Statistics
| Branch: | Revision:

root / hw / ne2000.c @ f815fa45

History | View | Annotate | Download (24 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
51
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
52
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
53
#define EN0_RSR                0x0c        /* rx status reg RD */
54
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
55
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
56
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
57
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
58
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
59
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
60
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
61

    
62
#define EN1_PHYS        0x11
63
#define EN1_CURPAG      0x17
64
#define EN1_MULT        0x18
65

    
66
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
67
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
68

    
69
#define EN3_CONFIG0        0x33
70
#define EN3_CONFIG1        0x34
71
#define EN3_CONFIG2        0x35
72
#define EN3_CONFIG3        0x36
73

    
74
/*  Register accessed at EN_CMD, the 8390 base addr.  */
75
#define E8390_STOP        0x01        /* Stop and reset the chip */
76
#define E8390_START        0x02        /* Start the chip, clear reset */
77
#define E8390_TRANS        0x04        /* Transmit a frame */
78
#define E8390_RREAD        0x08        /* Remote read */
79
#define E8390_RWRITE        0x10        /* Remote write  */
80
#define E8390_NODMA        0x20        /* Remote DMA */
81
#define E8390_PAGE0        0x00        /* Select page chip registers */
82
#define E8390_PAGE1        0x40        /* using the two high-order bits */
83
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
84

    
85
/* Bits in EN0_ISR - Interrupt status register */
86
#define ENISR_RX        0x01        /* Receiver, no error */
87
#define ENISR_TX        0x02        /* Transmitter, no error */
88
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
89
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
90
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
91
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
92
#define ENISR_RDC        0x40        /* remote dma complete */
93
#define ENISR_RESET        0x80        /* Reset completed */
94
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
95

    
96
/* Bits in received packet status byte and EN0_RSR*/
97
#define ENRSR_RXOK        0x01        /* Received a good packet */
98
#define ENRSR_CRC        0x02        /* CRC error */
99
#define ENRSR_FAE        0x04        /* frame alignment error */
100
#define ENRSR_FO        0x08        /* FIFO overrun */
101
#define ENRSR_MPA        0x10        /* missed pkt */
102
#define ENRSR_PHY        0x20        /* physical/multicast address */
103
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
104
#define ENRSR_DEF        0x80        /* deferring */
105

    
106
/* Transmitted packet status, EN0_TSR. */
107
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
108
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
109
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
110
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
111
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
112
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
113
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
114
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
115

    
116
#define NE2000_PMEM_SIZE    (32*1024)
117
#define NE2000_PMEM_START   (16*1024)
118
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119
#define NE2000_MEM_SIZE     NE2000_PMEM_END
120

    
121
typedef struct NE2000State {
122
    uint8_t cmd;
123
    uint32_t start;
124
    uint32_t stop;
125
    uint8_t boundary;
126
    uint8_t tsr;
127
    uint8_t tpsr;
128
    uint16_t tcnt;
129
    uint16_t rcnt;
130
    uint32_t rsar;
131
    uint8_t rsr;
132
    uint8_t rxcr;
133
    uint8_t isr;
134
    uint8_t dcfg;
135
    uint8_t imr;
136
    uint8_t phys[6]; /* mac address */
137
    uint8_t curpag;
138
    uint8_t mult[8]; /* multicast mask array */
139
    int irq;
140
    PCIDevice *pci_dev;
141
    VLANClientState *vc;
142
    uint8_t macaddr[6];
143
    uint8_t mem[NE2000_MEM_SIZE];
144
} NE2000State;
145

    
146
static void ne2000_reset(NE2000State *s)
147
{
148
    int i;
149

    
150
    s->isr = ENISR_RESET;
151
    memcpy(s->mem, s->macaddr, 6);
152
    s->mem[14] = 0x57;
153
    s->mem[15] = 0x57;
154

    
155
    /* duplicate prom data */
156
    for(i = 15;i >= 0; i--) {
157
        s->mem[2 * i] = s->mem[i];
158
        s->mem[2 * i + 1] = s->mem[i];
159
    }
160
}
161

