Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ f8502cfb

History | View | Annotate | Download (47.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "hw/apic.h"
29
#include "ioport.h"
30
#include "kvm_x86.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
#ifdef KVM_CAP_EXT_CPUID
57

    
58
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
59
{
60
    struct kvm_cpuid2 *cpuid;
61
    int r, size;
62

    
63
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65
    cpuid->nent = max;
66
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67
    if (r == 0 && cpuid->nent >= max) {
68
        r = -E2BIG;
69
    }
70
    if (r < 0) {
71
        if (r == -E2BIG) {
72
            qemu_free(cpuid);
73
            return NULL;
74
        } else {
75
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76
                    strerror(-r));
77
            exit(1);
78
        }
79
    }
80
    return cpuid;
81
}
82

    
83
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84
                                      uint32_t index, int reg)
85
{
86
    struct kvm_cpuid2 *cpuid;
87
    int i, max;
88
    uint32_t ret = 0;
89
    uint32_t cpuid_1_edx;
90

    
91
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92
        return -1U;
93
    }
94

    
95
    max = 1;
96
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97
        max *= 2;
98
    }
99

    
100
    for (i = 0; i < cpuid->nent; ++i) {
101
        if (cpuid->entries[i].function == function &&
102
            cpuid->entries[i].index == index) {
103
            switch (reg) {
104
            case R_EAX:
105
                ret = cpuid->entries[i].eax;
106
                break;
107
            case R_EBX:
108
                ret = cpuid->entries[i].ebx;
109
                break;
110
            case R_ECX:
111
                ret = cpuid->entries[i].ecx;
112
                break;
113
            case R_EDX:
114
                ret = cpuid->entries[i].edx;
115
                switch (function) {
116
                case 1:
117
                    /* KVM before 2.6.30 misreports the following features */
118
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119
                    break;
120
                case 0x80000001:
121
                    /* On Intel, kvm returns cpuid according to the Intel spec,
122
                     * so add missing bits according to the AMD spec:
123
                     */
124
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125
                    ret |= cpuid_1_edx & 0x183f7ff;
126
                    break;
127
                }
128
                break;
129
            }
130
        }
131
    }
132

    
133
    qemu_free(cpuid);
134

    
135
    return ret;
136
}
137

    
138
#else
139

    
140
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141
                                      uint32_t index, int reg)
142
{
143
    return -1U;
144
}
145

    
146
#endif
147

    
148
#ifdef CONFIG_KVM_PARA
149
struct kvm_para_features {
150
        int cap;
151
        int feature;
152
} para_features[] = {
153
#ifdef KVM_CAP_CLOCKSOURCE
154
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155
#endif
156
#ifdef KVM_CAP_NOP_IO_DELAY
157
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158
#endif
159
#ifdef KVM_CAP_PV_MMU
160
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161
#endif
162
        { -1, -1 }
163
};
164

    
165
static int get_para_features(CPUState *env)
166
{
167
        int i, features = 0;
168

    
169
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171
                        features |= (1 << para_features[i].feature);
172
        }
173

    
174
        return features;
175
}
176
#endif
177

    
178
#ifdef KVM_CAP_MCE
179
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180
                                     int *max_banks)
181
{
182
    int r;
183

    
184
    r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185
    if (r > 0) {
186
        *max_banks = r;
187
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188
    }
189
    return -ENOSYS;
190
}
191

    
192
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193
{
194
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
195
}
196

    
197
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198
{
199
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
200
}
201

    
202
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203
{
204
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205
    int r;
206

    
207
    kmsrs->nmsrs = n;
208
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211
    free(kmsrs);
212
    return r;
213
}
214

    
215
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216
static int kvm_mce_in_exception(CPUState *env)
217
{
218
    struct kvm_msr_entry msr_mcg_status = {
219
        .index = MSR_MCG_STATUS,
220
    };
221
    int r;
222

    
223
    r = kvm_get_msr(env, &msr_mcg_status, 1);
224
    if (r == -1 || r == 0) {
225
        return -1;
226
    }
227
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228
}
229

    
230
struct kvm_x86_mce_data
231
{
232
    CPUState *env;
233
    struct kvm_x86_mce *mce;
234
    int abort_on_error;
235
};
236

    
237
static void kvm_do_inject_x86_mce(void *_data)
238
{
239
    struct kvm_x86_mce_data *data = _data;
240
    int r;
241

    
242
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
243
    if ((data->env->mcg_cap & MCG_SER_P) &&
244
        !(data->mce->status & MCI_STATUS_AR)) {
245
        r = kvm_mce_in_exception(data->env);
246
        if (r == -1) {
247
            fprintf(stderr, "Failed to get MCE status\n");
248
        } else if (r) {
249
            return;
250
        }
251
    }
252

    
253
    r = kvm_set_mce(data->env, data->mce);
254
    if (r < 0) {
255
        perror("kvm_set_mce FAILED");
256
        if (data->abort_on_error) {
257
            abort();
258
        }
259
    }
260
}
261
#endif
262

    
263
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
264
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
265
                        int abort_on_error)
266
{
267
#ifdef KVM_CAP_MCE
268
    struct kvm_x86_mce mce = {
269
        .bank = bank,
270
        .status = status,
271
        .mcg_status = mcg_status,
272
        .addr = addr,
273
        .misc = misc,
274
    };
275
    struct kvm_x86_mce_data data = {
276
            .env = cenv,
277
            .mce = &mce,
278
    };
279

    
280
    if (!cenv->mcg_cap) {
281
        fprintf(stderr, "MCE support is not enabled!\n");
282
        return;
283
    }
284

    
285
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
286
#else
287
    if (abort_on_error)
288
        abort();
289
#endif
290
}
291

    
292
int kvm_arch_init_vcpu(CPUState *env)
293
{
294
    struct {
295
        struct kvm_cpuid2 cpuid;
296
        struct kvm_cpuid_entry2 entries[100];
297
    } __attribute__((packed)) cpuid_data;
298
    uint32_t limit, i, j, cpuid_i;
299
    uint32_t unused;
300
    struct kvm_cpuid_entry2 *c;
301
#ifdef KVM_CPUID_SIGNATURE
302
    uint32_t signature[3];
303
#endif
304

