Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ f8ed7070

History | View | Annotate | Download (10.2 kB)

1 2c0262af bellard
/*
2 5fafdf24 ths
 *  i386 execution defines
3 2c0262af bellard
 *
4 2c0262af bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 2c0262af bellard
 *
6 2c0262af bellard
 * This library is free software; you can redistribute it and/or
7 2c0262af bellard
 * modify it under the terms of the GNU Lesser General Public
8 2c0262af bellard
 * License as published by the Free Software Foundation; either
9 2c0262af bellard
 * version 2 of the License, or (at your option) any later version.
10 2c0262af bellard
 *
11 2c0262af bellard
 * This library is distributed in the hope that it will be useful,
12 2c0262af bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 2c0262af bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 2c0262af bellard
 * Lesser General Public License for more details.
15 2c0262af bellard
 *
16 2c0262af bellard
 * You should have received a copy of the GNU Lesser General Public
17 2c0262af bellard
 * License along with this library; if not, write to the Free Software
18 2c0262af bellard
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 2c0262af bellard
 */
20 7d3505c5 bellard
#include "config.h"
21 2c0262af bellard
#include "dyngen-exec.h"
22 2c0262af bellard
23 14ce26e7 bellard
/* XXX: factorize this mess */
24 14ce26e7 bellard
#ifdef TARGET_X86_64
25 14ce26e7 bellard
#define TARGET_LONG_BITS 64
26 14ce26e7 bellard
#else
27 14ce26e7 bellard
#define TARGET_LONG_BITS 32
28 14ce26e7 bellard
#endif
29 14ce26e7 bellard
30 d785e6be bellard
#include "cpu-defs.h"
31 d785e6be bellard
32 2c0262af bellard
register struct CPUX86State *env asm(AREG0);
33 14ce26e7 bellard
34 2c0262af bellard
extern FILE *logfile;
35 2c0262af bellard
extern int loglevel;
36 2c0262af bellard
37 2c0262af bellard
#define EAX (env->regs[R_EAX])
38 2c0262af bellard
#define ECX (env->regs[R_ECX])
39 2c0262af bellard
#define EDX (env->regs[R_EDX])
40 2c0262af bellard
#define EBX (env->regs[R_EBX])
41 2c0262af bellard
#define ESP (env->regs[R_ESP])
42 2c0262af bellard
#define EBP (env->regs[R_EBP])
43 2c0262af bellard
#define ESI (env->regs[R_ESI])
44 2c0262af bellard
#define EDI (env->regs[R_EDI])
45 1e4840bf bellard
#define EIP (env->eip)
46 2c0262af bellard
#define DF  (env->df)
47 2c0262af bellard
48 2c0262af bellard
#define CC_SRC (env->cc_src)
49 2c0262af bellard
#define CC_DST (env->cc_dst)
50 2c0262af bellard
#define CC_OP  (env->cc_op)
51 2c0262af bellard
52 2c0262af bellard
/* float macros */
53 2c0262af bellard
#define FT0    (env->ft0)
54 664e0f19 bellard
#define ST0    (env->fpregs[env->fpstt].d)
55 664e0f19 bellard
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
56 2c0262af bellard
#define ST1    ST(1)
57 2c0262af bellard
58 2c0262af bellard
#include "cpu.h"
59 2c0262af bellard
#include "exec-all.h"
60 2c0262af bellard
61 1ac157da bellard
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62 14ce26e7 bellard
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63 1ac157da bellard
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
64 8f091a59 bellard
void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
65 5fafdf24 ths
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
66 6ebbf390 j_mayer
                             int is_write, int mmu_idx, int is_softmmu);
67 6ebbf390 j_mayer
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
68 61382a50 bellard
              void *retaddr);
69 2c0262af bellard
void __hidden cpu_lock(void);
70 2c0262af bellard
void __hidden cpu_unlock(void);
71 5fafdf24 ths
void do_interrupt(int intno, int is_int, int error_code,