    
162
static void ne2000_update_irq(NE2000State *s)
163
{
164
    int isr;
165
    isr = (s->isr & s->imr) & 0x7f;
166
#if defined(DEBUG_NE2000)
167
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
168
           s->irq, isr ? 1 : 0, s->isr, s->imr);
169
#endif
170
    if (s->irq == 16) {
171
        /* PCI irq */
172
        pci_set_irq(s->pci_dev, 0, (isr != 0));
173
    } else {
174
        /* ISA irq */
175
        pic_set_irq(s->irq, (isr != 0));
176
    }
177
}
178

    
179
#define POLYNOMIAL 0x04c11db6
180

    
181
/* From FreeBSD */
182
/* XXX: optimize */
183
static int compute_mcast_idx(const uint8_t *ep)
184
{
185
    uint32_t crc;
186
    int carry, i, j;
187
    uint8_t b;
188

    
189
    crc = 0xffffffff;
190
    for (i = 0; i < 6; i++) {
191
        b = *ep++;
192
        for (j = 0; j < 8; j++) {
193
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
194
            crc <<= 1;
195
            b >>= 1;
196
            if (carry)
197
                crc = ((crc ^ POLYNOMIAL) | carry);
198
        }
199
    }
200
    return (crc >> 26);
201
}
202

    
203
static int ne2000_buffer_full(NE2000State *s)
204
{
205
    int avail, index, boundary;
206

    
207
    index = s->curpag << 8;
208
    boundary = s->boundary << 8;
209
    if (index <= boundary)
210
        avail = boundary - index;
211
    else
212
        avail = (s->stop - s->start) - (index - boundary);
213
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
214
        return 1;
215
    return 0;
216
}
217

    
218
static int ne2000_can_receive(void *opaque)
219
{
220
    NE2000State *s = opaque;
221
    
222
    if (s->cmd & E8390_STOP)
223
        return 1;
224
    return !ne2000_buffer_full(s);
225
}
226

    
227
#define MIN_BUF_SIZE 60
228

    
229
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
230
{
231
    NE2000State *s = opaque;
232
    uint8_t *p;
233
    int total_len, next, avail, len, index, mcast_idx;
234
    uint8_t buf1[60];
235
    static const uint8_t broadcast_macaddr[6] = 
236
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
237
    
238
#if defined(DEBUG_NE2000)
239
    printf("NE2000: received len=%d\n", size);
240
#endif
241

    
242
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
243
        return;
244
    
245
    /* XXX: check this */
246
    if (s->rxcr & 0x10) {
247
        /* promiscuous: receive all */
248
    } else {
249
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
250
            /* broadcast address */
251
            if (!(s->rxcr & 0x04))
252
                return;
253
        } else if (buf[0] & 0x01) {
254
            /* multicast */
255
            if (!(s->rxcr & 0x08))
256
                return;
257
            mcast_idx = compute_mcast_idx(buf);
258
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
259
                return;
260
        } else if (s->mem[0] == buf[0] &&
261
                   s->mem[2] == buf[1] &&                   
262
                   s->mem[4] == buf[2] &&            
263
                   s->mem[6] == buf[3] &&            
264
                   s->mem[8] == buf[4] &&            
265
                   s->mem[10] == buf[5]) {
266
            /* match */
267
        } else {
268
            return;
269
        }
270
    }
271

    
272

    
273
    /* if too small buffer, then expand it */
274
    if (size < MIN_BUF_SIZE) {
275
        memcpy(buf1, buf, size);
276
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
277
        buf = buf1;
278
        size = MIN_BUF_SIZE;
279
    }
280