    
305
    env->mp_state = KVM_MP_STATE_RUNNABLE;
306

    
307
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
308

    
309
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
310
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
311
    env->cpuid_ext_features |= i;
312

    
313
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
314
                                                             0, R_EDX);
315
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
316
                                                             0, R_ECX);
317
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
318
                                                             0, R_EDX);
319

    
320

    
321
    cpuid_i = 0;
322

    
323
#ifdef CONFIG_KVM_PARA
324
    /* Paravirtualization CPUIDs */
325
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
326
    c = &cpuid_data.entries[cpuid_i++];
327
    memset(c, 0, sizeof(*c));
328
    c->function = KVM_CPUID_SIGNATURE;
329
    c->eax = 0;
330
    c->ebx = signature[0];
331
    c->ecx = signature[1];
332
    c->edx = signature[2];
333

    
334
    c = &cpuid_data.entries[cpuid_i++];
335
    memset(c, 0, sizeof(*c));
336
    c->function = KVM_CPUID_FEATURES;
337
    c->eax = env->cpuid_kvm_features & get_para_features(env);
338
#endif
339

    
340
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
341

    
342
    for (i = 0; i <= limit; i++) {
343
        c = &cpuid_data.entries[cpuid_i++];
344

    
345
        switch (i) {
346
        case 2: {
347
            /* Keep reading function 2 till all the input is received */
348
            int times;
349

    
350
            c->function = i;
351
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
352
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
353
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
354
            times = c->eax & 0xff;
355

    
356
            for (j = 1; j < times; ++j) {
357
                c = &cpuid_data.entries[cpuid_i++];
358
                c->function = i;
359
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
360
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
361
            }
362
            break;
363
        }
364
        case 4:
365
        case 0xb:
366
        case 0xd:
367
            for (j = 0; ; j++) {
368
                c->function = i;
369
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
370
                c->index = j;
371
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
372

    
373
                if (i == 4 && c->eax == 0)
374
                    break;
375
                if (i == 0xb && !(c->ecx & 0xff00))
376
                    break;
377
                if (i == 0xd && c->eax == 0)
378
                    break;
379

    
380
                c = &cpuid_data.entries[cpuid_i++];
381
            }
382
            break;
383
        default:
384
            c->function = i;
385
            c->flags = 0;
386
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
387
            break;
388
        }
389
    }
390
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
391

    
392
    for (i = 0x80000000; i <= limit; i++) {
393
        c = &cpuid_data.entries[cpuid_i++];
394

    
395
        c->function = i;
396
        c->flags = 0;
397
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
398
    }
399

    
400
    cpuid_data.cpuid.nent = cpuid_i;
401

    
402
#ifdef KVM_CAP_MCE
403
    if (((env->cpuid_version >> 8)&0xF) >= 6
404
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
405
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
406
        uint64_t mcg_cap;
407
        int banks;
408

    
409
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
410
            perror("kvm_get_mce_cap_supported FAILED");
411
        else {
412
            if (banks > MCE_BANKS_DEF)
413
                banks = MCE_BANKS_DEF;
414
            mcg_cap &= MCE_CAP_DEF;
415
            mcg_cap |= banks;
416
            if (kvm_setup_mce(env, &mcg_cap))
417
                perror("kvm_setup_mce FAILED");
418
            else
419
                env->mcg_cap = mcg_cap;
420
        }
421
    }
422
#endif
423

    
424
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
425
}
426

    
427
void kvm_arch_reset_vcpu(CPUState *env)
428
{
429
    env->exception_injected = -1;
430
    env->interrupt_injected = -1;
431
    env->nmi_injected = 0;
432
    env->nmi_pending = 0;
433
    if (kvm_irqchip_in_kernel()) {
434
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
435
                                          KVM_MP_STATE_UNINITIALIZED;
436
    } else {
437
        env->mp_state = KVM_MP_STATE_RUNNABLE;
438
    }
439
}
440

    
441
static int kvm_has_msr_star(CPUState *env)
442
{
443
    static int has_msr_star;
444
    int ret;
445

    
446
    /* first time */
447
    if (has_msr_star == 0) {        
448
        struct kvm_msr_list msr_list, *kvm_msr_list;
449

    
450
        has_msr_star = -1;
451

    
452
        /* Obtain MSR list from KVM.  These are the MSRs that we must
453
         * save/restore */
454
        msr_list.nmsrs = 0;
455
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
456
        if (ret < 0 && ret != -E2BIG) {
457
            return 0;
458
        }
459
        /* Old kernel modules had a bug and could write beyond the provided
460
           memory. Allocate at least a safe amount of 1K. */
461
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
462
                                              msr_list.nmsrs *
463
                                              sizeof(msr_list.indices[0])));
464

    
465
        kvm_msr_list->nmsrs = msr_list.nmsrs;
466
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
467
        if (ret >= 0) {
468
            int i;
469

    
470
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
471
                if (kvm_msr_list->indices[i] == MSR_STAR) {
472
                    has_msr_star = 1;
473
                    break;
474
                }
475
            }
476
        }
477

    
478
        free(kvm_msr_list);
479
    }
480

    
481
    if (has_msr_star == 1)
482
        return 1;
483
    return 0;
484
}
485

    
486
static int kvm_init_identity_map_page(KVMState *s)
487
{
488
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
489
    int ret;
490
    uint64_t addr = 0xfffbc000;
491

    
492
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
493
        return 0;
494
    }
495

    
496
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
497
    if (ret < 0) {
498
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
499
        return ret;
500
    }
501
#endif
502
    return 0;
503
}
504

    
505
int kvm_arch_init(KVMState *s, int smp_cpus)
506
{
507
    int ret;
508

    
509
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
510
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
511
     * must be part of guest physical memory, we need to allocate it.  Older
512
     * versions of KVM just assumed that it would be at the end of physical
513
     * memory but that doesn't work with more than 4GB of memory.  We simply
514
     * refuse to work with those older versions of KVM. */
515
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
516
    if (ret <= 0) {
517
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
518
        return ret;
519
    }
520

