
6212
    VMChangeStateEntry *e;
6213

    
6214
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6215
        e->cb(e->opaque, running);
6216
    }
6217
}
6218

    
6219
/* XXX: support several handlers */
6220
static VMStopHandler *vm_stop_cb;
6221
static void *vm_stop_opaque;
6222

    
6223
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6224
{
6225
    vm_stop_cb = cb;
6226
    vm_stop_opaque = opaque;
6227
    return 0;
6228
}
6229

    
6230
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6231
{
6232
    vm_stop_cb = NULL;
6233
}
6234

    
6235
void vm_start(void)
6236
{
6237
    if (!vm_running) {
6238
        cpu_enable_ticks();
6239
        vm_running = 1;
6240
        vm_state_notify(1);
6241
    }
6242
}
6243

    
6244
void vm_stop(int reason) 
6245
{
6246
    if (vm_running) {
6247
        cpu_disable_ticks();
6248
        vm_running = 0;
6249
        if (reason != 0) {
6250
            if (vm_stop_cb) {
6251
                vm_stop_cb(vm_stop_opaque, reason);
6252
            }
6253
        }
6254
        vm_state_notify(0);
6255
    }
6256
}
6257

    
6258
/* reset/shutdown handler */
6259

    
6260
typedef struct QEMUResetEntry {
6261
    QEMUResetHandler *func;
6262
    void *opaque;
6263
    struct QEMUResetEntry *next;
6264
} QEMUResetEntry;
6265

    
6266
static QEMUResetEntry *first_reset_entry;
6267
static int reset_requested;
6268
static int shutdown_requested;
6269
static int powerdown_requested;
6270

    
6271
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6272
{
6273
    QEMUResetEntry **pre, *re;
6274

    
6275
    pre = &first_reset_entry;
6276
    while (*pre != NULL)
6277
        pre = &(*pre)->next;
6278
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6279
    re->func = func;
6280
    re->opaque = opaque;
6281
    re->next = NULL;
6282
    *pre = re;
6283
}
6284

    
6285
static void qemu_system_reset(void)
6286
{
6287
    QEMUResetEntry *re;
6288

    
6289
    /* reset all devices */
6290
    for(re = first_reset_entry; re != NULL; re = re->next) {
6291
        re->func(re->opaque);
6292
    }
6293
}
6294

    
6295
void qemu_system_reset_request(void)
6296
{
6297
    if (no_reboot) {
6298
        shutdown_requested = 1;
6299
    } else {
6300
        reset_requested = 1;
6301
    }
6302
    if (cpu_single_env)
6303
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6304
}
6305

    
6306
void qemu_system_shutdown_request(void)
6307
{
6308
    shutdown_requested = 1;
6309
    if (cpu_single_env)
6310
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6311
}
6312

    
6313
void qemu_system_powerdown_request(void)
6314
{
6315
    powerdown_requested = 1;
6316
    if (cpu_single_env)
6317
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6318
}
6319

    
6320
void main_loop_wait(int timeout)
6321
{
6322
    IOHandlerRecord *ioh;
6323
    fd_set rfds, wfds, xfds;
6324
    int ret, nfds;
6325
#ifdef _WIN32
6326
    int ret2, i;
6327
#endif
6328
    struct timeval tv;
6329
    PollingEntry *pe;
6330

    
6331

    
6332
    /* XXX: need to suppress polling by better using win32 events */
6333
    ret = 0;
6334
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6335
        ret |= pe->func(pe->opaque);
6336
    }
6337
#ifdef _WIN32
6338
    if (ret == 0) {
6339
        int err;
6340
        WaitObjects *w = &wait_objects;
6341
        
6342
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6343
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6344
            if (w->func[ret - WAIT_OBJECT_0])
6345
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6346
                
6347
            /* Check for additional signaled events */ 
6348
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6349
                                
6350
                /* Check if event is signaled */
6351
                ret2 = WaitForSingleObject(w->events[i], 0);
6352
                if(ret2 == WAIT_OBJECT_0) {
6353
                    if (w->func[i])
6354
                        w->func[i](w->opaque[i]);
6355
                } else if (ret2 == WAIT_TIMEOUT) {
6356
                } else {
6357
                    err = GetLastError();
6358
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6359
                }                
6360
            }                 
6361
        } else if (ret == WAIT_TIMEOUT) {
6362
        } else {
6363
            err = GetLastError();
6364
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6365
        }
6366
    }
6367
#endif
6368
    /* poll any events */
6369
    /* XXX: separate device handlers from system ones */
6370
    nfds = -1;
6371
    FD_ZERO(&rfds);
6372
    FD_ZERO(&wfds);
6373
    FD_ZERO(&xfds);
6374
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6375
        if (ioh->deleted)
6376
            continue;
6377
        if (ioh->fd_read &&
6378
            (!ioh->fd_read_poll ||
6379
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6380
            FD_SET(ioh->fd, &rfds);
6381
            if (ioh->fd > nfds)
6382
                nfds = ioh->fd;
6383
        }
6384
        if (ioh->fd_write) {
6385
            FD_SET(ioh->fd, &wfds);
6386
            if (ioh->fd > nfds)
6387
                nfds = ioh->fd;
6388
        }
6389
    }
6390
    
6391
    tv.tv_sec = 0;
6392
#ifdef _WIN32
6393
    tv.tv_usec = 0;
6394
#else
6395
    tv.tv_usec = timeout * 1000;
6396
#endif
6397
#if defined(CONFIG_SLIRP)
6398
    if (slirp_inited) {
6399
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6400
    }
6401
#endif
6402
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6403
    if (ret > 0) {
6404
        IOHandlerRecord **pioh;
6405

    
6406
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6407
            if (ioh->deleted)
6408
                continue;
6409
            if (FD_ISSET(ioh->fd, &rfds)) {
6410
                ioh->fd_read(ioh->opaque);
6411
            }
6412
            if (FD_ISSET(ioh->fd, &wfds)) {
6413
                ioh->fd_write(ioh->opaque);
6414
            }
6415
        }
6416

    
6417
        /* remove deleted IO handlers */
6418
        pioh = &first_io_handler;
6419
        while (*pioh) {
6420
            ioh = *pioh;
6421
            if (ioh->deleted) {
6422
                *pioh = ioh->next;
6423
                qemu_free(ioh);
6424
            } else 
6425
                pioh = &ioh->next;
6426
        }
6427
    }
6428
#if defined(CONFIG_SLIRP)
6429
    if (slirp_inited) {
6430
        if (ret < 0) {
6431
            FD_ZERO(&rfds);
6432
            FD_ZERO(&wfds);
6433
            FD_ZERO(&xfds);
6434
        }
6435
        slirp_select_poll(&rfds, &wfds, &xfds);
6436
    }
6437
#endif
6438
    qemu_aio_poll();
6439

    
6440
    if (vm_running) {
6441
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
6442
                        qemu_get_clock(vm_clock));
6443
        /* run dma transfers, if any */
6444
        DMA_run();
6445
    }
6446

    
6447
    /* real time timers */
6448
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
6449
                    qemu_get_clock(rt_clock));
6450

    
6451
    /* Check bottom-halves last in case any of the earlier events triggered
6452
       them.  */
6453
    qemu_bh_poll();
6454
    
6455
}
6456

    
6457
static CPUState *cur_cpu;
6458

    
6459
int main_loop(void)
6460
{
6461
    int ret, timeout;
6462
#ifdef CONFIG_PROFILER
6463
    int64_t ti;
6464
#endif
6465
    CPUState *env;
6466

    
6467
    cur_cpu = first_cpu;
6468
    for(;;) {
6469
        if (vm_running) {
6470