    
281
    index = s->curpag << 8;
282
    /* 4 bytes for header */
283
    total_len = size + 4;
284
    /* address for next packet (4 bytes for CRC) */
285
    next = index + ((total_len + 4 + 255) & ~0xff);
286
    if (next >= s->stop)
287
        next -= (s->stop - s->start);
288
    /* prepare packet header */
289
    p = s->mem + index;
290
    s->rsr = ENRSR_RXOK; /* receive status */
291
    /* XXX: check this */
292
    if (buf[0] & 0x01)
293
        s->rsr |= ENRSR_PHY;
294
    p[0] = s->rsr;
295
    p[1] = next >> 8;
296
    p[2] = total_len;
297
    p[3] = total_len >> 8;
298
    index += 4;
299

    
300
    /* write packet data */
301
    while (size > 0) {
302
        avail = s->stop - index;
303
        len = size;
304
        if (len > avail)
305
            len = avail;
306
        memcpy(s->mem + index, buf, len);
307
        buf += len;
308
        index += len;
309
        if (index == s->stop)
310
            index = s->start;
311
        size -= len;
312
    }
313
    s->curpag = next >> 8;
314

    
315
    /* now we can signal we have receive something */
316
    s->isr |= ENISR_RX;
317
    ne2000_update_irq(s);
318
}
319

    
320
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
321
{
322
    NE2000State *s = opaque;
323
    int offset, page, index;
324

    
325
    addr &= 0xf;
326
#ifdef DEBUG_NE2000
327
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
328
#endif
329
    if (addr == E8390_CMD) {
330
        /* control register */
331
        s->cmd = val;
332
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
333
            s->isr &= ~ENISR_RESET;
334
            /* test specific case: zero length transfert */
335
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
336
                s->rcnt == 0) {
337
                s->isr |= ENISR_RDC;
338
                ne2000_update_irq(s);
339
            }
340
            if (val & E8390_TRANS) {
341
                index = (s->tpsr << 8);
342
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
343
                if (index >= NE2000_PMEM_END)
344
                    index -= NE2000_PMEM_SIZE;
345
                /* fail safe: check range on the transmitted length  */
346
                if (index + s->tcnt <= NE2000_PMEM_END) {
347
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
348
                }
349
                /* signal end of transfert */
350
                s->tsr = ENTSR_PTX;
351
                s->isr |= ENISR_TX;
352
                s->cmd &= ~E8390_TRANS; 
353
                ne2000_update_irq(s);
354
            }
355
        }
356
    } else {
357
        page = s->cmd >> 6;
358
        offset = addr | (page << 4);
359
        switch(offset) {
360
        case EN0_STARTPG:
361
            s->start = val << 8;
362
            break;
363
        case EN0_STOPPG:
364
            s->stop = val << 8;
365
            break;
366
        case EN0_BOUNDARY:
367
            s->boundary = val;
368
            break;
369
        case EN0_IMR:
370
            s->imr = val;
371
            ne2000_update_irq(s);
372
            break;
373
        case EN0_TPSR:
374
            s->tpsr = val;
375
            break;
376
        case EN0_TCNTLO:
377
            s->tcnt = (s->tcnt & 0xff00) | val;
378
            break;
379
        case EN0_TCNTHI:
380
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
381
            break;
382
        case EN0_RSARLO:
383
            s->rsar = (s->rsar & 0xff00) | val;
384
            break;
385
        case EN0_RSARHI:
386
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
387
            break;
388
        case EN0_RCNTLO:
389
            s->rcnt = (s->rcnt & 0xff00) | val;
390
            break;
391
        case EN0_RCNTHI:
392
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
393
            break;
394
        case EN0_RXCR:
395
            s->rxcr = val;
396
            break;
397
        case EN0_DCFG:
398
            s->dcfg = val;
399
            break;
400
        case EN0_ISR:
401
            s->isr &= ~(val & 0x7f);
402
            ne2000_update_irq(s);
403
            break;
404
        case EN1_PHYS ... EN1_PHYS + 5:
405
            s->phys[offset - EN1_PHYS] = val;
406
            break;
407
        case EN1_CURPAG:
408
            s->curpag = val;
409
            break;
410
        case EN1_MULT ... EN1_MULT + 7:
411
            s->mult[offset - EN1_MULT] = val;
412
            break;
413
        }
414
    }
415
}
416

