Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ fa66b909

History | View | Annotate | Download (62.1 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi.h"
18
#include "block_int.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_MAX_DEVS 7
35

    
36
#define LSI_SCNTL0_TRG    0x01
37
#define LSI_SCNTL0_AAP    0x02
38
#define LSI_SCNTL0_EPC    0x08
39
#define LSI_SCNTL0_WATN   0x10
40
#define LSI_SCNTL0_START  0x20
41

    
42
#define LSI_SCNTL1_SST    0x01
43
#define LSI_SCNTL1_IARB   0x02
44
#define LSI_SCNTL1_AESP   0x04
45
#define LSI_SCNTL1_RST    0x08
46
#define LSI_SCNTL1_CON    0x10
47
#define LSI_SCNTL1_DHP    0x20
48
#define LSI_SCNTL1_ADB    0x40
49
#define LSI_SCNTL1_EXC    0x80
50

    
51
#define LSI_SCNTL2_WSR    0x01
52
#define LSI_SCNTL2_VUE0   0x02
53
#define LSI_SCNTL2_VUE1   0x04
54
#define LSI_SCNTL2_WSS    0x08
55
#define LSI_SCNTL2_SLPHBEN 0x10
56
#define LSI_SCNTL2_SLPMD  0x20
57
#define LSI_SCNTL2_CHM    0x40
58
#define LSI_SCNTL2_SDU    0x80
59

    
60
#define LSI_ISTAT0_DIP    0x01
61
#define LSI_ISTAT0_SIP    0x02
62
#define LSI_ISTAT0_INTF   0x04
63
#define LSI_ISTAT0_CON    0x08
64
#define LSI_ISTAT0_SEM    0x10
65
#define LSI_ISTAT0_SIGP   0x20
66
#define LSI_ISTAT0_SRST   0x40
67
#define LSI_ISTAT0_ABRT   0x80
68

    
69
#define LSI_ISTAT1_SI     0x01
70
#define LSI_ISTAT1_SRUN   0x02
71
#define LSI_ISTAT1_FLSH   0x04
72

    
73
#define LSI_SSTAT0_SDP0   0x01
74
#define LSI_SSTAT0_RST    0x02
75
#define LSI_SSTAT0_WOA    0x04
76
#define LSI_SSTAT0_LOA    0x08
77
#define LSI_SSTAT0_AIP    0x10
78
#define LSI_SSTAT0_OLF    0x20
79
#define LSI_SSTAT0_ORF    0x40
80
#define LSI_SSTAT0_ILF    0x80
81

    
82
#define LSI_SIST0_PAR     0x01
83
#define LSI_SIST0_RST     0x02
84
#define LSI_SIST0_UDC     0x04
85
#define LSI_SIST0_SGE     0x08
86
#define LSI_SIST0_RSL     0x10
87
#define LSI_SIST0_SEL     0x20
88
#define LSI_SIST0_CMP     0x40
89
#define LSI_SIST0_MA      0x80
90

    
91
#define LSI_SIST1_HTH     0x01
92
#define LSI_SIST1_GEN     0x02
93
#define LSI_SIST1_STO     0x04
94
#define LSI_SIST1_SBMC    0x10
95

    
96
#define LSI_SOCL_IO       0x01
97
#define LSI_SOCL_CD       0x02
98
#define LSI_SOCL_MSG      0x04
99
#define LSI_SOCL_ATN      0x08
100
#define LSI_SOCL_SEL      0x10
101
#define LSI_SOCL_BSY      0x20
102
#define LSI_SOCL_ACK      0x40
103
#define LSI_SOCL_REQ      0x80
104

    
105
#define LSI_DSTAT_IID     0x01
106
#define LSI_DSTAT_SIR     0x04
107
#define LSI_DSTAT_SSI     0x08
108
#define LSI_DSTAT_ABRT    0x10
109
#define LSI_DSTAT_BF      0x20
110
#define LSI_DSTAT_MDPE    0x40
111
#define LSI_DSTAT_DFE     0x80
112

    
113
#define LSI_DCNTL_COM     0x01
114
#define LSI_DCNTL_IRQD    0x02
115
#define LSI_DCNTL_STD     0x04
116
#define LSI_DCNTL_IRQM    0x08
117
#define LSI_DCNTL_SSM     0x10
118
#define LSI_DCNTL_PFEN    0x20
119
#define LSI_DCNTL_PFF     0x40
120
#define LSI_DCNTL_CLSE    0x80
121