    
521
    /* this address is 3 pages before the bios, and the bios should present
522
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
523
     * this?
524
     */
525
    /*
526
     * Tell fw_cfg to notify the BIOS to reserve the range.
527
     */
528
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
529
        perror("e820_add_entry() table is full");
530
        exit(1);
531
    }
532
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
533
    if (ret < 0) {
534
        return ret;
535
    }
536

    
537
    return kvm_init_identity_map_page(s);
538
}
539
                    
540
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
541
{
542
    lhs->selector = rhs->selector;
543
    lhs->base = rhs->base;
544
    lhs->limit = rhs->limit;
545
    lhs->type = 3;
546
    lhs->present = 1;
547
    lhs->dpl = 3;
548
    lhs->db = 0;
549
    lhs->s = 1;
550
    lhs->l = 0;
551
    lhs->g = 0;
552
    lhs->avl = 0;
553
    lhs->unusable = 0;
554
}
555

    
556
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
557
{
558
    unsigned flags = rhs->flags;
559
    lhs->selector = rhs->selector;
560
    lhs->base = rhs->base;
561
    lhs->limit = rhs->limit;
562
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
563
    lhs->present = (flags & DESC_P_MASK) != 0;
564
    lhs->dpl = rhs->selector & 3;
565
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
566
    lhs->s = (flags & DESC_S_MASK) != 0;
567
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
568
    lhs->g = (flags & DESC_G_MASK) != 0;
569
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
570
    lhs->unusable = 0;
571
}
572

    
573
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
574
{
575
    lhs->selector = rhs->selector;
576
    lhs->base = rhs->base;
577
    lhs->limit = rhs->limit;
578
    lhs->flags =
579
        (rhs->type << DESC_TYPE_SHIFT)
580
        | (rhs->present * DESC_P_MASK)
581
        | (rhs->dpl << DESC_DPL_SHIFT)
582
        | (rhs->db << DESC_B_SHIFT)
583
        | (rhs->s * DESC_S_MASK)
584
        | (rhs->l << DESC_L_SHIFT)
585
        | (rhs->g * DESC_G_MASK)
586
        | (rhs->avl * DESC_AVL_MASK);
587
}
588

    
589
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
590
{
591
    if (set)
592
        *kvm_reg = *qemu_reg;
593
    else
594
        *qemu_reg = *kvm_reg;
595
}
596

    
597
static int kvm_getput_regs(CPUState *env, int set)
598
{
599
    struct kvm_regs regs;
600
    int ret = 0;
601

    
602
    if (!set) {
603
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
604
        if (ret < 0)
605
            return ret;
606
    }
607

    
608
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
609
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
610
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
611
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
612
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
613
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
614
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
615
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
616
#ifdef TARGET_X86_64
617
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
618
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
619
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
620
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
621
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
622
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
623
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
624
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
625
#endif
626

    
627
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
628
    kvm_getput_reg(&regs.rip, &env->eip, set);
629

    
630
    if (set)
631
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
632

    
633
    return ret;
634
}
635

    
636
static int kvm_put_fpu(CPUState *env)
637
{
638
    struct kvm_fpu fpu;
639
    int i;
640

    
641
    memset(&fpu, 0, sizeof fpu);
642
    fpu.fsw = env->fpus & ~(7 << 11);
643
    fpu.fsw |= (env->fpstt & 7) << 11;
644
    fpu.fcw = env->fpuc;
645
    for (i = 0; i < 8; ++i)
646
        fpu.ftwx |= (!env->fptags[i]) << i;
647
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
648
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
649
    fpu.mxcsr = env->mxcsr;
650

    
651
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
652
}
653

    
654
#ifdef KVM_CAP_XSAVE
655
#define XSAVE_CWD_RIP     2
656
#define XSAVE_CWD_RDP     4
657
#define XSAVE_MXCSR       6
658
#define XSAVE_ST_SPACE    8
659
#define XSAVE_XMM_SPACE   40
660
#define XSAVE_XSTATE_BV   128
661
#define XSAVE_YMMH_SPACE  144
662
#endif
663

    
664
static int kvm_put_xsave(CPUState *env)
665
{
666
#ifdef KVM_CAP_XSAVE
667
    int i, r;
668
    struct kvm_xsave* xsave;
669
    uint16_t cwd, swd, twd, fop;
670

    
671
    if (!kvm_has_xsave())
672
        return kvm_put_fpu(env);
673

    
674
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
675
    memset(xsave, 0, sizeof(struct kvm_xsave));
676
    cwd = swd = twd = fop = 0;
677
    swd = env->fpus & ~(7 << 11);
678
    swd |= (env->fpstt & 7) << 11;
679
    cwd = env->fpuc;
680
    for (i = 0; i < 8; ++i)
681
        twd |= (!env->fptags[i]) << i;
682
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
683
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
684
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
685
            sizeof env->fpregs);
686
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
687
            sizeof env->xmm_regs);
688
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
689
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
690
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
691
            sizeof env->ymmh_regs);
692
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
693
    qemu_free(xsave);
694
    return r;
695
#else
696
    return kvm_put_fpu(env);
697
#endif
698
}
699

    
700
static int kvm_put_xcrs(CPUState *env)
701
{
702
#ifdef KVM_CAP_XCRS
703
    struct kvm_xcrs xcrs;
704

    
705
    if (!kvm_has_xcrs())
706
        return 0;
707

    
708
    xcrs.nr_xcrs = 1;
709
    xcrs.flags = 0;
710
    xcrs.xcrs[0].xcr = 0;
711
    xcrs.xcrs[0].value = env->xcr0;
712
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
713
#else
714
    return 0;
715
#endif
716
}
717

    
718
static int kvm_put_sregs(CPUState *env)
719
{
720
    struct kvm_sregs sregs;
721

    
722
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
723
    if (env->interrupt_injected >= 0) {
724
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
725
                (uint64_t)1 << (env->interrupt_injected % 64);
726
    }
727