72 14ce26e7 bellard
                  target_ulong next_eip, int is_hw);
73 5fafdf24 ths
void do_interrupt_user(int intno, int is_int, int error_code,
74 14ce26e7 bellard
                       target_ulong next_eip);
75 5fafdf24 ths
void raise_interrupt(int intno, int is_int, int error_code,
76 a8ede8ba bellard
                     int next_eip_addend);
77 2c0262af bellard
void raise_exception_err(int exception_index, int error_code);
78 2c0262af bellard
void raise_exception(int exception_index);
79 3b21e03e bellard
void do_smm_enter(void);
80 2c0262af bellard
void __hidden cpu_loop_exit(void);
81 2c0262af bellard
82 2c0262af bellard
void OPPROTO op_movl_eflags_T0(void);
83 2c0262af bellard
void OPPROTO op_movl_T0_eflags(void);
84 57fec1fe bellard
85 b6abf97d bellard
/* n must be a constant to be efficient */
86 b6abf97d bellard
static inline target_long lshift(target_long x, int n)
87 b6abf97d bellard
{
88 b6abf97d bellard
    if (n >= 0)
89 b6abf97d bellard
        return x << n;
90 b6abf97d bellard
    else
91 b6abf97d bellard
        return x >> (-n);
92 b6abf97d bellard
}
93 b6abf97d bellard
94 57fec1fe bellard
#include "helper.h"
95 57fec1fe bellard
96 b8b6a50b bellard
static inline void svm_check_intercept(uint32_t type)
97 b8b6a50b bellard
{
98 b8b6a50b bellard
    helper_svm_check_intercept_param(type, 0);
99 b8b6a50b bellard
}
100 3e25f951 bellard
101 9951bf39 bellard
#if !defined(CONFIG_USER_ONLY)
102 9951bf39 bellard
103 a9049a07 bellard
#include "softmmu_exec.h"
104 9951bf39 bellard
105 9951bf39 bellard
#endif /* !defined(CONFIG_USER_ONLY) */
106 9951bf39 bellard
107 2c0262af bellard
#ifdef USE_X86LDOUBLE
108 2c0262af bellard
/* use long double functions */
109 7a0e1f41 bellard
#define floatx_to_int32 floatx80_to_int32
110 7a0e1f41 bellard
#define floatx_to_int64 floatx80_to_int64
111 465e9838 bellard
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
112 465e9838 bellard
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
113 19e6c4b8 bellard
#define int32_to_floatx int32_to_floatx80
114 19e6c4b8 bellard
#define int64_to_floatx int64_to_floatx80
115 19e6c4b8 bellard
#define float32_to_floatx float32_to_floatx80
116 19e6c4b8 bellard
#define float64_to_floatx float64_to_floatx80
117 19e6c4b8 bellard
#define floatx_to_float32 floatx80_to_float32
118 19e6c4b8 bellard
#define floatx_to_float64 floatx80_to_float64
119 7a0e1f41 bellard
#define floatx_abs floatx80_abs
120 7a0e1f41 bellard
#define floatx_chs floatx80_chs
121 7a0e1f41 bellard
#define floatx_round_to_int floatx80_round_to_int
122 8422b113 bellard
#define floatx_compare floatx80_compare
123 8422b113 bellard
#define floatx_compare_quiet floatx80_compare_quiet
124 2c0262af bellard
#define sin sinl
125 2c0262af bellard
#define cos cosl
126 2c0262af bellard
#define sqrt sqrtl
127 2c0262af bellard
#define pow powl
128 2c0262af bellard
#define log logl
129 2c0262af bellard
#define tan tanl
130 2c0262af bellard
#define atan2 atan2l
131 2c0262af bellard
#define floor floorl
132 2c0262af bellard
#define ceil ceill
133 57e4c06e bellard
#define ldexp ldexpl
134 7d3505c5 bellard
#else
135 7a0e1f41 bellard
#define floatx_to_int32 float64_to_int32
136 7a0e1f41 bellard
#define floatx_to_int64 float64_to_int64
137 465e9838 bellard
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
138 465e9838 bellard
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
139 19e6c4b8 bellard
#define int32_to_floatx int32_to_float64
140 19e6c4b8 bellard
#define int64_to_floatx int64_to_float64
141 19e6c4b8 bellard
#define float32_to_floatx float32_to_float64
142 19e6c4b8 bellard
#define float64_to_floatx(x, e) (x)
143 19e6c4b8 bellard
