Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ f8d926e9

History | View | Annotate | Download (24.8 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
#ifdef KVM_CAP_EXT_CPUID
38

    
39
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40
{
41
    struct kvm_cpuid2 *cpuid;
42
    int r, size;
43

    
44
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46
    cpuid->nent = max;
47
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48
    if (r == 0 && cpuid->nent >= max) {
49
        r = -E2BIG;
50
    }
51
    if (r < 0) {
52
        if (r == -E2BIG) {
53
            qemu_free(cpuid);
54
            return NULL;
55
        } else {
56
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57
                    strerror(-r));
58
            exit(1);
59
        }
60
    }
61
    return cpuid;
62
}
63

    
64
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65
{
66
    struct kvm_cpuid2 *cpuid;
67
    int i, max;
68
    uint32_t ret = 0;
69
    uint32_t cpuid_1_edx;
70

    
71
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72
        return -1U;
73
    }
74

    
75
    max = 1;
76
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77
        max *= 2;
78
    }
79

    
80
    for (i = 0; i < cpuid->nent; ++i) {
81
        if (cpuid->entries[i].function == function) {
82
            switch (reg) {
83
            case R_EAX:
84
                ret = cpuid->entries[i].eax;
85
                break;
86
            case R_EBX:
87
                ret = cpuid->entries[i].ebx;
88
                break;
89
            case R_ECX:
90
                ret = cpuid->entries[i].ecx;
91
                break;
92
            case R_EDX:
93
                ret = cpuid->entries[i].edx;
94
                if (function == 0x80000001) {
95
                    /* On Intel, kvm returns cpuid according to the Intel spec,
96
                     * so add missing bits according to the AMD spec:
97
                     */
98
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99
                    ret |= cpuid_1_edx & 0xdfeff7ff;
100
                }
101
                break;
102
            }
103
        }
104
    }
105

    
106
    qemu_free(cpuid);
107

    
108
    return ret;
109
}
110

    
111
#else
112

    
113
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114
{
115
    return -1U;
116
}
117

    
118
#endif
119

    
120
int kvm_arch_init_vcpu(CPUState *env)
121
{
122
    struct {
123
        struct kvm_cpuid2 cpuid;
124
        struct kvm_cpuid_entry2 entries[100];
125
    } __attribute__((packed)) cpuid_data;
126
    uint32_t limit, i, j, cpuid_i;
127
    uint32_t unused;
128

    
129
    env->mp_state = KVM_MP_STATE_RUNNABLE;
130

    
131
    cpuid_i = 0;
132

    
133
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
134

    
135
    for (i = 0; i <= limit; i++) {
136
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
137

    
138
        switch (i) {
139
        case 2: {
140
            /* Keep reading function 2 till all the input is received */
141
            int times;
142

    
143
            c->function = i;
144
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
145
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
146
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
147
            times = c->eax & 0xff;
148

    
149
            for (j = 1; j < times; ++j) {
150
                c = &cpuid_data.entries[cpuid_i++];
151
                c->function = i;
152
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
153
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
154
            }
155
            break;
156
        }
157
        case 4:
158
        case 0xb:
159
        case 0xd:
160
            for (j = 0; ; j++) {
161
                c->function = i;
162
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
163
                c->index = j;
164
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
165

    
166
                if (i == 4 && c->eax == 0)
167
                    break;
168
                if (i == 0xb && !(c->ecx & 0xff00))
169
                    break;
170
                if (i == 0xd && c->eax == 0)
171
                    break;
172

    
173
                c = &cpuid_data.entries[cpuid_i++];
174
            }
175
            break;
176
        default:
177
            c->function = i;
178
            c->flags = 0;
179
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
180
            break;
181
        }
182
    }
183
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
184

    
185
    for (i = 0x80000000; i <= limit; i++) {
186
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
187

    
188
        c->function = i;
189
        c->flags = 0;
190
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
191
    }
192

    
193
    cpuid_data.cpuid.nent = cpuid_i;
194

    
195
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
196
}
197

    
198
static int kvm_has_msr_star(CPUState *env)
199
{
200
    static int has_msr_star;
201
    int ret;
202