    
728
    if ((env->eflags & VM_MASK)) {
729
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
730
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
731
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
732
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
733
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
734
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
735
    } else {
736
            set_seg(&sregs.cs, &env->segs[R_CS]);
737
            set_seg(&sregs.ds, &env->segs[R_DS]);
738
            set_seg(&sregs.es, &env->segs[R_ES]);
739
            set_seg(&sregs.fs, &env->segs[R_FS]);
740
            set_seg(&sregs.gs, &env->segs[R_GS]);
741
            set_seg(&sregs.ss, &env->segs[R_SS]);
742

    
743
            if (env->cr[0] & CR0_PE_MASK) {
744
                /* force ss cpl to cs cpl */
745
                sregs.ss.selector = (sregs.ss.selector & ~3) |
746
                        (sregs.cs.selector & 3);
747
                sregs.ss.dpl = sregs.ss.selector & 3;
748
            }
749
    }
750

    
751
    set_seg(&sregs.tr, &env->tr);
752
    set_seg(&sregs.ldt, &env->ldt);
753

    
754
    sregs.idt.limit = env->idt.limit;
755
    sregs.idt.base = env->idt.base;
756
    sregs.gdt.limit = env->gdt.limit;
757
    sregs.gdt.base = env->gdt.base;
758

    
759
    sregs.cr0 = env->cr[0];
760
    sregs.cr2 = env->cr[2];
761
    sregs.cr3 = env->cr[3];
762
    sregs.cr4 = env->cr[4];
763

    
764
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
765
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
766

    
767
    sregs.efer = env->efer;
768

    
769
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
770
}
771

    
772
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
773
                              uint32_t index, uint64_t value)
774
{
775
    entry->index = index;
776
    entry->data = value;
777
}
778

    
779
static int kvm_put_msrs(CPUState *env, int level)
780
{
781
    struct {
782
        struct kvm_msrs info;
783
        struct kvm_msr_entry entries[100];
784
    } msr_data;
785
    struct kvm_msr_entry *msrs = msr_data.entries;
786
    int i, n = 0;
787

    
788
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
789
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
790
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
791
    if (kvm_has_msr_star(env))
792
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
793
#ifdef TARGET_X86_64
794
    /* FIXME if lm capable */
795
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
796
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
797
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
798
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
799
#endif
800
    if (level == KVM_PUT_FULL_STATE) {
801
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
802
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
803
                          env->system_time_msr);
804
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
805
    }
806
#ifdef KVM_CAP_MCE
807
    if (env->mcg_cap) {
808
        if (level == KVM_PUT_RESET_STATE)
809
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
810
        else if (level == KVM_PUT_FULL_STATE) {
811
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
812
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
813
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
814
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
815
        }
816
    }
817
#endif
818

    
819
    msr_data.info.nmsrs = n;
820

    
821
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
822

    
823
}
824

    
825

    
826
static int kvm_get_fpu(CPUState *env)
827
{
828
    struct kvm_fpu fpu;
829
    int i, ret;
830

    
831
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
832
    if (ret < 0)
833
        return ret;
834

    
835
    env->fpstt = (fpu.fsw >> 11) & 7;
836
    env->fpus = fpu.fsw;
837
    env->fpuc = fpu.fcw;
838
    for (i = 0; i < 8; ++i)
839
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
840
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
841
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
842
    env->mxcsr = fpu.mxcsr;
843

    
844
    return 0;
845
}
846

    
847
static int kvm_get_xsave(CPUState *env)
848
{
849
#ifdef KVM_CAP_XSAVE
850
    struct kvm_xsave* xsave;
851
    int ret, i;
852
    uint16_t cwd, swd, twd, fop;
853

    
854
    if (!kvm_has_xsave())
855
        return kvm_get_fpu(env);
856

    
857
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
858
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
859
    if (ret < 0) {
860
        qemu_free(xsave);
861
        return ret;
862
    }
863

    
864
    cwd = (uint16_t)xsave->region[0];
865
    swd = (uint16_t)(xsave->region[0] >> 16);
866
    twd = (uint16_t)xsave->region[1];
867
    fop = (uint16_t)(xsave->region[1] >> 16);
868
    env->fpstt = (swd >> 11) & 7;
869
    env->fpus = swd;
870
    env->fpuc = cwd;
871
    for (i = 0; i < 8; ++i)
872
        env->fptags[i] = !((twd >> i) & 1);
873
    env->mxcsr = xsave->region[XSAVE_MXCSR];
874
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
875
            sizeof env->fpregs);
876
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
877
            sizeof env->xmm_regs);
878
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
879
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
880
            sizeof env->ymmh_regs);
881
    qemu_free(xsave);
882
    return 0;
883
#else
884
    return kvm_get_fpu(env);
885
#endif
886
}
887

    
888
static int kvm_get_xcrs(CPUState *env)
889
{
890
#ifdef KVM_CAP_XCRS
891
    int i, ret;
892
    struct kvm_xcrs xcrs;
893

    
894
    if (!kvm_has_xcrs())
895
        return 0;
896

    
897
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
898
    if (ret < 0)
899
        return ret;
900

    
901
    for (i = 0; i < xcrs.nr_xcrs; i++)
902
        /* Only support xcr0 now */
903
        if (xcrs.xcrs[0].xcr == 0) {
904
            env->xcr0 = xcrs.xcrs[0].value;
905
            break;
906
        }
907
    return 0;
908
#else
909
    return 0;
910
#endif
911
}
912

    
913
static int kvm_get_sregs(CPUState *env)
914
{
915
    struct kvm_sregs sregs;
916
    uint32_t hflags;
917
    int bit, i, ret;
918

    
919
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
920
    if (ret < 0)
921
        return ret;
922

    
923
    /* There can only be one pending IRQ set in the bitmap at a time, so try
924
       to find it and save its number instead (-1 for none). */
925
    env->interrupt_injected = -1;
926
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
927
        if (sregs.interrupt_bitmap[i]) {
928
            bit = ctz64(sregs.interrupt_bitmap[i]);
929
            env->interrupt_injected = i * 64 + bit;
930
            break;
931
        }
932
    }
933