#define floatx_to_float32 float64_to_float32
144 19e6c4b8 bellard
#define floatx_to_float64(x, e) (x)
145 7a0e1f41 bellard
#define floatx_abs float64_abs
146 7a0e1f41 bellard
#define floatx_chs float64_chs
147 7a0e1f41 bellard
#define floatx_round_to_int float64_round_to_int
148 8422b113 bellard
#define floatx_compare float64_compare
149 8422b113 bellard
#define floatx_compare_quiet float64_compare_quiet
150 7d3505c5 bellard
#endif
151 7a0e1f41 bellard
152 2c0262af bellard
extern CPU86_LDouble sin(CPU86_LDouble x);
153 2c0262af bellard
extern CPU86_LDouble cos(CPU86_LDouble x);
154 2c0262af bellard
extern CPU86_LDouble sqrt(CPU86_LDouble x);
155 2c0262af bellard
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
156 2c0262af bellard
extern CPU86_LDouble log(CPU86_LDouble x);
157 2c0262af bellard
extern CPU86_LDouble tan(CPU86_LDouble x);
158 2c0262af bellard
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
159 2c0262af bellard
extern CPU86_LDouble floor(CPU86_LDouble x);
160 2c0262af bellard
extern CPU86_LDouble ceil(CPU86_LDouble x);
161 2c0262af bellard
162 2c0262af bellard
#define RC_MASK         0xc00
163 2c0262af bellard
#define RC_NEAR                0x000
164 2c0262af bellard
#define RC_DOWN                0x400
165 2c0262af bellard
#define RC_UP                0x800
166 2c0262af bellard
#define RC_CHOP                0xc00
167 2c0262af bellard
168 2c0262af bellard
#define MAXTAN 9223372036854775808.0
169 2c0262af bellard
170 2c0262af bellard
#ifdef USE_X86LDOUBLE
171 2c0262af bellard
172 2c0262af bellard
/* only for x86 */
173 2c0262af bellard
typedef union {
174 2c0262af bellard
    long double d;
175 2c0262af bellard
    struct {
176 2c0262af bellard
        unsigned long long lower;
177 2c0262af bellard
        unsigned short upper;
178 2c0262af bellard
    } l;
179 2c0262af bellard
} CPU86_LDoubleU;
180 2c0262af bellard
181 2c0262af bellard
/* the following deal with x86 long double-precision numbers */
182 2c0262af bellard
#define MAXEXPD 0x7fff
183 2c0262af bellard
#define EXPBIAS 16383
184 2c0262af bellard
#define EXPD(fp)        (fp.l.upper & 0x7fff)
185 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
186 2c0262af bellard
#define MANTD(fp)       (fp.l.lower)
187 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
188 2c0262af bellard
189 2c0262af bellard
#else
190 2c0262af bellard
191 2c0262af bellard
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
192 2c0262af bellard
typedef union {
193 2c0262af bellard
    double d;
194 2c0262af bellard
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
195 2c0262af bellard
    struct {
196 2c0262af bellard
        uint32_t lower;
197 2c0262af bellard
        int32_t upper;
198 2c0262af bellard
    } l;
199 2c0262af bellard
#else
200 2c0262af bellard
    struct {
201 2c0262af bellard
        int32_t upper;
202 2c0262af bellard
        uint32_t lower;
203 2c0262af bellard
    } l;
204 2c0262af bellard
#endif
205 2c0262af bellard
#ifndef __arm__
206 2c0262af bellard
    int64_t ll;
207 2c0262af bellard
#endif
208 2c0262af bellard
} CPU86_LDoubleU;
209 2c0262af bellard
210 2c0262af bellard
/* the following deal with IEEE double-precision numbers */
211 2c0262af bellard
#define MAXEXPD 0x7ff
212 2c0262af bellard
#define EXPBIAS 1023
213 2c0262af bellard
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
214 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
215 2c0262af bellard
#ifdef __arm__
216 2c0262af bellard
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
217 2c0262af bellard
#else
218 2c0262af bellard
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
219 2c0262af bellard
#endif
220 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