    
203
    /* first time */
204
    if (has_msr_star == 0) {        
205
        struct kvm_msr_list msr_list, *kvm_msr_list;
206

    
207
        has_msr_star = -1;
208

    
209
        /* Obtain MSR list from KVM.  These are the MSRs that we must
210
         * save/restore */
211
        msr_list.nmsrs = 0;
212
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
213
        if (ret < 0)
214
            return 0;
215

    
216
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
217
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
218

    
219
        kvm_msr_list->nmsrs = msr_list.nmsrs;
220
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
221
        if (ret >= 0) {
222
            int i;
223

    
224
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
225
                if (kvm_msr_list->indices[i] == MSR_STAR) {
226
                    has_msr_star = 1;
227
                    break;
228
                }
229
            }
230
        }
231

    
232
        free(kvm_msr_list);
233
    }
234

    
235
    if (has_msr_star == 1)
236
        return 1;
237
    return 0;
238
}
239

    
240
int kvm_arch_init(KVMState *s, int smp_cpus)
241
{
242
    int ret;
243

    
244
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
245
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
246
     * must be part of guest physical memory, we need to allocate it.  Older
247
     * versions of KVM just assumed that it would be at the end of physical
248
     * memory but that doesn't work with more than 4GB of memory.  We simply
249
     * refuse to work with those older versions of KVM. */
250
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
251
    if (ret <= 0) {
252
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
253
        return ret;
254
    }
255

    
256
    /* this address is 3 pages before the bios, and the bios should present
257
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
258
     * this?
259
     */
260
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
261
}
262
                    
263
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
264
{
265
    lhs->selector = rhs->selector;
266
    lhs->base = rhs->base;
267
    lhs->limit = rhs->limit;
268
    lhs->type = 3;
269
    lhs->present = 1;
270
    lhs->dpl = 3;
271
    lhs->db = 0;
272
    lhs->s = 1;
273
    lhs->l = 0;
274
    lhs->g = 0;
275
    lhs->avl = 0;
276
    lhs->unusable = 0;
277
}
278

    
279
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
280
{
281
    unsigned flags = rhs->flags;
282
    lhs->selector = rhs->selector;
283
    lhs->base = rhs->base;
284
    lhs->limit = rhs->limit;
285
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
286
    lhs->present = (flags & DESC_P_MASK) != 0;
287
    lhs->dpl = rhs->selector & 3;
288
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
289
    lhs->s = (flags & DESC_S_MASK) != 0;
290
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
291
    lhs->g = (flags & DESC_G_MASK) != 0;
292
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
293
    lhs->unusable = 0;
294
}
295

    
296
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
297
{
298
    lhs->selector = rhs->selector;
299
    lhs->base = rhs->base;
300
    lhs->limit = rhs->limit;
301
    lhs->flags =
302
        (rhs->type << DESC_TYPE_SHIFT)
303
        | (rhs->present * DESC_P_MASK)
304
        | (rhs->dpl << DESC_DPL_SHIFT)
305
        | (rhs->db << DESC_B_SHIFT)
306
        | (rhs->s * DESC_S_MASK)
307
        | (rhs->l << DESC_L_SHIFT)
308
        | (rhs->g * DESC_G_MASK)
309
        | (rhs->avl * DESC_AVL_MASK);
310
}
311

    
312
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
313
{
314
    if (set)
315
        *kvm_reg = *qemu_reg;
316
    else
317
        *qemu_reg = *kvm_reg;
318
}
319

    
320
static int kvm_getput_regs(CPUState *env, int set)
321
{
322
    struct kvm_regs regs;
323
    int ret = 0;
324

    
325
    if (!set) {
326
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
327
        if (ret < 0)
328
            return ret;
329
    }
330

    
331
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
332
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
333
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
334
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
335
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
336
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
337
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
338
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
339
#ifdef TARGET_X86_64
340
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
341
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
342
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
343
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
344
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
345
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
346
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
347
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
348
#endif
349

    
350
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
351
    kvm_getput_reg(&regs.rip, &env->eip, set);
352

    
353
    if (set)
354
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
355

    
356
    return ret;
357
}
358

    
359
static int kvm_put_fpu(CPUState *env)
360
{
361
    struct kvm_fpu fpu;
362
    int i;
363