    
6471
            env = cur_cpu;
6472
            for(;;) {
6473
                /* get next cpu */
6474
                env = env->next_cpu;
6475
                if (!env)
6476
                    env = first_cpu;
6477
#ifdef CONFIG_PROFILER
6478
                ti = profile_getclock();
6479
#endif
6480
                ret = cpu_exec(env);
6481
#ifdef CONFIG_PROFILER
6482
                qemu_time += profile_getclock() - ti;
6483
#endif
6484
                if (ret == EXCP_HLT) {
6485
                    /* Give the next CPU a chance to run.  */
6486
                    cur_cpu = env;
6487
                    continue;
6488
                }
6489
                if (ret != EXCP_HALTED)
6490
                    break;
6491
                /* all CPUs are halted ? */
6492
                if (env == cur_cpu)
6493
                    break;
6494
            }
6495
            cur_cpu = env;
6496

    
6497
            if (shutdown_requested) {
6498
                ret = EXCP_INTERRUPT;
6499
                break;
6500
            }
6501
            if (reset_requested) {
6502
                reset_requested = 0;
6503
                qemu_system_reset();
6504
                ret = EXCP_INTERRUPT;
6505
            }
6506
            if (powerdown_requested) {
6507
                powerdown_requested = 0;
6508
                qemu_system_powerdown();
6509
                ret = EXCP_INTERRUPT;
6510
            }
6511
            if (ret == EXCP_DEBUG) {
6512
                vm_stop(EXCP_DEBUG);
6513
            }
6514
            /* If all cpus are halted then wait until the next IRQ */
6515
            /* XXX: use timeout computed from timers */
6516
            if (ret == EXCP_HALTED)
6517
                timeout = 10;
6518
            else
6519
                timeout = 0;
6520
        } else {
6521
            timeout = 10;
6522
        }
6523
#ifdef CONFIG_PROFILER
6524
        ti = profile_getclock();
6525
#endif
6526
        main_loop_wait(timeout);
6527
#ifdef CONFIG_PROFILER
6528
        dev_time += profile_getclock() - ti;
6529
#endif
6530
    }
6531
    cpu_disable_ticks();
6532
    return ret;
6533
}
6534

    
6535
void help(void)
6536
{
6537
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6538
           "usage: %s [options] [disk_image]\n"
6539
           "\n"
6540
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6541
           "\n"
6542
           "Standard options:\n"
6543
           "-M machine      select emulated machine (-M ? for list)\n"
6544
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6545
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6546
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6547
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6548
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6549
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
6550
           "-sd file        use 'file' as SecureDigital card image\n"
6551
           "-pflash file    use 'file' as a parallel flash image\n"
6552
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6553
           "-snapshot       write to temporary files instead of disk image files\n"
6554
#ifdef CONFIG_SDL
6555
           "-no-frame       open SDL window without a frame and window decorations\n"
6556
           "-no-quit        disable SDL window close capability\n"
6557
#endif
6558
#ifdef TARGET_I386
6559
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
6560
#endif
6561
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
6562
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
6563
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
6564
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
6565
#ifndef _WIN32
6566
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
6567
#endif
6568
#ifdef HAS_AUDIO
6569
           "-audio-help     print list of audio drivers and their options\n"
6570
           "-soundhw c1,... enable audio support\n"
6571
           "                and only specified sound cards (comma separated list)\n"
6572
           "                use -soundhw ? to get the list of supported cards\n"
6573
           "                use -soundhw all to enable all of them\n"
6574
#endif
6575
           "-localtime      set the real time clock to local time [default=utc]\n"
6576
           "-full-screen    start in full screen\n"
6577
#ifdef TARGET_I386
6578
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
6579
#endif
6580
           "-usb            enable the USB driver (will be the default soon)\n"
6581
           "-usbdevice name add the host or guest USB device 'name'\n"
6582
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
6583
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
6584
#endif
6585
           "-name string    set the name of the guest\n"
6586
           "\n"
6587
           "Network options:\n"
6588
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6589
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
6590
#ifdef CONFIG_SLIRP
6591
           "-net user[,vlan=n][,hostname=host]\n"
6592
           "                connect the user mode network stack to VLAN 'n' and send\n"
6593
           "                hostname 'host' to DHCP clients\n"
6594
#endif
6595
#ifdef _WIN32
6596
           "-net tap[,vlan=n],ifname=name\n"
6597
           "                connect the host TAP network interface to VLAN 'n'\n"
6598
#else
6599
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6600
           "                connect the host TAP network interface to VLAN 'n' and use\n"
6601
           "                the network script 'file' (default=%s);\n"
6602
           "                use 'script=no' to disable script execution;\n"
6603
           "                use 'fd=h' to connect to an already opened TAP interface\n"
6604
#endif
6605
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6606
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
6607
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6608
           "                connect the vlan 'n' to multicast maddr and port\n"
6609
           "-net none       use it alone to have zero network devices; if no -net option\n"
6610
           "                is provided, the default is '-net nic -net user'\n"
6611
           "\n"
6612
#ifdef CONFIG_SLIRP
6613
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
6614
           "-bootp file     advertise file in BOOTP replies\n"
6615
#ifndef _WIN32
6616
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
6617
#endif
6618
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6619
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
6620
#endif
6621
           "\n"
6622
           "Linux boot specific:\n"
6623
           "-kernel bzImage use 'bzImage' as kernel image\n"
6624
           "-append cmdline use 'cmdline' as kernel command line\n"
6625
           "-initrd file    use 'file' as initial ram disk\n"
6626
           "\n"
6627
           "Debug/Expert options:\n"
6628
           "-monitor dev    redirect the monitor to char device 'dev'\n"
6629
           "-serial dev     redirect the serial port to char device 'dev'\n"
6630
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
6631
           "-pidfile file   Write PID to 'file'\n"
6632
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
6633
           "-s              wait gdb connection to port\n"
6634
           "-p port         set gdb connection port [default=%s]\n"
6635
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
6636
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
6637
           "                translation (t=none or lba) (usually qemu can guess them)\n"
6638
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
6639
#ifdef USE_KQEMU
6640
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
6641
           "-no-kqemu       disable KQEMU kernel module usage\n"
6642
#endif
6643
#ifdef USE_CODE_COPY
6644
           "-no-code-copy   disable code copy acceleration\n"
6645
#endif
6646
#ifdef TARGET_I386
6647
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
6648
           "                (default is CL-GD5446 PCI VGA)\n"
6649
           "-no-acpi        disable ACPI\n"
6650
#endif
6651
           "-no-reboot      exit instead of rebooting\n"
6652
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
6653
           "-vnc display    start a VNC server on display\n"
6654
#ifndef _WIN32
6655
           "-daemonize      daemonize QEMU after initializing\n"
6656
#endif
6657
           "-option-rom rom load a file, rom, into the option ROM space\n"
6658
#ifdef TARGET_SPARC
6659
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
6660
#endif
6661
           "\n"
6662
           "During emulation, the following keys are useful:\n"
6663
           "ctrl-alt-f      toggle full screen\n"
6664
           "ctrl-alt-n      switch to virtual console 'n'\n"
6665
           "ctrl-alt        toggle mouse and keyboard grab\n"
6666
           "\n"
6667
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
6668
           ,
6669
           "qemu",
6670
           DEFAULT_RAM_SIZE,
6671
#ifndef _WIN32
6672
           DEFAULT_NETWORK_SCRIPT,
6673
#endif
6674
           DEFAULT_GDBSTUB_PORT,
6675
           "/tmp/qemu.log");
6676
    exit(1);
6677
}
6678