    
417
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
418
{
419
    NE2000State *s = opaque;
420
    int offset, page, ret;
421

    
422
    addr &= 0xf;
423
    if (addr == E8390_CMD) {
424
        ret = s->cmd;
425
    } else {
426
        page = s->cmd >> 6;
427
        offset = addr | (page << 4);
428
        switch(offset) {
429
        case EN0_TSR:
430
            ret = s->tsr;
431
            break;
432
        case EN0_BOUNDARY:
433
            ret = s->boundary;
434
            break;
435
        case EN0_ISR:
436
            ret = s->isr;
437
            break;
438
        case EN0_RSARLO:
439
            ret = s->rsar & 0x00ff;
440
            break;
441
        case EN0_RSARHI:
442
            ret = s->rsar >> 8;
443
            break;
444
        case EN1_PHYS ... EN1_PHYS + 5:
445
            ret = s->phys[offset - EN1_PHYS];
446
            break;
447
        case EN1_CURPAG:
448
            ret = s->curpag;
449
            break;
450
        case EN1_MULT ... EN1_MULT + 7:
451
            ret = s->mult[offset - EN1_MULT];
452
            break;
453
        case EN0_RSR:
454
            ret = s->rsr;
455
            break;
456
        case EN2_STARTPG:
457
            ret = s->start >> 8;
458
            break;
459
        case EN2_STOPPG:
460
            ret = s->stop >> 8;
461
            break;
462
        case EN0_RTL8029ID0:
463
            ret = 0x50;
464
            break;
465
        case EN0_RTL8029ID1:
466
            ret = 0x43;
467
            break;
468
        case EN3_CONFIG0:
469
            ret = 0;                /* 10baseT media */
470
            break;
471
        case EN3_CONFIG2:
472
            ret = 0x40;                /* 10baseT active */
473
            break;
474
        case EN3_CONFIG3:
475
            ret = 0x40;                /* Full duplex */
476
            break;
477
        default:
478
            ret = 0x00;
479
            break;
480
        }
481
    }
482
#ifdef DEBUG_NE2000
483
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
484
#endif
485
    return ret;
486
}
487

    
488
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
489
                                     uint32_t val)
490
{
491
    if (addr < 32 || 
492
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
493
        s->mem[addr] = val;
494
    }
495
}
496

    
497
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
498
                                     uint32_t val)
499
{
500
    addr &= ~1; /* XXX: check exact behaviour if not even */
501
    if (addr < 32 || 
502
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
503
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
504
    }
505
}
506

    
507
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
508
                                     uint32_t val)
509
{
510
    addr &= ~1; /* XXX: check exact behaviour if not even */
511
    if (addr < 32 || 
512
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
513
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
514
    }
515
}
516

    
517
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
518
{
519
    if (addr < 32 || 
520
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521
        return s->mem[addr];
522
    } else {
523
        return 0xff;
524
    }
525
}
526

    
527
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
528
{
529
    addr &= ~1; /* XXX: check exact behaviour if not even */
530
    if (addr < 32 || 
531
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
532
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
533
    } else {
534
        return 0xffff;
535
    }
536
}
537

    
538
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
539
{
540
    addr &= ~1; /* XXX: check exact behaviour if not even */
541
    if (addr < 32 || 
542
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
543
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
544
    } else {
545
        return 0xffffffff;
546
    }
547
}
548

    
549
static inline void ne2000_dma_update(NE2000State *s, int len)
550
{
551
    s->rsar += len;
552
    /* wrap */
553
    /* XXX: check what to do if rsar > stop */
554
    if (s->rsar == s->stop)
555
        s->rsar = s->start;
556

    
557
    if (s->rcnt <= len) {
558
        s->rcnt = 0;
559
        /* signal end of transfert */
560
        s->isr |= ENISR_RDC;
561
        ne2000_update_irq(s);
562
    } else {
563
        s->rcnt -= len;
564
    }
565
}
566