    
364
    memset(&fpu, 0, sizeof fpu);
365
    fpu.fsw = env->fpus & ~(7 << 11);
366
    fpu.fsw |= (env->fpstt & 7) << 11;
367
    fpu.fcw = env->fpuc;
368
    for (i = 0; i < 8; ++i)
369
        fpu.ftwx |= (!env->fptags[i]) << i;
370
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
371
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
372
    fpu.mxcsr = env->mxcsr;
373

    
374
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
375
}
376

    
377
static int kvm_put_sregs(CPUState *env)
378
{
379
    struct kvm_sregs sregs;
380

    
381
    memcpy(sregs.interrupt_bitmap,
382
           env->interrupt_bitmap,
383
           sizeof(sregs.interrupt_bitmap));
384

    
385
    if ((env->eflags & VM_MASK)) {
386
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
387
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
388
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
389
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
390
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
391
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
392
    } else {
393
            set_seg(&sregs.cs, &env->segs[R_CS]);
394
            set_seg(&sregs.ds, &env->segs[R_DS]);
395
            set_seg(&sregs.es, &env->segs[R_ES]);
396
            set_seg(&sregs.fs, &env->segs[R_FS]);
397
            set_seg(&sregs.gs, &env->segs[R_GS]);
398
            set_seg(&sregs.ss, &env->segs[R_SS]);
399

    
400
            if (env->cr[0] & CR0_PE_MASK) {
401
                /* force ss cpl to cs cpl */
402
                sregs.ss.selector = (sregs.ss.selector & ~3) |
403
                        (sregs.cs.selector & 3);
404
                sregs.ss.dpl = sregs.ss.selector & 3;
405
            }
406
    }
407

    
408
    set_seg(&sregs.tr, &env->tr);
409
    set_seg(&sregs.ldt, &env->ldt);
410

    
411
    sregs.idt.limit = env->idt.limit;
412
    sregs.idt.base = env->idt.base;
413
    sregs.gdt.limit = env->gdt.limit;
414
    sregs.gdt.base = env->gdt.base;
415

    
416
    sregs.cr0 = env->cr[0];
417
    sregs.cr2 = env->cr[2];
418
    sregs.cr3 = env->cr[3];
419
    sregs.cr4 = env->cr[4];
420

    
421
    sregs.cr8 = cpu_get_apic_tpr(env);
422
    sregs.apic_base = cpu_get_apic_base(env);
423

    
424
    sregs.efer = env->efer;
425

    
426
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
427
}
428

    
429
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
430
                              uint32_t index, uint64_t value)
431
{
432
    entry->index = index;
433
    entry->data = value;
434
}
435

    
436
static int kvm_put_msrs(CPUState *env)
437
{
438
    struct {
439
        struct kvm_msrs info;
440
        struct kvm_msr_entry entries[100];
441
    } msr_data;
442
    struct kvm_msr_entry *msrs = msr_data.entries;
443
    int n = 0;
444

    
445
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
446
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
447
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
448
    if (kvm_has_msr_star(env))
449
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
450
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
451
#ifdef TARGET_X86_64
452
    /* FIXME if lm capable */
453
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
454
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
455
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
456
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
457
#endif
458
    msr_data.info.nmsrs = n;
459

    
460
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
461

    
462
}
463

    
464

    
465
static int kvm_get_fpu(CPUState *env)
466
{
467
    struct kvm_fpu fpu;
468
    int i, ret;
469

    
470
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
471
    if (ret < 0)
472
        return ret;
473

    
474
    env->fpstt = (fpu.fsw >> 11) & 7;
475
    env->fpus = fpu.fsw;
476
    env->fpuc = fpu.fcw;
477
    for (i = 0; i < 8; ++i)
478
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
479
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
480
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
481
    env->mxcsr = fpu.mxcsr;
482

    
483
    return 0;
484
}
485

    
486
static int kvm_get_sregs(CPUState *env)
487
{
488
    struct kvm_sregs sregs;
489
    uint32_t hflags;
490
    int ret;
491

    
492
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
493
    if (ret < 0)
494
        return ret;
495