    
6679
#define HAS_ARG 0x0001
6680

    
6681
enum {
6682
    QEMU_OPTION_h,
6683

    
6684
    QEMU_OPTION_M,
6685
    QEMU_OPTION_cpu,
6686
    QEMU_OPTION_fda,
6687
    QEMU_OPTION_fdb,
6688
    QEMU_OPTION_hda,
6689
    QEMU_OPTION_hdb,
6690
    QEMU_OPTION_hdc,
6691
    QEMU_OPTION_hdd,
6692
    QEMU_OPTION_cdrom,
6693
    QEMU_OPTION_mtdblock,
6694
    QEMU_OPTION_sd,
6695
    QEMU_OPTION_pflash,
6696
    QEMU_OPTION_boot,
6697
    QEMU_OPTION_snapshot,
6698
#ifdef TARGET_I386
6699
    QEMU_OPTION_no_fd_bootchk,
6700
#endif
6701
    QEMU_OPTION_m,
6702
    QEMU_OPTION_nographic,
6703
    QEMU_OPTION_portrait,
6704
#ifdef HAS_AUDIO
6705
    QEMU_OPTION_audio_help,
6706
    QEMU_OPTION_soundhw,
6707
#endif
6708

    
6709
    QEMU_OPTION_net,
6710
    QEMU_OPTION_tftp,
6711
    QEMU_OPTION_bootp,
6712
    QEMU_OPTION_smb,
6713
    QEMU_OPTION_redir,
6714

    
6715
    QEMU_OPTION_kernel,
6716
    QEMU_OPTION_append,
6717
    QEMU_OPTION_initrd,
6718

    
6719
    QEMU_OPTION_S,
6720
    QEMU_OPTION_s,
6721
    QEMU_OPTION_p,
6722
    QEMU_OPTION_d,
6723
    QEMU_OPTION_hdachs,
6724
    QEMU_OPTION_L,
6725
    QEMU_OPTION_no_code_copy,
6726
    QEMU_OPTION_k,
6727
    QEMU_OPTION_localtime,
6728
    QEMU_OPTION_cirrusvga,
6729
    QEMU_OPTION_vmsvga,
6730
    QEMU_OPTION_g,
6731
    QEMU_OPTION_std_vga,
6732
    QEMU_OPTION_echr,
6733
    QEMU_OPTION_monitor,
6734
    QEMU_OPTION_serial,
6735
    QEMU_OPTION_parallel,
6736
    QEMU_OPTION_loadvm,
6737
    QEMU_OPTION_full_screen,
6738
    QEMU_OPTION_no_frame,
6739
    QEMU_OPTION_no_quit,
6740
    QEMU_OPTION_pidfile,
6741
    QEMU_OPTION_no_kqemu,
6742
    QEMU_OPTION_kernel_kqemu,
6743
    QEMU_OPTION_win2k_hack,
6744
    QEMU_OPTION_usb,
6745
    QEMU_OPTION_usbdevice,
6746
    QEMU_OPTION_smp,
6747
    QEMU_OPTION_vnc,
6748
    QEMU_OPTION_no_acpi,
6749
    QEMU_OPTION_no_reboot,
6750
    QEMU_OPTION_show_cursor,
6751
    QEMU_OPTION_daemonize,
6752
    QEMU_OPTION_option_rom,
6753
    QEMU_OPTION_semihosting,
6754
    QEMU_OPTION_name,
6755
    QEMU_OPTION_prom_env,
6756
};
6757

    
6758
typedef struct QEMUOption {
6759
    const char *name;
6760
    int flags;
6761
    int index;
6762
} QEMUOption;
6763

    
6764
const QEMUOption qemu_options[] = {
6765
    { "h", 0, QEMU_OPTION_h },
6766
    { "help", 0, QEMU_OPTION_h },
6767

    
6768
    { "M", HAS_ARG, QEMU_OPTION_M },
6769
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6770
    { "fda", HAS_ARG, QEMU_OPTION_fda },
6771
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6772
    { "hda", HAS_ARG, QEMU_OPTION_hda },
6773
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6774
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6775
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6776
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6777
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6778
    { "sd", HAS_ARG, QEMU_OPTION_sd },
6779
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6780
    { "boot", HAS_ARG, QEMU_OPTION_boot },
6781
    { "snapshot", 0, QEMU_OPTION_snapshot },
6782
#ifdef TARGET_I386
6783
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6784
#endif
6785
    { "m", HAS_ARG, QEMU_OPTION_m },
6786
    { "nographic", 0, QEMU_OPTION_nographic },
6787
    { "portrait", 0, QEMU_OPTION_portrait },
6788
    { "k", HAS_ARG, QEMU_OPTION_k },
6789
#ifdef HAS_AUDIO
6790
    { "audio-help", 0, QEMU_OPTION_audio_help },
6791
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6792
#endif
6793

    
6794
    { "net", HAS_ARG, QEMU_OPTION_net},
6795
#ifdef CONFIG_SLIRP
6796
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6797
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6798
#ifndef _WIN32
6799
    { "smb", HAS_ARG, QEMU_OPTION_smb },
6800
#endif
6801
    { "redir", HAS_ARG, QEMU_OPTION_redir },
6802
#endif
6803

    
6804
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6805
    { "append", HAS_ARG, QEMU_OPTION_append },
6806
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6807

    
6808
    { "S", 0, QEMU_OPTION_S },
6809
    { "s", 0, QEMU_OPTION_s },
6810
    { "p", HAS_ARG, QEMU_OPTION_p },
6811
    { "d", HAS_ARG, QEMU_OPTION_d },
6812
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6813
    { "L", HAS_ARG, QEMU_OPTION_L },
6814
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6815
#ifdef USE_KQEMU
6816
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6817
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6818
#endif
6819
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
6820
    { "g", 1, QEMU_OPTION_g },
6821
#endif
6822
    { "localtime", 0, QEMU_OPTION_localtime },
6823
    { "std-vga", 0, QEMU_OPTION_std_vga },
6824
    { "echr", 1, QEMU_OPTION_echr },
6825
    { "monitor", 1, QEMU_OPTION_monitor },
6826
    { "serial", 1, QEMU_OPTION_serial },
6827
    { "parallel", 1, QEMU_OPTION_parallel },
6828
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6829
    { "full-screen", 0, QEMU_OPTION_full_screen },
6830
#ifdef CONFIG_SDL
6831
    { "no-frame", 0, QEMU_OPTION_no_frame },
6832
    { "no-quit", 0, QEMU_OPTION_no_quit },
6833
#endif
6834
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6835
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6836
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6837
    { "smp", HAS_ARG, QEMU_OPTION_smp },
6838
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6839

    
6840
    /* temporary options */
6841
    { "usb", 0, QEMU_OPTION_usb },
6842
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6843
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6844
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
6845
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
6846
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
6847
    { "daemonize", 0, QEMU_OPTION_daemonize },
6848
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6849
#if defined(TARGET_ARM) || defined(TARGET_M68K)
6850
    { "semihosting", 0, QEMU_OPTION_semihosting },
6851
#endif
6852
    { "name", HAS_ARG, QEMU_OPTION_name },
6853
#if defined(TARGET_SPARC)
6854
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6855
#endif
6856
    { NULL },
6857
};
6858

    
6859
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
6860

    
6861
/* this stack is only used during signal handling */
6862
#define SIGNAL_STACK_SIZE 32768
6863

    
6864
static uint8_t *signal_stack;
6865

    
6866
#endif
6867

    
6868
/* password input */
6869

    
6870
int qemu_key_check(BlockDriverState *bs, const char *name)
6871
{
6872
    char password[256];
6873
    int i;
6874