221 2c0262af bellard
#endif
222 2c0262af bellard
223 2c0262af bellard
static inline void fpush(void)
224 2c0262af bellard
{
225 2c0262af bellard
    env->fpstt = (env->fpstt - 1) & 7;
226 2c0262af bellard
    env->fptags[env->fpstt] = 0; /* validate stack entry */
227 2c0262af bellard
}
228 2c0262af bellard
229 2c0262af bellard
static inline void fpop(void)
230 2c0262af bellard
{
231 2c0262af bellard
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
232 2c0262af bellard
    env->fpstt = (env->fpstt + 1) & 7;
233 2c0262af bellard
}
234 2c0262af bellard
235 2c0262af bellard
#ifndef USE_X86LDOUBLE
236 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
237 2c0262af bellard
{
238 2c0262af bellard
    CPU86_LDoubleU temp;
239 2c0262af bellard
    int upper, e;
240 2c0262af bellard
    uint64_t ll;
241 2c0262af bellard
242 2c0262af bellard
    /* mantissa */
243 2c0262af bellard
    upper = lduw(ptr + 8);
244 2c0262af bellard
    /* XXX: handle overflow ? */
245 2c0262af bellard
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
246 2c0262af bellard
    e |= (upper >> 4) & 0x800; /* sign */
247 2c0262af bellard
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
248 2c0262af bellard
#ifdef __arm__
249 2c0262af bellard
    temp.l.upper = (e << 20) | (ll >> 32);
250 2c0262af bellard
    temp.l.lower = ll;
251 2c0262af bellard
#else
252 2c0262af bellard
    temp.ll = ll | ((uint64_t)e << 52);
253 2c0262af bellard
#endif
254 2c0262af bellard
    return temp.d;
255 2c0262af bellard
}
256 2c0262af bellard
257 664e0f19 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
258 2c0262af bellard
{
259 2c0262af bellard
    CPU86_LDoubleU temp;
260 2c0262af bellard
    int e;
261 2c0262af bellard
262 2c0262af bellard
    temp.d = f;
263 2c0262af bellard
    /* mantissa */
264 2c0262af bellard
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
265 2c0262af bellard
    /* exponent + sign */
266 2c0262af bellard
    e = EXPD(temp) - EXPBIAS + 16383;
267 2c0262af bellard
    e |= SIGND(temp) >> 16;
268 2c0262af bellard
    stw(ptr + 8, e);
269 2c0262af bellard
}
270 9951bf39 bellard
#else
271 9951bf39 bellard
272 9951bf39 bellard
/* we use memory access macros */
273 9951bf39 bellard
274 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
275 9951bf39 bellard
{
276 9951bf39 bellard
    CPU86_LDoubleU temp;
277 9951bf39 bellard
278 9951bf39 bellard
    temp.l.lower = ldq(ptr);
279 9951bf39 bellard
    temp.l.upper = lduw(ptr + 8);
280 9951bf39 bellard
    return temp.d;
281 9951bf39 bellard
}
282 9951bf39 bellard
283 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
284 9951bf39 bellard
{
285 9951bf39 bellard
    CPU86_LDoubleU temp;
286 3b46e624 ths
287 9951bf39 bellard
    temp.d = f;
288 9951bf39 bellard
    stq(ptr, temp.l.lower);
289 9951bf39 bellard
    stw(ptr + 8, temp.l.upper);
290 9951bf39 bellard
}
291 9951bf39 bellard
292 9951bf39 bellard
#endif /* USE_X86LDOUBLE */
293 2c0262af bellard
294 2ee73ac3 bellard
#define FPUS_IE (1 << 0)
295 2ee73ac3 bellard
#define FPUS_DE (1 << 1)
296 2ee73ac3 bellard
#define FPUS_ZE (1 << 2)
297 2ee73ac3 bellard
#define FPUS_OE (1 << 3)
298 2ee73ac3 bellard
#define FPUS_UE (1 << 4)
299 2ee73ac3 bellard
#define FPUS_PE (1 << 5)
300 2ee73ac3 bellard
#define FPUS_SF (1 << 6)
301 2ee73ac3 bellard
#define FPUS_SE (1 << 7)
302 2ee73ac3 bellard
#define FPUS_B  (1 << 15)
303 2ee73ac3 bellard
304 2ee73ac3 bellard
#define FPUC_EM 0x3f
305 2ee73ac3 bellard
306 83fb7adf bellard
extern const CPU86_LDouble f15rk[7];
307 2c0262af bellard
308 2ee73ac3 bellard
void fpu_raise_exception(void);
309 03857e31 bellard
void restore_native_fp_state(CPUState *env);