    
934
    get_seg(&env->segs[R_CS], &sregs.cs);
935
    get_seg(&env->segs[R_DS], &sregs.ds);
936
    get_seg(&env->segs[R_ES], &sregs.es);
937
    get_seg(&env->segs[R_FS], &sregs.fs);
938
    get_seg(&env->segs[R_GS], &sregs.gs);
939
    get_seg(&env->segs[R_SS], &sregs.ss);
940

    
941
    get_seg(&env->tr, &sregs.tr);
942
    get_seg(&env->ldt, &sregs.ldt);
943

    
944
    env->idt.limit = sregs.idt.limit;
945
    env->idt.base = sregs.idt.base;
946
    env->gdt.limit = sregs.gdt.limit;
947
    env->gdt.base = sregs.gdt.base;
948

    
949
    env->cr[0] = sregs.cr0;
950
    env->cr[2] = sregs.cr2;
951
    env->cr[3] = sregs.cr3;
952
    env->cr[4] = sregs.cr4;
953

    
954
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
955

    
956
    env->efer = sregs.efer;
957
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
958

    
959
#define HFLAG_COPY_MASK ~( \
960
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
961
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
962
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
963
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
964

    
965

    
966

    
967
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
968
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
969
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
970
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
971
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
972
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
973
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
974

    
975
    if (env->efer & MSR_EFER_LMA) {
976
        hflags |= HF_LMA_MASK;
977
    }
978

    
979
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
980
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
981
    } else {
982
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
983
                (DESC_B_SHIFT - HF_CS32_SHIFT);
984
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
985
                (DESC_B_SHIFT - HF_SS32_SHIFT);
986
        if (!(env->cr[0] & CR0_PE_MASK) ||
987
                   (env->eflags & VM_MASK) ||
988
                   !(hflags & HF_CS32_MASK)) {
989
                hflags |= HF_ADDSEG_MASK;
990
            } else {
991
                hflags |= ((env->segs[R_DS].base |
992
                                env->segs[R_ES].base |
993
                                env->segs[R_SS].base) != 0) <<
994
                    HF_ADDSEG_SHIFT;
995
            }
996
    }
997
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
998

    
999
    return 0;
1000
}
1001

    
1002
static int kvm_get_msrs(CPUState *env)
1003
{
1004
    struct {
1005
        struct kvm_msrs info;
1006
        struct kvm_msr_entry entries[100];
1007
    } msr_data;
1008
    struct kvm_msr_entry *msrs = msr_data.entries;
1009
    int ret, i, n;
1010

    
1011
    n = 0;
1012
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1013
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1014
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1015
    if (kvm_has_msr_star(env))
1016
        msrs[n++].index = MSR_STAR;
1017
    msrs[n++].index = MSR_IA32_TSC;
1018
#ifdef TARGET_X86_64
1019
    /* FIXME lm_capable_kernel */
1020
    msrs[n++].index = MSR_CSTAR;
1021
    msrs[n++].index = MSR_KERNELGSBASE;
1022
    msrs[n++].index = MSR_FMASK;
1023
    msrs[n++].index = MSR_LSTAR;
1024
#endif
1025
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1026
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1027

    
1028
#ifdef KVM_CAP_MCE
1029
    if (env->mcg_cap) {
1030
        msrs[n++].index = MSR_MCG_STATUS;
1031
        msrs[n++].index = MSR_MCG_CTL;
1032
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1033
            msrs[n++].index = MSR_MC0_CTL + i;
1034
    }
1035
#endif
1036

    
1037
    msr_data.info.nmsrs = n;
1038
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1039
    if (ret < 0)
1040
        return ret;
1041

    
1042
    for (i = 0; i < ret; i++) {
1043
        switch (msrs[i].index) {
1044
        case MSR_IA32_SYSENTER_CS:
1045
            env->sysenter_cs = msrs[i].data;
1046
            break;
1047
        case MSR_IA32_SYSENTER_ESP:
1048
            env->sysenter_esp = msrs[i].data;
1049
            break;
1050
        case MSR_IA32_SYSENTER_EIP:
1051
            env->sysenter_eip = msrs[i].data;
1052
            break;
1053
        case MSR_STAR:
1054
            env->star = msrs[i].data;
1055
            break;
1056
#ifdef TARGET_X86_64
1057
        case MSR_CSTAR:
1058
            env->cstar = msrs[i].data;
1059
            break;
1060
        case MSR_KERNELGSBASE:
1061
            env->kernelgsbase = msrs[i].data;
1062
            break;
1063
        case MSR_FMASK:
1064
            env->fmask = msrs[i].data;
1065
            break;
1066
        case MSR_LSTAR:
1067
            env->lstar = msrs[i].data;
1068
            break;
1069
#endif
1070
        case MSR_IA32_TSC:
1071
            env->tsc = msrs[i].data;
1072
            break;
1073
        case MSR_KVM_SYSTEM_TIME:
1074
            env->system_time_msr = msrs[i].data;
1075
            break;
1076
        case MSR_KVM_WALL_CLOCK:
1077
            env->wall_clock_msr = msrs[i].data;
1078
            break;
1079
#ifdef KVM_CAP_MCE
1080
        case MSR_MCG_STATUS:
1081
            env->mcg_status = msrs[i].data;
1082
            break;
1083
        case MSR_MCG_CTL:
1084
            env->mcg_ctl = msrs[i].data;
1085
            break;
1086
#endif
1087
        default:
1088
#ifdef KVM_CAP_MCE
1089
            if (msrs[i].index >= MSR_MC0_CTL &&
1090
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1091
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1092
                break;
1093
            }
1094
#endif
1095
        }
1096
    }
1097

    
1098
    return 0;
1099
}
1100

    
1101
static int kvm_put_mp_state(CPUState *env)
1102
{
1103
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1104

    
1105
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1106
}
1107

    
1108
static int kvm_get_mp_state(CPUState *env)
1109
{
1110
    struct kvm_mp_state mp_state;
1111
    int ret;
1112

    
1113
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1114
    if (ret < 0) {
1115
        return ret;
1116
    }
1117
    env->mp_state = mp_state.mp_state;
1118
    return 0;
1119
}
1120

    
1121
static int kvm_put_vcpu_events(CPUState *env, int level)
1122
{
1123
#ifdef KVM_CAP_VCPU_EVENTS
1124
    struct kvm_vcpu_events events;
1125