    
6875
    if (!bdrv_is_encrypted(bs))
6876
        return 0;
6877

    
6878
    term_printf("%s is encrypted.\n", name);
6879
    for(i = 0; i < 3; i++) {
6880
        monitor_readline("Password: ", 1, password, sizeof(password));
6881
        if (bdrv_set_key(bs, password) == 0)
6882
            return 0;
6883
        term_printf("invalid password\n");
6884
    }
6885
    return -EPERM;
6886
}
6887

    
6888
static BlockDriverState *get_bdrv(int index)
6889
{
6890
    BlockDriverState *bs;
6891

    
6892
    if (index < 4) {
6893
        bs = bs_table[index];
6894
    } else if (index < 6) {
6895
        bs = fd_table[index - 4];
6896
    } else {
6897
        bs = NULL;
6898
    }
6899
    return bs;
6900
}
6901

    
6902
static void read_passwords(void)
6903
{
6904
    BlockDriverState *bs;
6905
    int i;
6906

    
6907
    for(i = 0; i < 6; i++) {
6908
        bs = get_bdrv(i);
6909
        if (bs)
6910
            qemu_key_check(bs, bdrv_get_device_name(bs));
6911
    }
6912
}
6913

    
6914
/* XXX: currently we cannot use simultaneously different CPUs */
6915
void register_machines(void)
6916
{
6917
#if defined(TARGET_I386)
6918
    qemu_register_machine(&pc_machine);
6919
    qemu_register_machine(&isapc_machine);
6920
#elif defined(TARGET_PPC)
6921
    qemu_register_machine(&heathrow_machine);
6922
    qemu_register_machine(&core99_machine);
6923
    qemu_register_machine(&prep_machine);
6924
    qemu_register_machine(&ref405ep_machine);
6925
    qemu_register_machine(&taihu_machine);
6926
#elif defined(TARGET_MIPS)
6927
    qemu_register_machine(&mips_machine);
6928
    qemu_register_machine(&mips_malta_machine);
6929
    qemu_register_machine(&mips_pica61_machine);
6930
#elif defined(TARGET_SPARC)
6931
#ifdef TARGET_SPARC64
6932
    qemu_register_machine(&sun4u_machine);
6933
#else
6934
    qemu_register_machine(&ss5_machine);
6935
    qemu_register_machine(&ss10_machine);
6936
#endif
6937
#elif defined(TARGET_ARM)
6938
    qemu_register_machine(&integratorcp_machine);
6939
    qemu_register_machine(&versatilepb_machine);
6940
    qemu_register_machine(&versatileab_machine);
6941
    qemu_register_machine(&realview_machine);
6942
    qemu_register_machine(&akitapda_machine);
6943
    qemu_register_machine(&spitzpda_machine);
6944
    qemu_register_machine(&borzoipda_machine);
6945
    qemu_register_machine(&terrierpda_machine);
6946
#elif defined(TARGET_SH4)
6947
    qemu_register_machine(&shix_machine);
6948
#elif defined(TARGET_ALPHA)
6949
    /* XXX: TODO */
6950
#elif defined(TARGET_M68K)
6951
    qemu_register_machine(&mcf5208evb_machine);
6952
    qemu_register_machine(&an5206_machine);
6953
#else
6954
#error unsupported CPU
6955
#endif
6956
}
6957

    
6958
#ifdef HAS_AUDIO
6959
struct soundhw soundhw[] = {
6960
#ifdef HAS_AUDIO_CHOICE
6961
#ifdef TARGET_I386
6962
    {
6963
        "pcspk",
6964
        "PC speaker",
6965
        0,
6966
        1,
6967
        { .init_isa = pcspk_audio_init }
6968
    },
6969
#endif
6970
    {
6971
        "sb16",
6972
        "Creative Sound Blaster 16",
6973
        0,
6974
        1,
6975
        { .init_isa = SB16_init }
6976
    },
6977

    
6978
#ifdef CONFIG_ADLIB
6979
    {
6980
        "adlib",
6981
#ifdef HAS_YMF262
6982
        "Yamaha YMF262 (OPL3)",
6983
#else
6984
        "Yamaha YM3812 (OPL2)",
6985
#endif
6986
        0,
6987
        1,
6988
        { .init_isa = Adlib_init }
6989
    },
6990
#endif
6991

    
6992
#ifdef CONFIG_GUS
6993
    {
6994
        "gus",
6995
        "Gravis Ultrasound GF1",
6996
        0,
6997
        1,
6998
        { .init_isa = GUS_init }
6999
    },
7000
#endif
7001

    
7002
    {
7003
        "es1370",
7004
        "ENSONIQ AudioPCI ES1370",
7005
        0,
7006
        0,
7007
        { .init_pci = es1370_init }
7008
    },
7009
#endif
7010

    
7011
    { NULL, NULL, 0, 0, { NULL } }
7012
};
7013

    
7014
static void select_soundhw (const char *optarg)
7015
{
7016
    struct soundhw *c;
7017

    
7018
    if (*optarg == '?') {
7019
    show_valid_cards:
7020

    
7021
        printf ("Valid sound card names (comma separated):\n");
7022
        for (c = soundhw; c->name; ++c) {
7023
            printf ("%-11s %s\n", c->name, c->descr);
7024
        }
7025
        printf ("\n-soundhw all will enable all of the above\n");
7026
        exit (*optarg != '?');
7027
    }
7028
    else {
7029
        size_t l;
7030
        const char *p;
7031
        char *e;
7032
        int bad_card = 0;
7033

    
7034
        if (!strcmp (optarg, "all")) {
7035
            for (c = soundhw; c->name; ++c) {
7036
                c->enabled = 1;
7037
            }
7038
            return;
7039
        }
7040

    
7041
        p = optarg;
7042
        while (*p) {
7043
            e = strchr (p, ',');
7044
            l = !e ? strlen (p) : (size_t) (e - p);
7045

    
7046
            for (c = soundhw; c->name; ++c) {
7047
                if (!strncmp (c->name, p, l)) {
7048
                    c->enabled = 1;
7049
                    break;
7050
                }
7051
            }
7052

    
7053
            if (!c->name) {
7054
                if (l > 80) {
7055
                    fprintf (stderr,
7056
                             "Unknown sound card name (too big to show)\n");
7057
                }
7058
                else {
7059
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7060
                             (int) l, p);
7061
                }
7062
                bad_card = 1;
7063
            }
7064
            p += l + (e != NULL);
7065
        }
7066

    
7067
        if (bad_card)
7068
            goto show_valid_cards;
7069
    }
7070
}
7071
#endif
7072

    
7073
#ifdef _WIN32
7074
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7075
{
7076
    exit(STATUS_CONTROL_C_EXIT);
7077
    return TRUE;
7078
}
7079
#endif
7080

    
7081
#define MAX_NET_CLIENTS 32
7082

    
7083
int main(int argc, char **argv)
7084
{
7085
#ifdef CONFIG_GDBSTUB
7086
    int use_gdbstub;
7087
    const char *gdbstub_port;
7088
#endif
7089
    int i, cdrom_index, pflash_index;
7090
    int snapshot, linux_boot;
7091
    const char *initrd_filename;
7092
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7093
    const char *pflash_filename[MAX_PFLASH];
7094
    const char *sd_filename;
7095
    const char *mtd_filename;
7096
    const char *kernel_filename, *kernel_cmdline;
7097
    DisplayState *ds = &display_state;
7098
    int cyls, heads, secs, translation;
7099
    char net_clients[MAX_NET_CLIENTS][256];
7100
    int nb_net_clients;
7101
    int optind;
7102
    const char *r, *optarg;
7103
    CharDriverState *monitor_hd;
7104
    char monitor_device[128];
7105
    char serial_devices[MAX_SERIAL_PORTS][128];
7106
    int serial_device_index;
7107
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7108
    int parallel_device_index;
7109
    const char *loadvm = NULL;
7110
    QEMUMachine *machine;
7111
    const char *cpu_model;
7112
    char usb_devices[MAX_USB_CMDLINE][128];
7113
    int usb_devices_index;
7114
    int fds[2];
7115
    const char *pid_file = NULL;
7116
    VLANState *vlan;
7117