310 03857e31 bellard
void save_native_fp_state(CPUState *env);
311 2c0262af bellard
312 83fb7adf bellard
extern const uint8_t parity_table[256];
313 83fb7adf bellard
extern const uint8_t rclw_table[32];
314 83fb7adf bellard
extern const uint8_t rclb_table[32];
315 2c0262af bellard
316 2c0262af bellard
static inline uint32_t compute_eflags(void)
317 2c0262af bellard
{
318 2c0262af bellard
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
319 2c0262af bellard
}
320 2c0262af bellard
321 2c0262af bellard
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
322 2c0262af bellard
static inline void load_eflags(int eflags, int update_mask)
323 2c0262af bellard
{
324 2c0262af bellard
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
325 2c0262af bellard
    DF = 1 - (2 * ((eflags >> 10) & 1));
326 5fafdf24 ths
    env->eflags = (env->eflags & ~update_mask) |
327 093f8f06 bellard
        (eflags & update_mask) | 0x2;
328 2c0262af bellard
}
329 2c0262af bellard
330 0d1a29f9 bellard
static inline void env_to_regs(void)
331 0d1a29f9 bellard
{
332 0d1a29f9 bellard
#ifdef reg_EAX
333 0d1a29f9 bellard
    EAX = env->regs[R_EAX];
334 0d1a29f9 bellard
#endif
335 0d1a29f9 bellard
#ifdef reg_ECX
336 0d1a29f9 bellard
    ECX = env->regs[R_ECX];
337 0d1a29f9 bellard
#endif
338 0d1a29f9 bellard
#ifdef reg_EDX
339 0d1a29f9 bellard
    EDX = env->regs[R_EDX];
340 0d1a29f9 bellard
#endif
341 0d1a29f9 bellard
#ifdef reg_EBX
342 0d1a29f9 bellard
    EBX = env->regs[R_EBX];
343 0d1a29f9 bellard
#endif
344 0d1a29f9 bellard
#ifdef reg_ESP
345 0d1a29f9 bellard
    ESP = env->regs[R_ESP];
346 0d1a29f9 bellard
#endif
347 0d1a29f9 bellard
#ifdef reg_EBP
348 0d1a29f9 bellard
    EBP = env->regs[R_EBP];
349 0d1a29f9 bellard
#endif
350 0d1a29f9 bellard
#ifdef reg_ESI
351 0d1a29f9 bellard
    ESI = env->regs[R_ESI];
352 0d1a29f9 bellard
#endif
353 0d1a29f9 bellard
#ifdef reg_EDI
354 0d1a29f9 bellard
    EDI = env->regs[R_EDI];
355 0d1a29f9 bellard
#endif
356 0d1a29f9 bellard
}
357 0d1a29f9 bellard
358 0d1a29f9 bellard
static inline void regs_to_env(void)
359 0d1a29f9 bellard
{
360 0d1a29f9 bellard
#ifdef reg_EAX
361 0d1a29f9 bellard
    env->regs[R_EAX] = EAX;
362 0d1a29f9 bellard
#endif
363 0d1a29f9 bellard
#ifdef reg_ECX
364 0d1a29f9 bellard
    env->regs[R_ECX] = ECX;
365 0d1a29f9 bellard
#endif
366 0d1a29f9 bellard
#ifdef reg_EDX
367 0d1a29f9 bellard
    env->regs[R_EDX] = EDX;
368 0d1a29f9 bellard
#endif
369 0d1a29f9 bellard
#ifdef reg_EBX
370 0d1a29f9 bellard
    env->regs[R_EBX] = EBX;
371 0d1a29f9 bellard
#endif
372 0d1a29f9 bellard
#ifdef reg_ESP
373 0d1a29f9 bellard
    env->regs[R_ESP] = ESP;
374 0d1a29f9 bellard
#endif
375 0d1a29f9 bellard
#ifdef reg_EBP
376 0d1a29f9 bellard
    env->regs[R_EBP] = EBP;
377 0d1a29f9 bellard
#endif
378 0d1a29f9 bellard
#ifdef reg_ESI
379 0d1a29f9 bellard
    env->regs[R_ESI] = ESI;
380 0d1a29f9 bellard
#endif
381 0d1a29f9 bellard
#ifdef reg_EDI
382 0d1a29f9 bellard
    env->regs[R_EDI] = EDI;
383 0d1a29f9 bellard
#endif
384 0d1a29f9 bellard
}
385 bfed01fc ths
386 bfed01fc ths
static inline int cpu_halted(CPUState *env) {
387 bfed01fc ths
    /* handle exit of HALTED state */
388 ce5232c5 bellard
    if (!env->halted)
389 bfed01fc ths
        return 0;
390 bfed01fc ths
    /* disable halt condition */
391 474ea849 aurel32
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
392 474ea849 aurel32
         (env->eflags & IF_MASK)) ||
393 474ea849 aurel32
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
394 ce5232c5 bellard
        env->halted = 0;
395 bfed01fc ths
        return 0;
396 bfed01fc ths
    }
397 bfed01fc ths
    return EXCP_HALTED;
398 bfed01fc ths
}