    
496
    memcpy(env->interrupt_bitmap, 
497
           sregs.interrupt_bitmap,
498
           sizeof(sregs.interrupt_bitmap));
499

    
500
    get_seg(&env->segs[R_CS], &sregs.cs);
501
    get_seg(&env->segs[R_DS], &sregs.ds);
502
    get_seg(&env->segs[R_ES], &sregs.es);
503
    get_seg(&env->segs[R_FS], &sregs.fs);
504
    get_seg(&env->segs[R_GS], &sregs.gs);
505
    get_seg(&env->segs[R_SS], &sregs.ss);
506

    
507
    get_seg(&env->tr, &sregs.tr);
508
    get_seg(&env->ldt, &sregs.ldt);
509

    
510
    env->idt.limit = sregs.idt.limit;
511
    env->idt.base = sregs.idt.base;
512
    env->gdt.limit = sregs.gdt.limit;
513
    env->gdt.base = sregs.gdt.base;
514

    
515
    env->cr[0] = sregs.cr0;
516
    env->cr[2] = sregs.cr2;
517
    env->cr[3] = sregs.cr3;
518
    env->cr[4] = sregs.cr4;
519

    
520
    cpu_set_apic_base(env, sregs.apic_base);
521

    
522
    env->efer = sregs.efer;
523
    //cpu_set_apic_tpr(env, sregs.cr8);
524

    
525
#define HFLAG_COPY_MASK ~( \
526
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
527
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
528
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
529
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
530

    
531

    
532

    
533
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
534
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
535
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
536
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
537
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
538
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
539
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
540

    
541
    if (env->efer & MSR_EFER_LMA) {
542
        hflags |= HF_LMA_MASK;
543
    }
544

    
545
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
546
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
547
    } else {
548
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
549
                (DESC_B_SHIFT - HF_CS32_SHIFT);
550
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
551
                (DESC_B_SHIFT - HF_SS32_SHIFT);
552
        if (!(env->cr[0] & CR0_PE_MASK) ||
553
                   (env->eflags & VM_MASK) ||
554
                   !(hflags & HF_CS32_MASK)) {
555
                hflags |= HF_ADDSEG_MASK;
556
            } else {
557
                hflags |= ((env->segs[R_DS].base |
558
                                env->segs[R_ES].base |
559
                                env->segs[R_SS].base) != 0) <<
560
                    HF_ADDSEG_SHIFT;
561
            }
562
    }
563
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
564

    
565
    return 0;
566
}
567

    
568
static int kvm_get_msrs(CPUState *env)
569
{
570
    struct {
571
        struct kvm_msrs info;
572
        struct kvm_msr_entry entries[100];
573
    } msr_data;
574
    struct kvm_msr_entry *msrs = msr_data.entries;
575
    int ret, i, n;
576

    
577
    n = 0;
578
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
579
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
580
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
581
    if (kvm_has_msr_star(env))
582
        msrs[n++].index = MSR_STAR;
583
    msrs[n++].index = MSR_IA32_TSC;
584
#ifdef TARGET_X86_64
585
    /* FIXME lm_capable_kernel */
586
    msrs[n++].index = MSR_CSTAR;
587
    msrs[n++].index = MSR_KERNELGSBASE;
588
    msrs[n++].index = MSR_FMASK;
589
    msrs[n++].index = MSR_LSTAR;
590
#endif
591
    msr_data.info.nmsrs = n;
592
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
593
    if (ret < 0)
594
        return ret;
595

    
596
    for (i = 0; i < ret; i++) {
597
        switch (msrs[i].index) {
598
        case MSR_IA32_SYSENTER_CS:
599
            env->sysenter_cs = msrs[i].data;
600
            break;
601
        case MSR_IA32_SYSENTER_ESP:
602
            env->sysenter_esp = msrs[i].data;
603
            break;
604
        case MSR_IA32_SYSENTER_EIP:
605
            env->sysenter_eip = msrs[i].data;
606
            break;
607
        case MSR_STAR:
608
            env->star = msrs[i].data;
609
            break;
610
#ifdef TARGET_X86_64
611
        case MSR_CSTAR:
612
            env->cstar = msrs[i].data;
613
            break;
614
        case MSR_KERNELGSBASE:
615
            env->kernelgsbase = msrs[i].data;
616
            break;
617
        case MSR_FMASK:
618
            env->fmask = msrs[i].data;
619
            break;
620
        case MSR_LSTAR:
621
            env->lstar = msrs[i].data;
622
            break;
623
#endif
624
        case MSR_IA32_TSC:
625
            env->tsc = msrs[i].data;
626
            break;
627
        }
628
    }
629

