Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ f930d07e

History | View | Annotate | Download (9.3 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_TIMER
27

    
28
#ifdef DEBUG_TIMER
29
#define DPRINTF(fmt, args...) \
30
do { printf("TIMER: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of hardware timer in sun4m.
37
 *
38
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 *
42
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43
 * are zero. Bit 31 is 1 when count has been reached.
44
 *
45
 * Per-CPU timers interrupt local CPU, system timer uses normal
46
 * interrupt routing.
47
 *
48
 */
49

    
50
#define MAX_CPUS 16
51

    
52
typedef struct SLAVIO_TIMERState {
53
    qemu_irq irq;
54
    ptimer_state *timer;
55
    uint32_t count, counthigh, reached;
56
    uint64_t limit;
57
    int stopped;
58
    int mode; // 0 = processor, 1 = user, 2 = system
59
    struct SLAVIO_TIMERState *slave[MAX_CPUS];
60
    uint32_t slave_mode;
61
} SLAVIO_TIMERState;
62

    
63
#define TIMER_MAXADDR 0x1f
64
#define TIMER_SIZE (TIMER_MAXADDR + 1)
65
#define CPU_TIMER_SIZE 0x10
66

    
67
// Update count, set irq, update expire_time
68
// Convert from ptimer countdown units
69
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
70
{
71
    uint64_t count;
72

    
73
    count = s->limit - (ptimer_get_count(s->timer) << 9);
74
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
75
            s->count);
76
    s->count = count & 0xfffffe00;
77
    s->counthigh = count >> 32;
78
}
79

    
80
// timer callback
81
static void slavio_timer_irq(void *opaque)
82
{
83
    SLAVIO_TIMERState *s = opaque;
84

    
85
    slavio_timer_get_out(s);
86
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
87
    s->reached = 0x80000000;
88
    if (s->mode != 1)
89
        qemu_irq_raise(s->irq);
90
}
91

    
92
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
93
{
94
    SLAVIO_TIMERState *s = opaque;
95
    uint32_t saddr, ret;
96

    
97
    saddr = (addr & TIMER_MAXADDR) >> 2;
98
    switch (saddr) {
99
    case 0:
100
        // read limit (system counter mode) or read most signifying
101
        // part of counter (user mode)
102
        if (s->mode != 1) {
103
            // clear irq
104
            qemu_irq_lower(s->irq);
105
            s->reached = 0;
106
            ret = s->limit & 0x7fffffff;
107
        }
108
        else {
109
            slavio_timer_get_out(s);
110
            ret = s->counthigh & 0x7fffffff;
111
        }
112
        break;
113
    case 1:
114
        // read counter and reached bit (system mode) or read lsbits
115
        // of counter (user mode)
116
        slavio_timer_get_out(s);
117
        if (s->mode != 1)
118
            ret = (s->count & 0x7fffffff) | s->reached;
119
        else
120
            ret = s->count;
121
        break;
122
    case 3:
123
        // read start/stop status
124
        ret = s->stopped;
125
        break;
126
    case 4:
127
        // read user/system mode
128
        ret = s->slave_mode;
129
        break;
130
    default:
131
        ret = 0;
132
        break;
133
    }
134
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
135

    
136
    return ret;
137
}
138

    
139
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
140
{
141
    SLAVIO_TIMERState *s = opaque;
142
    uint32_t saddr;
143
    int reload = 0;
144

    
145
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
146
    saddr = (addr & TIMER_MAXADDR) >> 2;
147
    switch (saddr) {
148
    case 0:
149
        if (s->mode == 1) {
150
            // set user counter limit MSW, reset counter
151
            qemu_irq_lower(s->irq);
152
            s->limit &= 0xfffffe00ULL;
153
            s->limit |= (uint64_t)val << 32;
154
            if (!s->limit)
155
                s->limit = 0x7ffffffffffffe00ULL;
156
            ptimer_set_limit(s->timer, s->limit >> 9, 1);
157
            break;
158
        }
159
        // set limit, reset counter
160
        reload = 1;
161
        qemu_irq_lower(s->irq);
162
        // fall through
163
    case 2:
164
        // set limit without resetting counter
165
        s->limit = val & 0x7ffffe00ULL;
166
        if (!s->limit)
167
            s->limit = 0x7ffffe00ULL;
168
        ptimer_set_limit(s->timer, s->limit >> 9, reload);
169
        break;
170
    case 1:
171
        // set user counter limit LSW, reset counter
172
        if (s->mode == 1) {
173
            qemu_irq_lower(s->irq);
174
            s->limit &= 0x7fffffff00000000ULL;
175
            s->limit |= val & 0xfffffe00ULL;
176
            if (!s->limit)
177
                s->limit = 0x7ffffffffffffe00ULL;
178
            ptimer_set_limit(s->timer, s->limit >> 9, 1);
179
        }
180
        break;
181
    case 3:
182
        // start/stop user counter
183
        if (s->mode == 1) {
184
            if (val & 1) {
185
                ptimer_stop(s->timer);
186
                s->stopped = 1;
187
            }
188
            else {
189
                ptimer_run(s->timer, 0);
190
                s->stopped = 0;
191
            }
192
        }
193
        break;
194
    case 4:
195
        // bit 0: user (1) or system (0) counter mode
196
        {
197
            unsigned int i;
198