    
122
#define LSI_DMODE_MAN     0x01
123
#define LSI_DMODE_BOF     0x02
124
#define LSI_DMODE_ERMP    0x04
125
#define LSI_DMODE_ERL     0x08
126
#define LSI_DMODE_DIOM    0x10
127
#define LSI_DMODE_SIOM    0x20
128

    
129
#define LSI_CTEST2_DACK   0x01
130
#define LSI_CTEST2_DREQ   0x02
131
#define LSI_CTEST2_TEOP   0x04
132
#define LSI_CTEST2_PCICIE 0x08
133
#define LSI_CTEST2_CM     0x10
134
#define LSI_CTEST2_CIO    0x20
135
#define LSI_CTEST2_SIGP   0x40
136
#define LSI_CTEST2_DDIR   0x80
137

    
138
#define LSI_CTEST5_BL2    0x04
139
#define LSI_CTEST5_DDIR   0x08
140
#define LSI_CTEST5_MASR   0x10
141
#define LSI_CTEST5_DFSN   0x20
142
#define LSI_CTEST5_BBCK   0x40
143
#define LSI_CTEST5_ADCK   0x80
144

    
145
#define LSI_CCNTL0_DILS   0x01
146
#define LSI_CCNTL0_DISFC  0x10
147
#define LSI_CCNTL0_ENNDJ  0x20
148
#define LSI_CCNTL0_PMJCTL 0x40
149
#define LSI_CCNTL0_ENPMJ  0x80
150

    
151
#define LSI_CCNTL1_EN64DBMV  0x01
152
#define LSI_CCNTL1_EN64TIBMV 0x02
153
#define LSI_CCNTL1_64TIMOD   0x04
154
#define LSI_CCNTL1_DDAC      0x08
155
#define LSI_CCNTL1_ZMOD      0x80
156

    
157
/* Enable Response to Reselection */
158
#define LSI_SCID_RRE      0x60
159

    
160
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161

    
162
#define PHASE_DO          0
163
#define PHASE_DI          1
164
#define PHASE_CMD         2
165
#define PHASE_ST          3
166
#define PHASE_MO          6
167
#define PHASE_MI          7
168
#define PHASE_MASK        7
169

    
170
/* Maximum length of MSG IN data.  */
171
#define LSI_MAX_MSGIN_LEN 8
172

    
173
/* Flag set if this is a tagged command.  */
174
#define LSI_TAG_VALID     (1 << 16)
175

    
176
typedef struct lsi_request {
177
    uint32_t tag;
178
    uint32_t dma_len;
179
    uint8_t *dma_buf;
180
    uint32_t pending;
181
    int out;
182
    QTAILQ_ENTRY(lsi_request) next;
183
} lsi_request;
184

    
185
typedef struct {
186
    PCIDevice dev;
187
    int mmio_io_addr;
188
    int ram_io_addr;
189
    uint32_t script_ram_base;
190

    
191
    int carry; /* ??? Should this be an a visible register somewhere?  */
192
    int sense;
193
    /* Action to take at the end of a MSG IN phase.
194
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
195
    int msg_action;
196
    int msg_len;
197
    uint8_t msg[LSI_MAX_MSGIN_LEN];
198
    /* 0 if SCRIPTS are running or stopped.
199
     * 1 if a Wait Reselect instruction has been issued.
200
     * 2 if processing DMA from lsi_execute_script.
201
     * 3 if a DMA operation is in progress.  */
202
    int waiting;
203
    SCSIBus bus;
204
    int current_lun;
205
    /* The tag is a combination of the device ID and the SCSI tag.  */
206
    uint32_t select_tag;
207
    int command_complete;
208
    QTAILQ_HEAD(, lsi_request) queue;
209
    lsi_request *current;
210