    
1126
    if (!kvm_has_vcpu_events()) {
1127
        return 0;
1128
    }
1129

    
1130
    events.exception.injected = (env->exception_injected >= 0);
1131
    events.exception.nr = env->exception_injected;
1132
    events.exception.has_error_code = env->has_error_code;
1133
    events.exception.error_code = env->error_code;
1134

    
1135
    events.interrupt.injected = (env->interrupt_injected >= 0);
1136
    events.interrupt.nr = env->interrupt_injected;
1137
    events.interrupt.soft = env->soft_interrupt;
1138

    
1139
    events.nmi.injected = env->nmi_injected;
1140
    events.nmi.pending = env->nmi_pending;
1141
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1142

    
1143
    events.sipi_vector = env->sipi_vector;
1144

    
1145
    events.flags = 0;
1146
    if (level >= KVM_PUT_RESET_STATE) {
1147
        events.flags |=
1148
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1149
    }
1150

    
1151
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1152
#else
1153
    return 0;
1154
#endif
1155
}
1156

    
1157
static int kvm_get_vcpu_events(CPUState *env)
1158
{
1159
#ifdef KVM_CAP_VCPU_EVENTS
1160
    struct kvm_vcpu_events events;
1161
    int ret;
1162

    
1163
    if (!kvm_has_vcpu_events()) {
1164
        return 0;
1165
    }
1166

    
1167
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1168
    if (ret < 0) {
1169
       return ret;
1170
    }
1171
    env->exception_injected =
1172
       events.exception.injected ? events.exception.nr : -1;
1173
    env->has_error_code = events.exception.has_error_code;
1174
    env->error_code = events.exception.error_code;
1175

    
1176
    env->interrupt_injected =
1177
        events.interrupt.injected ? events.interrupt.nr : -1;
1178
    env->soft_interrupt = events.interrupt.soft;
1179

    
1180
    env->nmi_injected = events.nmi.injected;
1181
    env->nmi_pending = events.nmi.pending;
1182
    if (events.nmi.masked) {
1183
        env->hflags2 |= HF2_NMI_MASK;
1184
    } else {
1185
        env->hflags2 &= ~HF2_NMI_MASK;
1186
    }
1187

    
1188
    env->sipi_vector = events.sipi_vector;
1189
#endif
1190

    
1191
    return 0;
1192
}
1193

    
1194
static int kvm_guest_debug_workarounds(CPUState *env)
1195
{
1196
    int ret = 0;
1197
#ifdef KVM_CAP_SET_GUEST_DEBUG
1198
    unsigned long reinject_trap = 0;
1199

    
1200
    if (!kvm_has_vcpu_events()) {
1201
        if (env->exception_injected == 1) {
1202
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1203
        } else if (env->exception_injected == 3) {
1204
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1205
        }
1206
        env->exception_injected = -1;
1207
    }
1208

    
1209
    /*
1210
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1211
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1212
     * by updating the debug state once again if single-stepping is on.
1213
     * Another reason to call kvm_update_guest_debug here is a pending debug
1214
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1215
     * reinject them via SET_GUEST_DEBUG.
1216
     */
1217
    if (reinject_trap ||
1218
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1219
        ret = kvm_update_guest_debug(env, reinject_trap);
1220
    }
1221
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1222
    return ret;
1223
}
1224

    
1225
static int kvm_put_debugregs(CPUState *env)
1226
{
1227
#ifdef KVM_CAP_DEBUGREGS
1228
    struct kvm_debugregs dbgregs;
1229
    int i;
1230

    
1231
    if (!kvm_has_debugregs()) {
1232
        return 0;
1233
    }
1234

    
1235
    for (i = 0; i < 4; i++) {
1236
        dbgregs.db[i] = env->dr[i];
1237
    }
1238
    dbgregs.dr6 = env->dr[6];
1239
    dbgregs.dr7 = env->dr[7];
1240
    dbgregs.flags = 0;
1241

    
1242
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1243
#else
1244
    return 0;
1245
#endif
1246
}
1247

    
1248
static int kvm_get_debugregs(CPUState *env)
1249
{
1250
#ifdef KVM_CAP_DEBUGREGS
1251
    struct kvm_debugregs dbgregs;
1252
    int i, ret;
1253

    
1254
    if (!kvm_has_debugregs()) {
1255
        return 0;
1256
    }
1257

    
1258
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1259
    if (ret < 0) {
1260
       return ret;
1261
    }
1262
    for (i = 0; i < 4; i++) {
1263
        env->dr[i] = dbgregs.db[i];
1264
    }
1265
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1266
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1267
#endif
1268

    
1269
    return 0;
1270
}
1271

    
1272
int kvm_arch_put_registers(CPUState *env, int level)
1273
{
1274
    int ret;
1275

    
1276
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1277

    
1278
    ret = kvm_getput_regs(env, 1);
1279
    if (ret < 0)
1280
        return ret;
1281

    
1282
    ret = kvm_put_xsave(env);
1283
    if (ret < 0)
1284
        return ret;
1285

    
1286
    ret = kvm_put_xcrs(env);
1287
    if (ret < 0)
1288
        return ret;
1289

    
1290
    ret = kvm_put_sregs(env);
1291
    if (ret < 0)
1292
        return ret;
1293

    
1294
    ret = kvm_put_msrs(env, level);
1295
    if (ret < 0)
1296
        return ret;
1297

    
1298
    if (level >= KVM_PUT_RESET_STATE) {
1299
        ret = kvm_put_mp_state(env);
1300
        if (ret < 0)
1301
            return ret;
1302
    }
1303

    
1304
    ret = kvm_put_vcpu_events(env, level);
1305
    if (ret < 0)
1306
        return ret;
1307

    
1308
    /* must be last */
1309
    ret = kvm_guest_debug_workarounds(env);
1310
    if (ret < 0)
1311
        return ret;
1312

    
1313
    ret = kvm_put_debugregs(env);
1314
    if (ret < 0)
1315
        return ret;
1316