    
630
    return 0;
631
}
632

    
633
int kvm_arch_put_registers(CPUState *env)
634
{
635
    int ret;
636

    
637
    ret = kvm_getput_regs(env, 1);
638
    if (ret < 0)
639
        return ret;
640

    
641
    ret = kvm_put_fpu(env);
642
    if (ret < 0)
643
        return ret;
644

    
645
    ret = kvm_put_sregs(env);
646
    if (ret < 0)
647
        return ret;
648

    
649
    ret = kvm_put_msrs(env);
650
    if (ret < 0)
651
        return ret;
652

    
653
    ret = kvm_put_mp_state(env);
654
    if (ret < 0)
655
        return ret;
656

    
657
    ret = kvm_get_mp_state(env);
658
    if (ret < 0)
659
        return ret;
660

    
661
    return 0;
662
}
663

    
664
int kvm_arch_get_registers(CPUState *env)
665
{
666
    int ret;
667

    
668
    ret = kvm_getput_regs(env, 0);
669
    if (ret < 0)
670
        return ret;
671

    
672
    ret = kvm_get_fpu(env);
673
    if (ret < 0)
674
        return ret;
675

    
676
    ret = kvm_get_sregs(env);
677
    if (ret < 0)
678
        return ret;
679

    
680
    ret = kvm_get_msrs(env);
681
    if (ret < 0)
682
        return ret;
683

    
684
    return 0;
685
}
686

    
687
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
688
{
689
    /* Try to inject an interrupt if the guest can accept it */
690
    if (run->ready_for_interrupt_injection &&
691
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
692
        (env->eflags & IF_MASK)) {
693
        int irq;
694

    
695
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
696
        irq = cpu_get_pic_interrupt(env);
697
        if (irq >= 0) {
698
            struct kvm_interrupt intr;
699
            intr.irq = irq;
700
            /* FIXME: errors */
701
            dprintf("injected interrupt %d\n", irq);
702
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
703
        }
704
    }
705

    
706
    /* If we have an interrupt but the guest is not ready to receive an
707
     * interrupt, request an interrupt window exit.  This will
708
     * cause a return to userspace as soon as the guest is ready to
709
     * receive interrupts. */
710
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
711
        run->request_interrupt_window = 1;
712
    else
713
        run->request_interrupt_window = 0;
714

    
715
    dprintf("setting tpr\n");
716
    run->cr8 = cpu_get_apic_tpr(env);
717

    
718
    return 0;
719
}
720

    
721
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
722
{
723
    if (run->if_flag)
724
        env->eflags |= IF_MASK;
725
    else
726
        env->eflags &= ~IF_MASK;
727
    
728
    cpu_set_apic_tpr(env, run->cr8);
729
    cpu_set_apic_base(env, run->apic_base);
730

    
731
    return 0;
732
}
733

    
734
static int kvm_handle_halt(CPUState *env)
735
{
736
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
737
          (env->eflags & IF_MASK)) &&
738
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
739
        env->halted = 1;
740
        env->exception_index = EXCP_HLT;
741
        return 0;
742
    }
743

    
744
    return 1;
745
}
746

    
747
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
748
{
749
    int ret = 0;
750

    
751
    switch (run->exit_reason) {
752
    case KVM_EXIT_HLT:
753
        dprintf("handle_hlt\n");
754
        ret = kvm_handle_halt(env);
755
        break;
756
    }
757

    
758
    return ret;
759
}
760

    
761
#ifdef KVM_CAP_SET_GUEST_DEBUG
762
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
763
{
764
    const static uint8_t int3 = 0xcc;
765

    
766
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
767
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
768
        return -EINVAL;
769
    return 0;
770
}
771