    
211
    uint32_t dsa;
212
    uint32_t temp;
213
    uint32_t dnad;
214
    uint32_t dbc;
215
    uint8_t istat0;
216
    uint8_t istat1;
217
    uint8_t dcmd;
218
    uint8_t dstat;
219
    uint8_t dien;
220
    uint8_t sist0;
221
    uint8_t sist1;
222
    uint8_t sien0;
223
    uint8_t sien1;
224
    uint8_t mbox0;
225
    uint8_t mbox1;
226
    uint8_t dfifo;
227
    uint8_t ctest2;
228
    uint8_t ctest3;
229
    uint8_t ctest4;
230
    uint8_t ctest5;
231
    uint8_t ccntl0;
232
    uint8_t ccntl1;
233
    uint32_t dsp;
234
    uint32_t dsps;
235
    uint8_t dmode;
236
    uint8_t dcntl;
237
    uint8_t scntl0;
238
    uint8_t scntl1;
239
    uint8_t scntl2;
240
    uint8_t scntl3;
241
    uint8_t sstat0;
242
    uint8_t sstat1;
243
    uint8_t scid;
244
    uint8_t sxfer;
245
    uint8_t socl;
246
    uint8_t sdid;
247
    uint8_t ssid;
248
    uint8_t sfbr;
249
    uint8_t stest1;
250
    uint8_t stest2;
251
    uint8_t stest3;
252
    uint8_t sidl;
253
    uint8_t stime0;
254
    uint8_t respid0;
255
    uint8_t respid1;
256
    uint32_t mmrs;
257
    uint32_t mmws;
258
    uint32_t sfs;
259
    uint32_t drs;
260
    uint32_t sbms;
261
    uint32_t dbms;
262
    uint32_t dnad64;
263
    uint32_t pmjad1;
264
    uint32_t pmjad2;
265
    uint32_t rbc;
266
    uint32_t ua;
267
    uint32_t ia;
268
    uint32_t sbc;
269
    uint32_t csbc;
270
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
271
    uint8_t sbr;
272

    
273
    /* Script ram is stored as 32-bit words in host byteorder.  */
274
    uint32_t script_ram[2048];
275
} LSIState;
276

    
277
static inline int lsi_irq_on_rsl(LSIState *s)
278
{
279
    return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
280
}
281

    
282
static void lsi_soft_reset(LSIState *s)
283
{
284
    lsi_request *p;
285

    
286
    DPRINTF("Reset\n");
287
    s->carry = 0;
288

    
289
    s->msg_action = 0;
290
    s->msg_len = 0;
291
    s->waiting = 0;
292
    s->dsa = 0;
293
    s->dnad = 0;
294
    s->dbc = 0;
295
    s->temp = 0;
296
    memset(s->scratch, 0, sizeof(s->scratch));
297
    s->istat0 = 0;
298
    s->istat1 = 0;
299
    s->dcmd = 0x40;
300
    s->dstat = LSI_DSTAT_DFE;
301
    s->dien = 0;
302
    s->sist0 = 0;
303
    s->sist1 = 0;
304
    s->sien0 = 0;
305
    s->sien1 = 0;
306
    s->mbox0 = 0;
307
    s->mbox1 = 0;
308
    s->dfifo = 0;
309
    s->ctest2 = LSI_CTEST2_DACK;
310
    s->ctest3 = 0;
311
    s->ctest4 = 0;
312
    s->ctest5 = 0;
313
    s->ccntl0 = 0;
314
    s->ccntl1 = 0;
315
    s->dsp = 0;
316
    s->dsps = 0;
317
    s->dmode = 0;
318
    s->dcntl = 0;
319
    s->scntl0 = 0xc0;
320
    s->scntl1 = 0;
321
    s->scntl2 = 0;
322
    s->scntl3 = 0;
323
    s->sstat0 = 0;
324
    s->sstat1 = 0;
325
    s->scid = 7;
326
    s->sxfer = 0;
327
    s->socl = 0;
328
    s->sdid = 0;
329
    s->ssid = 0;
330
    s->stest1 = 0;
331
    s->stest2 = 0;
332
    s->stest3 = 0;
333
    s->sidl = 0;
334
    s->stime0 = 0;
335
    s->respid0 = 0x80;
336
    s->respid1 = 0;
337
    s->mmrs = 0;
338
    s->mmws = 0;
339
    s->sfs = 0;
340
    s->drs = 0;
341
    s->sbms = 0;
342
    s->dbms = 0;
343
    s->dnad64 = 0;
344
    s->pmjad1 = 0;
345
    s->pmjad2 = 0;
346
    s->rbc = 0;
347
    s->ua = 0;
348
    s->ia = 0;
349
    s->sbc = 0;
350
    s->csbc = 0;
351
    s->sbr = 0;
352
    while (!QTAILQ_EMPTY(&s->queue)) {
353
        p = QTAILQ_FIRST(&s->queue);
354
        QTAILQ_REMOVE(&s->queue, p, next);
355
        qemu_free(p);
356
    }
357
    if (s->current) {
358
        qemu_free(s->current);
359
        s->current = NULL;
360
    }
361
}
362