    
7118
    LIST_INIT (&vm_change_state_head);
7119
#ifndef _WIN32
7120
    {
7121
        struct sigaction act;
7122
        sigfillset(&act.sa_mask);
7123
        act.sa_flags = 0;
7124
        act.sa_handler = SIG_IGN;
7125
        sigaction(SIGPIPE, &act, NULL);
7126
    }
7127
#else
7128
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7129
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7130
       QEMU to run on a single CPU */
7131
    {
7132
        HANDLE h;
7133
        DWORD mask, smask;
7134
        int i;
7135
        h = GetCurrentProcess();
7136
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7137
            for(i = 0; i < 32; i++) {
7138
                if (mask & (1 << i))
7139
                    break;
7140
            }
7141
            if (i != 32) {
7142
                mask = 1 << i;
7143
                SetProcessAffinityMask(h, mask);
7144
            }
7145
        }
7146
    }
7147
#endif
7148

    
7149
    register_machines();
7150
    machine = first_machine;
7151
    cpu_model = NULL;
7152
    initrd_filename = NULL;
7153
    for(i = 0; i < MAX_FD; i++)
7154
        fd_filename[i] = NULL;
7155
    for(i = 0; i < MAX_DISKS; i++)
7156
        hd_filename[i] = NULL;
7157
    for(i = 0; i < MAX_PFLASH; i++)
7158
        pflash_filename[i] = NULL;
7159
    pflash_index = 0;
7160
    sd_filename = NULL;
7161
    mtd_filename = NULL;
7162
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7163
    vga_ram_size = VGA_RAM_SIZE;
7164
#ifdef CONFIG_GDBSTUB
7165
    use_gdbstub = 0;
7166
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7167
#endif
7168
    snapshot = 0;
7169
    nographic = 0;
7170
    kernel_filename = NULL;
7171
    kernel_cmdline = "";
7172
#ifdef TARGET_PPC
7173
    cdrom_index = 1;
7174
#else
7175
    cdrom_index = 2;
7176
#endif
7177
    cyls = heads = secs = 0;
7178
    translation = BIOS_ATA_TRANSLATION_AUTO;
7179
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7180

    
7181
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7182
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7183
        serial_devices[i][0] = '\0';
7184
    serial_device_index = 0;
7185
    
7186
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7187
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7188
        parallel_devices[i][0] = '\0';
7189
    parallel_device_index = 0;
7190
    
7191
    usb_devices_index = 0;
7192
    
7193
    nb_net_clients = 0;
7194

    
7195
    nb_nics = 0;
7196
    /* default mac address of the first network interface */
7197
    
7198
    optind = 1;
7199
    for(;;) {
7200
        if (optind >= argc)
7201
            break;
7202
        r = argv[optind];
7203
        if (r[0] != '-') {
7204
            hd_filename[0] = argv[optind++];
7205
        } else {
7206
            const QEMUOption *popt;
7207

    
7208
            optind++;
7209
            /* Treat --foo the same as -foo.  */
7210
            if (r[1] == '-')
7211
                r++;
7212
            popt = qemu_options;
7213
            for(;;) {
7214
                if (!popt->name) {
7215
                    fprintf(stderr, "%s: invalid option -- '%s'\n", 
7216
                            argv[0], r);
7217
                    exit(1);
7218
                }
7219
                if (!strcmp(popt->name, r + 1))
7220
                    break;
7221
                popt++;
7222
            }
7223
            if (popt->flags & HAS_ARG) {
7224
                if (optind >= argc) {
7225
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7226
                            argv[0], r);
7227
                    exit(1);
7228
                }
7229
                optarg = argv[optind++];
7230
            } else {
7231
                optarg = NULL;
7232
            }
7233