    
199
            for (i = 0; i < MAX_CPUS; i++) {
200
                if (val & (1 << i)) {
201
                    qemu_irq_lower(s->slave[i]->irq);
202
                    s->slave[i]->limit = -1ULL;
203
                    s->slave[i]->mode = 1;
204
                } else {
205
                    s->slave[i]->mode = 0;
206
                }
207
                ptimer_stop(s->slave[i]->timer);
208
                ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9,
209
                                 1);
210
                ptimer_run(s->slave[i]->timer, 0);
211
            }
212
            s->slave_mode = val & ((1 << MAX_CPUS) - 1);
213
        }
214
        break;
215
    default:
216
        break;
217
    }
218
}
219

    
220
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
221
    slavio_timer_mem_readl,
222
    slavio_timer_mem_readl,
223
    slavio_timer_mem_readl,
224
};
225

    
226
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
227
    slavio_timer_mem_writel,
228
    slavio_timer_mem_writel,
229
    slavio_timer_mem_writel,
230
};
231

    
232
static void slavio_timer_save(QEMUFile *f, void *opaque)
233
{
234
    SLAVIO_TIMERState *s = opaque;
235

    
236
    qemu_put_be64s(f, &s->limit);
237
    qemu_put_be32s(f, &s->count);
238
    qemu_put_be32s(f, &s->counthigh);
239
    qemu_put_be32(f, 0); // Was irq
240
    qemu_put_be32s(f, &s->reached);
241
    qemu_put_be32s(f, &s->stopped);
242
    qemu_put_be32s(f, &s->mode);
243
    qemu_put_ptimer(f, s->timer);
244
}
245

    
246
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
247
{
248
    SLAVIO_TIMERState *s = opaque;
249
    uint32_t tmp;
250

    
251
    if (version_id != 2)
252
        return -EINVAL;
253

    
254
    qemu_get_be64s(f, &s->limit);
255
    qemu_get_be32s(f, &s->count);
256
    qemu_get_be32s(f, &s->counthigh);
257
    qemu_get_be32s(f, &tmp); // Was irq
258
    qemu_get_be32s(f, &s->reached);
259
    qemu_get_be32s(f, &s->stopped);
260
    qemu_get_be32s(f, &s->mode);
261
    qemu_get_ptimer(f, s->timer);
262

    
263
    return 0;
264
}
265

    
266
static void slavio_timer_reset(void *opaque)
267
{
268
    SLAVIO_TIMERState *s = opaque;
269

    
270
    s->limit = 0x7ffffe00ULL;
271
    s->count = 0;
272
    s->reached = 0;
273
    s->mode &= 2;
274
    ptimer_set_limit(s->timer, s->limit >> 9, 1);
275
    ptimer_run(s->timer, 0);
276
    s->stopped = 1;
277
    qemu_irq_lower(s->irq);
278
}
279

    
280
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
281
                                            qemu_irq irq, int mode)
282
{
283
    int slavio_timer_io_memory;
284
    SLAVIO_TIMERState *s;
285
    QEMUBH *bh;
286

    
287
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
288
    if (!s)
289
        return s;
290
    s->irq = irq;
291
    s->mode = mode;
292
    bh = qemu_bh_new(slavio_timer_irq, s);
293
    s->timer = ptimer_init(bh);
294
    ptimer_set_period(s->timer, 500ULL);
295

    
296
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
297
                                                    slavio_timer_mem_write, s);
298
    if (mode < 2)
299
        cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
300
    else
301
        cpu_register_physical_memory(addr, TIMER_SIZE,
302
                                     slavio_timer_io_memory);
303
    register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
304
    qemu_register_reset(slavio_timer_reset, s);
305
    slavio_timer_reset(s);
306

    
307
    return s;
308
}
309

    
310
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
311
                           qemu_irq *cpu_irqs)
312
{
313
    SLAVIO_TIMERState *master;
314
    unsigned int i;
315

    
316
    master = slavio_timer_init(base + 0x10000ULL, master_irq, 2);
317

    
318
    for (i = 0; i < MAX_CPUS; i++) {
319
        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
320
                                             (i * TARGET_PAGE_SIZE),
321
                                             cpu_irqs[i], 0);
322
    }
323
}