    
772
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
773
{
774
    uint8_t int3;
775

    
776
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
777
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
778
        return -EINVAL;
779
    return 0;
780
}
781

    
782
static struct {
783
    target_ulong addr;
784
    int len;
785
    int type;
786
} hw_breakpoint[4];
787

    
788
static int nb_hw_breakpoint;
789

    
790
static int find_hw_breakpoint(target_ulong addr, int len, int type)
791
{
792
    int n;
793

    
794
    for (n = 0; n < nb_hw_breakpoint; n++)
795
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
796
            (hw_breakpoint[n].len == len || len == -1))
797
            return n;
798
    return -1;
799
}
800

    
801
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
802
                                  target_ulong len, int type)
803
{
804
    switch (type) {
805
    case GDB_BREAKPOINT_HW:
806
        len = 1;
807
        break;
808
    case GDB_WATCHPOINT_WRITE:
809
    case GDB_WATCHPOINT_ACCESS:
810
        switch (len) {
811
        case 1:
812
            break;
813
        case 2:
814
        case 4:
815
        case 8:
816
            if (addr & (len - 1))
817
                return -EINVAL;
818
            break;
819
        default:
820
            return -EINVAL;
821
        }
822
        break;
823
    default:
824
        return -ENOSYS;
825
    }
826

    
827
    if (nb_hw_breakpoint == 4)
828
        return -ENOBUFS;
829

    
830
    if (find_hw_breakpoint(addr, len, type) >= 0)
831
        return -EEXIST;
832

    
833
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
834
    hw_breakpoint[nb_hw_breakpoint].len = len;
835
    hw_breakpoint[nb_hw_breakpoint].type = type;
836
    nb_hw_breakpoint++;
837

    
838
    return 0;
839
}
840

    
841
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
842
                                  target_ulong len, int type)
843
{
844
    int n;
845

    
846
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
847
    if (n < 0)
848
        return -ENOENT;
849

    
850
    nb_hw_breakpoint--;
851
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
852

    
853
    return 0;
854
}
855

    
856
void kvm_arch_remove_all_hw_breakpoints(void)
857
{
858
    nb_hw_breakpoint = 0;
859
}
860

    
861
static CPUWatchpoint hw_watchpoint;
862

    
863
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
864
{
865
    int handle = 0;
866
    int n;
867

    
868
    if (arch_info->exception == 1) {
869
        if (arch_info->dr6 & (1 << 14)) {
870
            if (cpu_single_env->singlestep_enabled)
871
                handle = 1;
872
        } else {
873
            for (n = 0; n < 4; n++)
874
                if (arch_info->dr6 & (1 << n))
875
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
876
                    case 0x0:
877
                        handle = 1;
878
                        break;
879
                    case 0x1:
880
                        handle = 1;
881
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
882
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
883
                        hw_watchpoint.flags = BP_MEM_WRITE;
884
                        break;
885
                    case 0x3:
886
                        handle = 1;
887
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
888
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
889
                        hw_watchpoint.flags = BP_MEM_ACCESS;
890
                        break;
891
                    }
892
        }
893
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
894
        handle = 1;
895

    
896
    if (!handle)
897
        kvm_update_guest_debug(cpu_single_env,
898
                        (arch_info->exception == 1) ?
899
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
900

    
901
    return handle;
902
}
903

    
904
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
905
{
906
    const uint8_t type_code[] = {
907
        [GDB_BREAKPOINT_HW] = 0x0,
908
        [GDB_WATCHPOINT_WRITE] = 0x1,
909
        [GDB_WATCHPOINT_ACCESS] = 0x3
910
    };
911
    const uint8_t len_code[] = {
912
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
913
    };
914
    int n;
915

    
916
    if (kvm_sw_breakpoints_active(env))
917
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
918

    
919
    if (nb_hw_breakpoint > 0) {
920
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
921
        dbg->arch.debugreg[7] = 0x0600;
922
        for (n = 0; n < nb_hw_breakpoint; n++) {
923
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
924
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
925
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
926
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
927
        }
928
    }
929
}
930
#endif /* KVM_CAP_SET_GUEST_DEBUG */