    
567
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
568
{
569
    NE2000State *s = opaque;
570

    
571
#ifdef DEBUG_NE2000
572
    printf("NE2000: asic write val=0x%04x\n", val);
573
#endif
574
    if (s->rcnt == 0)
575
        return;
576
    if (s->dcfg & 0x01) {
577
        /* 16 bit access */
578
        ne2000_mem_writew(s, s->rsar, val);
579
        ne2000_dma_update(s, 2);
580
    } else {
581
        /* 8 bit access */
582
        ne2000_mem_writeb(s, s->rsar, val);
583
        ne2000_dma_update(s, 1);
584
    }
585
}
586

    
587
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
588
{
589
    NE2000State *s = opaque;
590
    int ret;
591

    
592
    if (s->dcfg & 0x01) {
593
        /* 16 bit access */
594
        ret = ne2000_mem_readw(s, s->rsar);
595
        ne2000_dma_update(s, 2);
596
    } else {
597
        /* 8 bit access */
598
        ret = ne2000_mem_readb(s, s->rsar);
599
        ne2000_dma_update(s, 1);
600
    }
601
#ifdef DEBUG_NE2000
602
    printf("NE2000: asic read val=0x%04x\n", ret);
603
#endif
604
    return ret;
605
}
606

    
607
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
608
{
609
    NE2000State *s = opaque;
610

    
611
#ifdef DEBUG_NE2000
612
    printf("NE2000: asic writel val=0x%04x\n", val);
613
#endif
614
    if (s->rcnt == 0)
615
        return;
616
    /* 32 bit access */
617
    ne2000_mem_writel(s, s->rsar, val);
618
    ne2000_dma_update(s, 4);
619
}
620

    
621
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
622
{
623
    NE2000State *s = opaque;
624
    int ret;
625

    
626
    /* 32 bit access */
627
    ret = ne2000_mem_readl(s, s->rsar);
628
    ne2000_dma_update(s, 4);
629
#ifdef DEBUG_NE2000
630
    printf("NE2000: asic readl val=0x%04x\n", ret);
631
#endif
632
    return ret;
633
}
634

    
635
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
636
{
637
    /* nothing to do (end of reset pulse) */
638
}
639

    
640
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
641
{
642
    NE2000State *s = opaque;
643
    ne2000_reset(s);
644
    return 0;
645
}
646

    
647
static void ne2000_save(QEMUFile* f,void* opaque)
648
{
649
        NE2000State* s=(NE2000State*)opaque;
650

    
651
        qemu_put_8s(f, &s->rxcr);
652

    
653
        qemu_put_8s(f, &s->cmd);
654
        qemu_put_be32s(f, &s->start);
655
        qemu_put_be32s(f, &s->stop);
656
        qemu_put_8s(f, &s->boundary);
657
        qemu_put_8s(f, &s->tsr);
658
        qemu_put_8s(f, &s->tpsr);
659
        qemu_put_be16s(f, &s->tcnt);
660
        qemu_put_be16s(f, &s->rcnt);
661
        qemu_put_be32s(f, &s->rsar);
662
        qemu_put_8s(f, &s->rsr);
663
        qemu_put_8s(f, &s->isr);
664
        qemu_put_8s(f, &s->dcfg);
665
        qemu_put_8s(f, &s->imr);
666
        qemu_put_buffer(f, s->phys, 6);
667
        qemu_put_8s(f, &s->curpag);
668
        qemu_put_buffer(f, s->mult, 8);
669
        qemu_put_be32s(f, &s->irq);
670
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
671
}
672

    
673
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
674
{
675
        NE2000State* s=(NE2000State*)opaque;
676

    
677
        if (version_id == 2) {
678
            qemu_get_8s(f, &s->rxcr);
679
        } else if (version_id == 1) {
680
            s->rxcr = 0x0c;
681
        } else {
682
            return -EINVAL;
683
        }
684