    
363
static int lsi_dma_40bit(LSIState *s)
364
{
365
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366
        return 1;
367
    return 0;
368
}
369

    
370
static int lsi_dma_ti64bit(LSIState *s)
371
{
372
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373
        return 1;
374
    return 0;
375
}
376

    
377
static int lsi_dma_64bit(LSIState *s)
378
{
379
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380
        return 1;
381
    return 0;
382
}
383

    
384
static uint8_t lsi_reg_readb(LSIState *s, int offset);
385
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386
static void lsi_execute_script(LSIState *s);
387
static void lsi_reselect(LSIState *s, lsi_request *p);
388

    
389
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390
{
391
    uint32_t buf;
392

    
393
    /* Optimize reading from SCRIPTS RAM.  */
394
    if ((addr & 0xffffe000) == s->script_ram_base) {
395
        return s->script_ram[(addr & 0x1fff) >> 2];
396
    }
397
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398
    return cpu_to_le32(buf);
399
}
400

    
401
static void lsi_stop_script(LSIState *s)
402
{
403
    s->istat1 &= ~LSI_ISTAT1_SRUN;
404
}
405

    
406
static void lsi_update_irq(LSIState *s)
407
{
408
    int level;
409
    static int last_level;
410
    lsi_request *p;
411

    
412
    /* It's unclear whether the DIP/SIP bits should be cleared when the
413
       Interrupt Status Registers are cleared or when istat0 is read.
414
       We currently do the formwer, which seems to work.  */
415
    level = 0;
416
    if (s->dstat) {
417
        if (s->dstat & s->dien)
418
            level = 1;
419
        s->istat0 |= LSI_ISTAT0_DIP;
420
    } else {
421
        s->istat0 &= ~LSI_ISTAT0_DIP;
422
    }
423

    
424
    if (s->sist0 || s->sist1) {
425
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426
            level = 1;
427
        s->istat0 |= LSI_ISTAT0_SIP;
428
    } else {
429
        s->istat0 &= ~LSI_ISTAT0_SIP;
430
    }
431
    if (s->istat0 & LSI_ISTAT0_INTF)
432
        level = 1;
433

    
434
    if (level != last_level) {
435
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436
                level, s->dstat, s->sist1, s->sist0);
437
        last_level = level;
438
    }
439
    qemu_set_irq(s->dev.irq[0], level);
440

    
441
    if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442
        DPRINTF("Handled IRQs & disconnected, looking for pending "
443
                "processes\n");
444
        QTAILQ_FOREACH(p, &s->queue, next) {
445
            if (p->pending) {
446
                lsi_reselect(s, p);
447
                break;
448
            }
449
        }
450
    }
451
}
452

    
453
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
454
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455
{
456
    uint32_t mask0;
457
    uint32_t mask1;
458

    
459
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460
            stat1, stat0, s->sist1, s->sist0);
461
    s->sist0 |= stat0;
462
    s->sist1 |= stat1;
463
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
464
       we don't stop processing when raising STO.  Instead continue
465
       execution and stop at the next insn that accesses the SCSI bus.  */
466
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468
    mask1 &= ~LSI_SIST1_STO;
469
    if (s->sist0 & mask0 || s->sist1 & mask1) {
470
        lsi_stop_script(s);
471
    }
472
    lsi_update_irq(s);
473
}
474

    
475
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
476
static void lsi_script_dma_interrupt(LSIState *s, int stat)
477
{
478
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479
    s->dstat |= stat;
480
    lsi_update_irq(s);
481
    lsi_stop_script(s);
482
}
483

    
484
static inline void lsi_set_phase(LSIState *s, int phase)
485
{
486
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487
}
488

    
489
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490
{
491
    /* Trigger a phase mismatch.  */
492
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
494
            s->dsp = out ? s->pmjad1 : s->pmjad2;
495
        } else {
496
            s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
497
        }
498
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499
    } else {
500
        DPRINTF("Phase mismatch interrupt\n");
501
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502
        lsi_stop_script(s);
503
    }
504
    lsi_set_phase(s, new_phase);
505
}
506

    
507

    
508
/* Resume SCRIPTS execution after a DMA operation.  */
509
static void lsi_resume_script(LSIState *s)
510
{
511
    if (s->waiting != 2) {
512
        s->waiting = 0;
513
        lsi_execute_script(s);
514
    } else {
515
        s->waiting = 0;
516
    }
517
}
518