    
1317
    return 0;
1318
}
1319

    
1320
int kvm_arch_get_registers(CPUState *env)
1321
{
1322
    int ret;
1323

    
1324
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1325

    
1326
    ret = kvm_getput_regs(env, 0);
1327
    if (ret < 0)
1328
        return ret;
1329

    
1330
    ret = kvm_get_xsave(env);
1331
    if (ret < 0)
1332
        return ret;
1333

    
1334
    ret = kvm_get_xcrs(env);
1335
    if (ret < 0)
1336
        return ret;
1337

    
1338
    ret = kvm_get_sregs(env);
1339
    if (ret < 0)
1340
        return ret;
1341

    
1342
    ret = kvm_get_msrs(env);
1343
    if (ret < 0)
1344
        return ret;
1345

    
1346
    ret = kvm_get_mp_state(env);
1347
    if (ret < 0)
1348
        return ret;
1349

    
1350
    ret = kvm_get_vcpu_events(env);
1351
    if (ret < 0)
1352
        return ret;
1353

    
1354
    ret = kvm_get_debugregs(env);
1355
    if (ret < 0)
1356
        return ret;
1357

    
1358
    return 0;
1359
}
1360

    
1361
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1362
{
1363
    /* Try to inject an interrupt if the guest can accept it */
1364
    if (run->ready_for_interrupt_injection &&
1365
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1366
        (env->eflags & IF_MASK)) {
1367
        int irq;
1368

    
1369
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1370
        irq = cpu_get_pic_interrupt(env);
1371
        if (irq >= 0) {
1372
            struct kvm_interrupt intr;
1373
            intr.irq = irq;
1374
            /* FIXME: errors */
1375
            DPRINTF("injected interrupt %d\n", irq);
1376
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1377
        }
1378
    }
1379

    
1380
    /* If we have an interrupt but the guest is not ready to receive an
1381
     * interrupt, request an interrupt window exit.  This will
1382
     * cause a return to userspace as soon as the guest is ready to
1383
     * receive interrupts. */
1384
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1385
        run->request_interrupt_window = 1;
1386
    else
1387
        run->request_interrupt_window = 0;
1388

    
1389
    DPRINTF("setting tpr\n");
1390
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1391

    
1392
    return 0;
1393
}
1394

    
1395
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1396
{
1397
    if (run->if_flag)
1398
        env->eflags |= IF_MASK;
1399
    else
1400
        env->eflags &= ~IF_MASK;
1401
    
1402
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1403
    cpu_set_apic_base(env->apic_state, run->apic_base);
1404

    
1405
    return 0;
1406
}
1407

    
1408
int kvm_arch_process_irqchip_events(CPUState *env)
1409
{
1410
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1411
        kvm_cpu_synchronize_state(env);
1412
        do_cpu_init(env);
1413
        env->exception_index = EXCP_HALTED;
1414
    }
1415

    
1416
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1417
        kvm_cpu_synchronize_state(env);
1418
        do_cpu_sipi(env);
1419
    }
1420

    
1421
    return env->halted;
1422
}
1423

    
1424
static int kvm_handle_halt(CPUState *env)
1425
{
1426
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1427
          (env->eflags & IF_MASK)) &&
1428
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1429
        env->halted = 1;
1430
        env->exception_index = EXCP_HLT;
1431
        return 0;
1432
    }
1433

    
1434
    return 1;
1435
}
1436

    
1437
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1438
{
1439
    int ret = 0;
1440

    
1441
    switch (run->exit_reason) {
1442
    case KVM_EXIT_HLT:
1443
        DPRINTF("handle_hlt\n");
1444
        ret = kvm_handle_halt(env);
1445
        break;
1446
    }
1447

    
1448
    return ret;
1449
}
1450

    
1451
#ifdef KVM_CAP_SET_GUEST_DEBUG
1452
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1453
{
1454
    static const uint8_t int3 = 0xcc;
1455

    
1456
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1457
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1458
        return -EINVAL;
1459
    return 0;
1460
}
1461

    
1462
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1463
{
1464
    uint8_t int3;
1465

    
1466
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1467
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1468
        return -EINVAL;
1469
    return 0;
1470
}
1471

    
1472
static struct {
1473
    target_ulong addr;
1474
    int len;
1475
    int type;
1476
} hw_breakpoint[4];
1477

    
1478
static int nb_hw_breakpoint;
1479

    
1480
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1481
{
1482
    int n;
1483

    
1484
    for (n = 0; n < nb_hw_breakpoint; n++)
1485
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1486
            (hw_breakpoint[n].len == len || len == -1))
1487
            return n;
1488
    return -1;
1489
}
1490

    
1491
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1492
                                  target_ulong len, int type)
1493
{
1494
    switch (type) {
1495
    case GDB_BREAKPOINT_HW:
1496
        len = 1;
1497
        break;
1498
    case GDB_WATCHPOINT_WRITE:
1499
    case GDB_WATCHPOINT_ACCESS:
1500
        switch (len) {
1501
        case 1:
1502
            break;
1503
        case 2:
1504
        case 4:
1505
        case 8:
1506
            if (addr & (len - 1))
1507
                return -EINVAL;
1508
            break;
1509
        default:
1510
            return -EINVAL;
1511
        }
1512
        break;
1513
    default:
1514
        return -ENOSYS;
1515
    }
1516

    
1517
    if (nb_hw_breakpoint == 4)
1518
        return -ENOBUFS;
1519

    
1520
    if (find_hw_breakpoint(addr, len, type) >= 0)
1521
        return -EEXIST;
1522

    
1523
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1524
    hw_breakpoint[nb_hw_breakpoint].len = len;
1525
    hw_breakpoint[nb_hw_breakpoint].type = type;
1526
    nb_hw_breakpoint++;
1527

    
1528
    return 0;
1529
}
1530

    
1531
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1532
                                  target_ulong len, int type)
1533
{
1534
    int n;
1535

    
1536
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1537
    if (n < 0)
1538
        return -ENOENT;
1539

    
1540
    nb_hw_breakpoint--;
1541
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1542

    
1543
    return 0;
1544
}
1545

    
1546
void kvm_arch_remove_all_hw_breakpoints(void)
1547
{
1548
    nb_hw_breakpoint = 0;
1549
}
1550