    
7234
            switch(popt->index) {
7235
            case QEMU_OPTION_M:
7236
                machine = find_machine(optarg);
7237
                if (!machine) {
7238
                    QEMUMachine *m;
7239
                    printf("Supported machines are:\n");
7240
                    for(m = first_machine; m != NULL; m = m->next) {
7241
                        printf("%-10s %s%s\n",
7242
                               m->name, m->desc, 
7243
                               m == first_machine ? " (default)" : "");
7244
                    }
7245
                    exit(1);
7246
                }
7247
                break;
7248
            case QEMU_OPTION_cpu:
7249
                /* hw initialization will check this */
7250
                if (optarg[0] == '?') {
7251
#if defined(TARGET_PPC)
7252
                    ppc_cpu_list(stdout, &fprintf);
7253
#elif defined(TARGET_ARM)
7254
                    arm_cpu_list();
7255
#elif defined(TARGET_MIPS)
7256
                    mips_cpu_list(stdout, &fprintf);
7257
#elif defined(TARGET_SPARC)
7258
                    sparc_cpu_list(stdout, &fprintf);
7259
#endif
7260
                    exit(1);
7261
                } else {
7262
                    cpu_model = optarg;
7263
                }
7264
                break;
7265
            case QEMU_OPTION_initrd:
7266
                initrd_filename = optarg;
7267
                break;
7268
            case QEMU_OPTION_hda:
7269
            case QEMU_OPTION_hdb:
7270
            case QEMU_OPTION_hdc:
7271
            case QEMU_OPTION_hdd:
7272
                {
7273
                    int hd_index;
7274
                    hd_index = popt->index - QEMU_OPTION_hda;
7275
                    hd_filename[hd_index] = optarg;
7276
                    if (hd_index == cdrom_index)
7277
                        cdrom_index = -1;
7278
                }
7279
                break;
7280
            case QEMU_OPTION_mtdblock:
7281
                mtd_filename = optarg;
7282
                break;
7283
            case QEMU_OPTION_sd:
7284
                sd_filename = optarg;
7285
                break;
7286
            case QEMU_OPTION_pflash:
7287
                if (pflash_index >= MAX_PFLASH) {
7288
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7289
                    exit(1);
7290
                }
7291
                pflash_filename[pflash_index++] = optarg;
7292
                break;
7293
            case QEMU_OPTION_snapshot:
7294
                snapshot = 1;
7295
                break;
7296
            case QEMU_OPTION_hdachs:
7297
                {
7298
                    const char *p;
7299
                    p = optarg;
7300
                    cyls = strtol(p, (char **)&p, 0);
7301
                    if (cyls < 1 || cyls > 16383)
7302
                        goto chs_fail;
7303
                    if (*p != ',')
7304
                        goto chs_fail;
7305
                    p++;
7306
                    heads = strtol(p, (char **)&p, 0);
7307
                    if (heads < 1 || heads > 16)
7308
                        goto chs_fail;
7309
                    if (*p != ',')
7310
                        goto chs_fail;
7311
                    p++;
7312
                    secs = strtol(p, (char **)&p, 0);
7313
                    if (secs < 1 || secs > 63)
7314
                        goto chs_fail;
7315
                    if (*p == ',') {
7316
                        p++;
7317
                        if (!strcmp(p, "none"))
7318
                            translation = BIOS_ATA_TRANSLATION_NONE;
7319
                        else if (!strcmp(p, "lba"))
7320
                            translation = BIOS_ATA_TRANSLATION_LBA;
7321
                        else if (!strcmp(p, "auto"))
7322
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7323
                        else
7324
                            goto chs_fail;
7325
                    } else if (*p != '\0') {
7326
                    chs_fail:
7327
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7328
                        exit(1);
7329
                    }
7330
                }
7331
                break;
7332
            case QEMU_OPTION_nographic:
7333
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7334
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7335
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7336
                nographic = 1;
7337
                break;
7338
            case QEMU_OPTION_portrait:
7339
                graphic_rotate = 1;
7340
                break;
7341
            case QEMU_OPTION_kernel:
7342
                kernel_filename = optarg;
7343
                break;
7344
            case QEMU_OPTION_append:
7345
                kernel_cmdline = optarg;
7346
                break;
7347
            case QEMU_OPTION_cdrom:
7348
                if (cdrom_index >= 0) {
7349
                    hd_filename[cdrom_index] = optarg;
7350
                }
7351
                break;
7352
            case QEMU_OPTION_boot:
7353
                boot_device = optarg[0];
7354
                if (boot_device != 'a' && 
7355
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7356
                    // Network boot
7357
                    boot_device != 'n' &&
7358
#endif
7359
                    boot_device != 'c' && boot_device != 'd') {
7360
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7361
                    exit(1);
7362
                }
7363
                break;
7364
            case QEMU_OPTION_fda:
7365
                fd_filename[0] = optarg;
7366
                break;
7367
            case QEMU_OPTION_fdb:
7368
                fd_filename[1] = optarg;
7369
                break;
7370
#ifdef TARGET_I386
7371
            case QEMU_OPTION_no_fd_bootchk:
7372
                fd_bootchk = 0;
7373
                break;
7374
#endif
7375
            case QEMU_OPTION_no_code_copy:
7376
                code_copy_enabled = 0;
7377
                break;
7378
            case QEMU_OPTION_net:
7379
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7380
                    fprintf(stderr, "qemu: too many network clients\n");
7381
                    exit(1);
7382
                }
7383
                pstrcpy(net_clients[nb_net_clients],
7384
                        sizeof(net_clients[0]),
7385
                        optarg);
7386
                nb_net_clients++;
7387
                break;
7388
#ifdef CONFIG_SLIRP
7389
            case QEMU_OPTION_tftp:
7390
                tftp_prefix = optarg;
7391
                break;
7392
            case QEMU_OPTION_bootp:
7393
                bootp_filename = optarg;
7394
                break;
7395
#ifndef _WIN32
7396
            case QEMU_OPTION_smb:
7397
                net_slirp_smb(optarg);
7398
                break;
7399
#endif
7400
            case QEMU_OPTION_redir:
7401
                net_slirp_redir(optarg);                
7402
                break;
7403
#endif
7404
#ifdef HAS_AUDIO
7405
            case QEMU_OPTION_audio_help:
7406
                AUD_help ();
7407
                exit (0);
7408
                break;
7409
            case QEMU_OPTION_soundhw:
7410
                select_soundhw (optarg);
7411
                break;
7412
#endif
7413
            case QEMU_OPTION_h:
7414
                help();
7415
                break;
7416
            case QEMU_OPTION_m:
7417
                ram_size = atoi(optarg) * 1024 * 1024;
7418
                if (ram_size <= 0)
7419
                    help();
7420
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7421
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7422
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7423
                    exit(1);
7424
                }
7425
                break;
7426
            case QEMU_OPTION_d:
7427
                {
7428
                    int mask;
7429
                    CPULogItem *item;
7430
                    
7431
                    mask = cpu_str_to_log_mask(optarg);
7432
                    if (!mask) {
7433
                        printf("Log items (comma separated):\n");
7434
                    for(item = cpu_log_items; item->mask != 0; item++) {
7435
                        printf("%-10s %s\n", item->name, item->help);
7436
                    }
7437
                    exit(1);
7438
                    }
7439
                    cpu_set_log(mask);
7440
                }
7441
                break;
7442
#ifdef CONFIG_GDBSTUB
7443
            case QEMU_OPTION_s:
7444
                use_gdbstub = 1;
7445
                break;
7446
            case QEMU_OPTION_p:
7447
                gdbstub_port = optarg;
7448
                break;
7449
#endif
7450
            case QEMU_OPTION_L:
7451
                bios_dir = optarg;
7452
                break;
7453
            case QEMU_OPTION_S:
7454
                autostart = 0;
7455
                break;
7456
            case QEMU_OPTION_k:
7457
                keyboard_layout = optarg;
7458
                break;
7459
            case QEMU_OPTION_localtime:
7460
                rtc_utc = 0;
7461
                break;
7462
            case QEMU_OPTION_cirrusvga:
7463
                cirrus_vga_enabled = 1;
7464
                vmsvga_enabled = 0;
7465
                break;
7466
            case QEMU_OPTION_vmsvga:
7467
                cirrus_vga_enabled = 0;
7468
                vmsvga_enabled = 1;
7469
                break;
7470
            case QEMU_OPTION_std_vga:
7471
                cirrus_vga_enabled = 0;
7472
                vmsvga_enabled = 0;
7473
                break;
7474
            case QEMU_OPTION_g:
7475
                {
7476
                    const char *p;
7477
                    int w, h, depth;
7478
                    p = optarg;
7479
                    w = strtol(p, (char **)&p, 10);
7480
                    if (w <= 0) {
7481
                    graphic_error:
7482
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7483
                        exit(1);
7484
                    }
7485
                    if (*p != 'x')
7486
                        goto graphic_error;
7487
                    p++;
7488
                    h = strtol(p, (char **)&p, 10);
7489
                    if (h <= 0)
7490
                        goto graphic_error;
7491
                    if (*p == 'x') {
7492
                        p++;
7493
                        depth = strtol(p, (char **)&p, 10);
7494
                        if (depth != 8 && depth != 15 && depth != 16 && 
7495
                            depth != 24 && depth != 32)
7496
                            goto graphic_error;
7497
                    } else if (*p == '\0') {
7498
                        depth = graphic_depth;
7499
                    } else {
7500
                        goto graphic_error;
7501
                    }
7502
                    