    
685
        qemu_get_8s(f, &s->cmd);
686
        qemu_get_be32s(f, &s->start);
687
        qemu_get_be32s(f, &s->stop);
688
        qemu_get_8s(f, &s->boundary);
689
        qemu_get_8s(f, &s->tsr);
690
        qemu_get_8s(f, &s->tpsr);
691
        qemu_get_be16s(f, &s->tcnt);
692
        qemu_get_be16s(f, &s->rcnt);
693
        qemu_get_be32s(f, &s->rsar);
694
        qemu_get_8s(f, &s->rsr);
695
        qemu_get_8s(f, &s->isr);
696
        qemu_get_8s(f, &s->dcfg);
697
        qemu_get_8s(f, &s->imr);
698
        qemu_get_buffer(f, s->phys, 6);
699
        qemu_get_8s(f, &s->curpag);
700
        qemu_get_buffer(f, s->mult, 8);
701
        qemu_get_be32s(f, &s->irq);
702
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
703

    
704
        return 0;
705
}
706

    
707
void isa_ne2000_init(int base, int irq, NICInfo *nd)
708
{
709
    NE2000State *s;
710
    
711
    s = qemu_mallocz(sizeof(NE2000State));
712
    if (!s)
713
        return;
714
    
715
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
716
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
717

    
718
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
719
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
720
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
721
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
722

    
723
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
724
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
725
    s->irq = irq;
726
    memcpy(s->macaddr, nd->macaddr, 6);
727

    
728
    ne2000_reset(s);
729

    
730
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
731
                                 ne2000_can_receive, s);
732

    
733
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
734
             "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
735
             s->macaddr[0],
736
             s->macaddr[1],
737
             s->macaddr[2],
738
             s->macaddr[3],
739
             s->macaddr[4],
740
             s->macaddr[5]);
741
             
742
    register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
743
}
744

    
745
/***********************************************************/
746
/* PCI NE2000 definitions */
747

    
748
typedef struct PCINE2000State {
749
    PCIDevice dev;
750
    NE2000State ne2000;
751
} PCINE2000State;
752

    
753
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
754
                       uint32_t addr, uint32_t size, int type)
755
{
756
    PCINE2000State *d = (PCINE2000State *)pci_dev;
757
    NE2000State *s = &d->ne2000;
758

    
759
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
760
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
761

    
762
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
763
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
764
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
765
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
766
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
767
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
768

    
769
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
770
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
771
}
772

    
773
void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
774
{
775
    PCINE2000State *d;
776
    NE2000State *s;
777
    uint8_t *pci_conf;
778
    
779
    d = (PCINE2000State *)pci_register_device(bus,
780
                                              "NE2000", sizeof(PCINE2000State),
781
                                              -1, 
782
                                              NULL, NULL);
783
    pci_conf = d->dev.config;
784
    pci_conf[0x00] = 0xec; // Realtek 8029
785
    pci_conf[0x01] = 0x10;
786
    pci_conf[0x02] = 0x29;
787
    pci_conf[0x03] = 0x80;
788
    pci_conf[0x0a] = 0x00; // ethernet network controller 
789
    pci_conf[0x0b] = 0x02;
790
    pci_conf[0x0e] = 0x00; // header_type
791
    pci_conf[0x3d] = 1; // interrupt pin 0
792
    
793
    pci_register_io_region(&d->dev, 0, 0x100, 
794
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
795
    s = &d->ne2000;
796
    s->irq = 16; // PCI interrupt
797
    s->pci_dev = (PCIDevice *)d;
798
    memcpy(s->macaddr, nd->macaddr, 6);
799
    ne2000_reset(s);
800
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
801
                                 ne2000_can_receive, s);
802

    
803
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
804
             "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
805
             s->macaddr[0],
806
             s->macaddr[1],
807
             s->macaddr[2],
808
             s->macaddr[3],
809
             s->macaddr[4],
810
             s->macaddr[5]);
811
             
812
    /* XXX: instance number ? */
813
    register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
814
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
815
                    &d->dev);
816
}