    
1551
static CPUWatchpoint hw_watchpoint;
1552

    
1553
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1554
{
1555
    int handle = 0;
1556
    int n;
1557

    
1558
    if (arch_info->exception == 1) {
1559
        if (arch_info->dr6 & (1 << 14)) {
1560
            if (cpu_single_env->singlestep_enabled)
1561
                handle = 1;
1562
        } else {
1563
            for (n = 0; n < 4; n++)
1564
                if (arch_info->dr6 & (1 << n))
1565
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1566
                    case 0x0:
1567
                        handle = 1;
1568
                        break;
1569
                    case 0x1:
1570
                        handle = 1;
1571
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1572
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1573
                        hw_watchpoint.flags = BP_MEM_WRITE;
1574
                        break;
1575
                    case 0x3:
1576
                        handle = 1;
1577
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1578
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1579
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1580
                        break;
1581
                    }
1582
        }
1583
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1584
        handle = 1;
1585

    
1586
    if (!handle) {
1587
        cpu_synchronize_state(cpu_single_env);
1588
        assert(cpu_single_env->exception_injected == -1);
1589

    
1590
        cpu_single_env->exception_injected = arch_info->exception;
1591
        cpu_single_env->has_error_code = 0;
1592
    }
1593

    
1594
    return handle;
1595
}
1596

    
1597
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1598
{
1599
    const uint8_t type_code[] = {
1600
        [GDB_BREAKPOINT_HW] = 0x0,
1601
        [GDB_WATCHPOINT_WRITE] = 0x1,
1602
        [GDB_WATCHPOINT_ACCESS] = 0x3
1603
    };
1604
    const uint8_t len_code[] = {
1605
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1606
    };
1607
    int n;
1608

    
1609
    if (kvm_sw_breakpoints_active(env))
1610
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1611

    
1612
    if (nb_hw_breakpoint > 0) {
1613
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1614
        dbg->arch.debugreg[7] = 0x0600;
1615
        for (n = 0; n < nb_hw_breakpoint; n++) {
1616
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1617
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1618
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1619
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1620
        }
1621
    }
1622
    /* Legal xcr0 for loading */
1623
    env->xcr0 = 1;
1624
}
1625
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1626

    
1627
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1628
{
1629
      return !(env->cr[0] & CR0_PE_MASK) ||
1630
              ((env->segs[R_CS].selector  & 3) != 3);
1631
}
1632

    
1633
static void hardware_memory_error(void)
1634
{
1635
    fprintf(stderr, "Hardware memory error!\n");
1636
    exit(1);
1637
}
1638

    
1639
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1640
{
1641
#if defined(KVM_CAP_MCE)
1642
    struct kvm_x86_mce mce = {
1643
            .bank = 9,
1644
    };
1645
    void *vaddr;
1646
    ram_addr_t ram_addr;
1647
    target_phys_addr_t paddr;
1648
    int r;
1649

    
1650
    if ((env->mcg_cap & MCG_SER_P) && addr
1651
        && (code == BUS_MCEERR_AR
1652
            || code == BUS_MCEERR_AO)) {
1653
        if (code == BUS_MCEERR_AR) {
1654
            /* Fake an Intel architectural Data Load SRAR UCR */
1655
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1656
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1657
                | MCI_STATUS_AR | 0x134;
1658
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1659
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1660
        } else {
1661
            /*
1662
             * If there is an MCE excpetion being processed, ignore
1663
             * this SRAO MCE
1664
             */
1665
            r = kvm_mce_in_exception(env);
1666
            if (r == -1) {
1667
                fprintf(stderr, "Failed to get MCE status\n");
1668
            } else if (r) {
1669
                return 0;
1670
            }
1671
            /* Fake an Intel architectural Memory scrubbing UCR */
1672
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1673
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1674
                | 0xc0;
1675
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1676
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1677
        }
1678
        vaddr = (void *)addr;
1679
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1680
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1681
            fprintf(stderr, "Hardware memory error for memory used by "
1682
                    "QEMU itself instead of guest system!\n");
1683
            /* Hope we are lucky for AO MCE */
1684
            if (code == BUS_MCEERR_AO) {
1685
                return 0;
1686
            } else {
1687
                hardware_memory_error();
1688
            }
1689
        }
1690
        mce.addr = paddr;
1691
        r = kvm_set_mce(env, &mce);
1692
        if (r < 0) {
1693
            fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1694
            abort();
1695
        }
1696
    } else
1697
#endif
1698
    {
1699
        if (code == BUS_MCEERR_AO) {
1700
            return 0;
1701
        } else if (code == BUS_MCEERR_AR) {
1702
            hardware_memory_error();
1703
        } else {
1704
            return 1;
1705
        }
1706
    }
1707
    return 0;
1708
}
1709

    
1710
int kvm_on_sigbus(int code, void *addr)
1711
{
1712
#if defined(KVM_CAP_MCE)
1713
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1714
        uint64_t status;
1715
        void *vaddr;
1716
        ram_addr_t ram_addr;
1717
        target_phys_addr_t paddr;
1718
        CPUState *cenv;
1719

    
1720
        /* Hope we are lucky for AO MCE */
1721
        vaddr = addr;
1722
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1723
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1724
            fprintf(stderr, "Hardware memory error for memory used by "
1725
                    "QEMU itself instead of guest system!: %p\n", addr);
1726
            return 0;
1727
        }
1728
        status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1729
            | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1730
            | 0xc0;
1731
        kvm_inject_x86_mce(first_cpu, 9, status,
1732
                           MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1733
                           (MCM_ADDR_PHYS << 6) | 0xc, 1);
1734
        for (cenv = first_cpu->next_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1735
            kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1736
                               MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1737
        }
1738
    } else
1739
#endif
1740
    {
1741
        if (code == BUS_MCEERR_AO) {
1742
            return 0;
1743
        } else if (code == BUS_MCEERR_AR) {
1744
            hardware_memory_error();
1745
        } else {
1746
            return 1;
1747
        }
1748
    }
1749
    return 0;
1750
}