7503
                    graphic_width = w;
7504
                    graphic_height = h;
7505
                    graphic_depth = depth;
7506
                }
7507
                break;
7508
            case QEMU_OPTION_echr:
7509
                {
7510
                    char *r;
7511
                    term_escape_char = strtol(optarg, &r, 0);
7512
                    if (r == optarg)
7513
                        printf("Bad argument to echr\n");
7514
                    break;
7515
                }
7516
            case QEMU_OPTION_monitor:
7517
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7518
                break;
7519
            case QEMU_OPTION_serial:
7520
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7521
                    fprintf(stderr, "qemu: too many serial ports\n");
7522
                    exit(1);
7523
                }
7524
                pstrcpy(serial_devices[serial_device_index], 
7525
                        sizeof(serial_devices[0]), optarg);
7526
                serial_device_index++;
7527
                break;
7528
            case QEMU_OPTION_parallel:
7529
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7530
                    fprintf(stderr, "qemu: too many parallel ports\n");
7531
                    exit(1);
7532
                }
7533
                pstrcpy(parallel_devices[parallel_device_index], 
7534
                        sizeof(parallel_devices[0]), optarg);
7535
                parallel_device_index++;
7536
                break;
7537
            case QEMU_OPTION_loadvm:
7538
                loadvm = optarg;
7539
                break;
7540
            case QEMU_OPTION_full_screen:
7541
                full_screen = 1;
7542
                break;
7543
#ifdef CONFIG_SDL
7544
            case QEMU_OPTION_no_frame:
7545
                no_frame = 1;
7546
                break;
7547
            case QEMU_OPTION_no_quit:
7548
                no_quit = 1;
7549
                break;
7550
#endif
7551
            case QEMU_OPTION_pidfile:
7552
                pid_file = optarg;
7553
                break;
7554
#ifdef TARGET_I386
7555
            case QEMU_OPTION_win2k_hack:
7556
                win2k_install_hack = 1;
7557
                break;
7558
#endif
7559
#ifdef USE_KQEMU
7560
            case QEMU_OPTION_no_kqemu:
7561
                kqemu_allowed = 0;
7562
                break;
7563
            case QEMU_OPTION_kernel_kqemu:
7564
                kqemu_allowed = 2;
7565
                break;
7566
#endif
7567
            case QEMU_OPTION_usb:
7568
                usb_enabled = 1;
7569
                break;
7570
            case QEMU_OPTION_usbdevice:
7571
                usb_enabled = 1;
7572
                if (usb_devices_index >= MAX_USB_CMDLINE) {
7573
                    fprintf(stderr, "Too many USB devices\n");
7574
                    exit(1);
7575
                }
7576
                pstrcpy(usb_devices[usb_devices_index],
7577
                        sizeof(usb_devices[usb_devices_index]),
7578
                        optarg);
7579
                usb_devices_index++;
7580
                break;
7581
            case QEMU_OPTION_smp:
7582
                smp_cpus = atoi(optarg);
7583
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7584
                    fprintf(stderr, "Invalid number of CPUs\n");
7585
                    exit(1);
7586
                }
7587
                break;
7588
            case QEMU_OPTION_vnc:
7589
                vnc_display = optarg;
7590
                break;
7591
            case QEMU_OPTION_no_acpi:
7592
                acpi_enabled = 0;
7593
                break;
7594
            case QEMU_OPTION_no_reboot:
7595
                no_reboot = 1;
7596
                break;
7597
            case QEMU_OPTION_show_cursor:
7598
                cursor_hide = 0;
7599
                break;
7600
            case QEMU_OPTION_daemonize:
7601
                daemonize = 1;
7602
                break;
7603
            case QEMU_OPTION_option_rom:
7604
                if (nb_option_roms >= MAX_OPTION_ROMS) {
7605
                    fprintf(stderr, "Too many option ROMs\n");
7606
                    exit(1);
7607
                }
7608
                option_rom[nb_option_roms] = optarg;
7609
                nb_option_roms++;
7610
                break;
7611
            case QEMU_OPTION_semihosting:
7612
                semihosting_enabled = 1;
7613
                break;
7614
            case QEMU_OPTION_name:
7615
                qemu_name = optarg;
7616
                break;
7617
#ifdef TARGET_SPARC
7618
            case QEMU_OPTION_prom_env:
7619
                if (nb_prom_envs >= MAX_PROM_ENVS) {
7620
                    fprintf(stderr, "Too many prom variables\n");
7621
                    exit(1);
7622
                }
7623
                prom_envs[nb_prom_envs] = optarg;
7624
                nb_prom_envs++;
7625
                break;
7626
#endif
7627
            }
7628
        }
7629
    }
7630

    
7631
#ifndef _WIN32
7632
    if (daemonize && !nographic && vnc_display == NULL) {
7633
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7634
        daemonize = 0;
7635
    }
7636

    
7637
    if (daemonize) {
7638
        pid_t pid;
7639

    
7640
        if (pipe(fds) == -1)
7641
            exit(1);
7642

    
7643
        pid = fork();
7644
        if (pid > 0) {
7645
            uint8_t status;
7646
            ssize_t len;
7647

    
7648
            close(fds[1]);
7649

    
7650
        again:
7651
            len = read(fds[0], &status, 1);
7652
            if (len == -1 && (errno == EINTR))
7653
                goto again;
7654

    
7655
            if (len != 1)
7656
                exit(1);
7657
            else if (status == 1) {
7658
                fprintf(stderr, "Could not acquire pidfile\n");
7659
                exit(1);
7660
            } else
7661
                exit(0);
7662
        } else if (pid < 0)
7663
            exit(1);
7664

    
7665
        setsid();
7666

    
7667
        pid = fork();
7668
        if (pid > 0)
7669
            exit(0);
7670
        else if (pid < 0)
7671
            exit(1);
7672

    
7673
        umask(027);
7674
        chdir("/");
7675

    
7676
        signal(SIGTSTP, SIG_IGN);
7677
        signal(SIGTTOU, SIG_IGN);
7678
        signal(SIGTTIN, SIG_IGN);
7679
    }
7680
#endif
7681

    
7682
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7683
        if (daemonize) {
7684
            uint8_t status = 1;
7685
            write(fds[1], &status, 1);
7686
        } else
7687
            fprintf(stderr, "Could not acquire pid file\n");
7688
        exit(1);
7689
    }
7690

    
7691
#ifdef USE_KQEMU
7692
    if (smp_cpus > 1)
7693
        kqemu_allowed = 0;
7694
#endif
7695
    linux_boot = (kernel_filename != NULL);
7696

    
7697
    if (!linux_boot &&
7698
        boot_device != 'n' &&
7699
        hd_filename[0] == '\0' && 
7700
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7701
        fd_filename[0] == '\0')
7702
        help();
7703

    
7704
    /* boot to floppy or the default cd if no hard disk defined yet */
7705
    if (hd_filename[0] == '\0' && boot_device == 'c') {
7706
        if (fd_filename[0] != '\0')
7707
            boot_device = 'a';
7708
        else
7709
            boot_device = 'd';
7710
    }
7711

    
7712
    setvbuf(stdout, NULL, _IOLBF, 0);
7713
    
7714
    init_timers();
7715
    init_timer_alarm();
7716
    qemu_aio_init();
7717

    
7718
#ifdef _WIN32
7719
    socket_init();
7720
#endif
7721

    
7722
    /* init network clients */
7723
    if (nb_net_clients == 0) {
7724
        /* if no clients, we use a default config */
7725
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
7726
                "nic");
7727
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
7728
                "user");
7729
        nb_net_clients = 2;
7730
    }
7731

    
7732
    for(i = 0;i < nb_net_clients; i++) {
7733
        if (net_client_init(net_clients[i]) < 0)
7734
            exit(1);
7735
    }
7736
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
7737
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
7738
            continue;
7739
        if (vlan->nb_guest_devs == 0) {
7740
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
7741
            exit(1);
7742
        }
7743
        if (vlan->nb_host_devs == 0)
7744
            fprintf(stderr,
7745
                    "Warning: vlan %d is not connected to host network\n",
7746
                    vlan->id);
7747
    }
7748

    
7749
#ifdef TARGET_I386
7750
    if (boot_device == 'n') {
7751
        for (i = 0; i < nb_nics; i++) {
7752
            const char *model = nd_table[i].model;
7753
            char buf[1024];
7754
            if (model == NULL)
7755
                model = "ne2k_pci";
7756
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7757
            if (get_image_size(buf) > 0) {
7758
                option_rom[nb_option_roms] = strdup(buf);
7759
                nb_option_roms++;
7760
                break;
7761
            }
7762
        }
7763
        if (i == nb_nics) {
7764
            fprintf(stderr, "No valid PXE rom found for network device\n");
7765
            exit(1);
7766
        }
7767
        boot_device = 'c'; /* to prevent confusion by the BIOS */
7768
    }
7769
#endif
7770

    
7771
    /* init the memory */
7772
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7773

    
7774
    phys_ram_base = qemu_vmalloc(phys_ram_size);
7775
    if (!phys_ram_base) {
7776
        fprintf(stderr, "Could not allocate physical memory\n");
7777
        exit(1);
7778
    }
7779

    
7780
    /* we always create the cdrom drive, even if no disk is there */
7781
    bdrv_init();
7782
    if (cdrom_index >= 0) {
7783
        bs_table[cdrom_index] = bdrv_new("cdrom");
7784
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7785
    }
7786

    
7787
    /* open the virtual block devices */
7788
    for(i = 0; i < MAX_DISKS; i++) {
7789
        if (hd_filename[i]) {
7790
            if (!bs_table[i]) {
7791
                char buf[64];
7792
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7793
                bs_table[i] = bdrv_new(buf);
7794
            }
7795
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7796
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7797
                        hd_filename[i]);
7798
                exit(1);
7799
            }
7800
            if (i == 0 && cyls != 0) {
7801
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7802
                bdrv_set_translation_hint(bs_table[i], translation);
7803
            }
7804
        }
7805
    }
7806

    
7807
    /* we always create at least one floppy disk */
7808
    fd_table[0] = bdrv_new("fda");
7809
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7810

    
7811
    for(i = 0; i < MAX_FD; i++) {
7812
        if (fd_filename[i]) {
7813
            if (!fd_table[i]) {
7814
                char buf[64];
7815
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7816
                fd_table[i] = bdrv_new(buf);
7817
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7818
            }
7819
            if (fd_filename[i][0] != '\0') {
7820
                if (bdrv_open(fd_table[i], fd_filename[i],
7821
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7822
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7823
                            fd_filename[i]);
7824
                    exit(1);
7825
                }
7826
            }
7827
        }
7828
    }
7829

    
7830
    /* Open the virtual parallel flash block devices */
7831
    for(i = 0; i < MAX_PFLASH; i++) {
7832
        if (pflash_filename[i]) {
7833
            if (!pflash_table[i]) {
7834
                char buf[64];
7835
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7836
                pflash_table[i] = bdrv_new(buf);
7837
            }
7838
            if (bdrv_open(pflash_table[i], pflash_filename[i],
7839
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7840
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
7841
                        pflash_filename[i]);
7842
                exit(1);
7843
            }
7844
        }
7845
    }
7846

    
7847
    sd_bdrv = bdrv_new ("sd");
7848
    /* FIXME: This isn't really a floppy, but it's a reasonable
7849
       approximation.  */
7850
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7851
    if (sd_filename) {
7852
        if (bdrv_open(sd_bdrv, sd_filename,
7853
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7854
            fprintf(stderr, "qemu: could not open SD card image %s\n",
7855
                    sd_filename);
7856
        } else
7857
            qemu_key_check(sd_bdrv, sd_filename);
7858
    }
7859

    
7860
    if (mtd_filename) {
7861
        mtd_bdrv = bdrv_new ("mtd");
7862
        if (bdrv_open(mtd_bdrv, mtd_filename,
7863
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7864
            qemu_key_check(mtd_bdrv, mtd_filename)) {
7865
            fprintf(stderr, "qemu: could not open Flash image %s\n",
7866
                    mtd_filename);
7867
            bdrv_delete(mtd_bdrv);
7868
            mtd_bdrv = 0;
7869
        }
7870
    }
7871

    
7872
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7873
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7874

    
7875
    init_ioports();
7876

    
7877
    /* terminal init */
7878
    memset(&display_state, 0, sizeof(display_state));
7879
    if (nographic) {
7880
        /* nothing to do */
7881
    } else if (vnc_display != NULL) {
7882
        vnc_display_init(ds, vnc_display);
7883
    } else {
7884
#if defined(CONFIG_SDL)
7885
        sdl_display_init(ds, full_screen, no_frame);
7886
#elif defined(CONFIG_COCOA)
7887
        cocoa_display_init(ds, full_screen);
7888
#endif
7889
    }
7890

    
7891
    /* Maintain compatibility with multiple stdio monitors */
7892
    if (!strcmp(monitor_device,"stdio")) {
7893
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7894
            if (!strcmp(serial_devices[i],"mon:stdio")) {
7895
                monitor_device[0] = '\0';
7896
                break;
7897
            } else if (!strcmp(serial_devices[i],"stdio")) {
7898
                monitor_device[0] = '\0';
7899
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7900
                break;
7901
            }
7902
        }
7903
    }
7904
    if (monitor_device[0] != '\0') {
7905
        monitor_hd = qemu_chr_open(monitor_device);
7906
        if (!monitor_hd) {
7907
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7908
            exit(1);
7909
        }
7910
        monitor_init(monitor_hd, !nographic);
7911
    }
7912

    
7913
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7914
        const char *devname = serial_devices[i];
7915
        if (devname[0] != '\0' && strcmp(devname, "none")) {
7916
            serial_hds[i] = qemu_chr_open(devname);
7917
            if (!serial_hds[i]) {
7918
                fprintf(stderr, "qemu: could not open serial device '%s'\n", 
7919
                        devname);
7920
                exit(1);
7921
            }
7922
            if (!strcmp(devname, "vc"))
7923
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7924
        }
7925
    }
7926

    
7927
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7928
        const char *devname = parallel_devices[i];
7929
        if (devname[0] != '\0' && strcmp(devname, "none")) {
7930
            parallel_hds[i] = qemu_chr_open(devname);
7931
            if (!parallel_hds[i]) {
7932
                fprintf(stderr, "qemu: could not open parallel device '%s'\n", 
7933
                        devname);
7934
                exit(1);
7935
            }
7936
            if (!strcmp(devname, "vc"))
7937
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7938
        }
7939
    }
7940

    
7941
    machine->init(ram_size, vga_ram_size, boot_device,
7942
                  ds, fd_filename, snapshot,
7943
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7944

    
7945
    /* init USB devices */
7946
    if (usb_enabled) {
7947
        for(i = 0; i < usb_devices_index; i++) {
7948
            if (usb_device_add(usb_devices[i]) < 0) {
7949
                fprintf(stderr, "Warning: could not add USB device %s\n",
7950
                        usb_devices[i]);
7951
            }
7952
        }
7953
    }
7954

    
7955
    if (display_state.dpy_refresh) {
7956
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
7957
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
7958
    }
7959

    
7960
#ifdef CONFIG_GDBSTUB
7961
    if (use_gdbstub) {
7962
        /* XXX: use standard host:port notation and modify options
7963
           accordingly. */
7964
        if (gdbserver_start(gdbstub_port) < 0) {
7965
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7966
                    gdbstub_port);
7967
            exit(1);
7968
        }
7969
    } else 
7970
#endif
7971
    if (loadvm)
7972
        do_loadvm(loadvm);
7973

    
7974
    {
7975
        /* XXX: simplify init */
7976
        read_passwords();
7977
        if (autostart) {
7978
            vm_start();
7979
        }
7980
    }
7981

    
7982
    if (daemonize) {
7983
        uint8_t status = 0;
7984
        ssize_t len;
7985
        int fd;
7986

    
7987
    again1:
7988
        len = write(fds[1], &status, 1);
7989
        if (len == -1 && (errno == EINTR))
7990
            goto again1;
7991

    
7992
        if (len != 1)
7993
            exit(1);
7994

    
7995
        fd = open("/dev/null", O_RDWR);
7996
        if (fd == -1)
7997
            exit(1);
7998

    
7999
        dup2(fd, 0);
8000
        dup2(fd, 1);
8001
        dup2(fd, 2);
8002

    
8003
        close(fd);
8004
    }
8005

    
8006
    main_loop();
8007
    quit_timers();
8008
    return 0;
8009
}