    
519
static void lsi_disconnect(LSIState *s)
520
{
521
    s->scntl1 &= ~LSI_SCNTL1_CON;
522
    s->sstat1 &= ~PHASE_MASK;
523
}
524

    
525
static void lsi_bad_selection(LSIState *s, uint32_t id)
526
{
527
    DPRINTF("Selected absent target %d\n", id);
528
    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
529
    lsi_disconnect(s);
530
}
531

    
532
/* Initiate a SCSI layer data transfer.  */
533
static void lsi_do_dma(LSIState *s, int out)
534
{
535
    uint32_t count, id;
536
    target_phys_addr_t addr;
537
    SCSIDevice *dev;
538

    
539
    assert(s->current);
540
    if (!s->current->dma_len) {
541
        /* Wait until data is available.  */
542
        DPRINTF("DMA no data available\n");
543
        return;
544
    }
545

    
546
    id = (s->current->tag >> 8) & 0xf;
547
    dev = s->bus.devs[id];
548
    if (!dev) {
549
        lsi_bad_selection(s, id);
550
        return;
551
    }
552

    
553
    count = s->dbc;
554
    if (count > s->current->dma_len)
555
        count = s->current->dma_len;
556

    
557
    addr = s->dnad;
558
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560
        addr |= ((uint64_t)s->dnad64 << 32);
561
    else if (s->dbms)
562
        addr |= ((uint64_t)s->dbms << 32);
563
    else if (s->sbms)
564
        addr |= ((uint64_t)s->sbms << 32);
565

    
566
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
567
    s->csbc += count;
568
    s->dnad += count;
569
    s->dbc -= count;
570

    
571
    if (s->current->dma_buf == NULL) {
572
        s->current->dma_buf = dev->info->get_buf(dev, s->current->tag);
573
    }
574

    
575
    /* ??? Set SFBR to first data byte.  */
576
    if (out) {
577
        cpu_physical_memory_read(addr, s->current->dma_buf, count);
578
    } else {
579
        cpu_physical_memory_write(addr, s->current->dma_buf, count);
580
    }
581
    s->current->dma_len -= count;
582
    if (s->current->dma_len == 0) {
583
        s->current->dma_buf = NULL;
584
        if (out) {
585
            /* Write the data.  */
586
            dev->info->write_data(dev, s->current->tag);
587
        } else {
588
            /* Request any remaining data.  */
589
            dev->info->read_data(dev, s->current->tag);
590
        }
591
    } else {
592
        s->current->dma_buf += count;
593
        lsi_resume_script(s);
594
    }
595
}
596

    
597

    
598
/* Add a command to the queue.  */
599
static void lsi_queue_command(LSIState *s)
600
{
601
    lsi_request *p = s->current;
602

    
603
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
604
    assert(s->current != NULL);
605
    assert(s->current->dma_len == 0);
606
    QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
607
    s->current = NULL;
608

    
609
    p->pending = 0;
610
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
611
}
612

    
613
/* Queue a byte for a MSG IN phase.  */
614
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
615
{
616
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
617
        BADF("MSG IN data too long\n");
618
    } else {
619
        DPRINTF("MSG IN 0x%02x\n", data);
620
        s->msg[s->msg_len++] = data;
621
    }
622
}
623

    
624
/* Perform reselection to continue a command.  */
625
static void lsi_reselect(LSIState *s, lsi_request *p)
626
{
627
    int id;
628

    
629
    assert(s->current == NULL);
630
    QTAILQ_REMOVE(&s->queue, p, next);
631
    s->current = p;
632

    
633
    id = (p->tag >> 8) & 0xf;
634
    s->ssid = id | 0x80;
635
    /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
636
    if (!(s->dcntl & LSI_DCNTL_COM)) {
637
        s->sfbr = 1 << (id & 0x7);
638
    }
639
    DPRINTF("Reselected target %d\n", id);
640
    s->scntl1 |= LSI_SCNTL1_CON;
641
    lsi_set_phase(s, PHASE_MI);
642
    s->msg_action = p->out ? 2 : 3;
643
    s->current->dma_len = p->pending;
644
    lsi_add_msg_byte(s, 0x80);
645
    if (s->current->tag & LSI_TAG_VALID) {
646
        lsi_add_msg_byte(s, 0x20);
647
        lsi_add_msg_byte(s, p->tag & 0xff);
648
    }
649

    
650
    if (lsi_irq_on_rsl(s)) {
651
        lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
652
    }
653
}
654

    
655
/* Record that data is available for a queued command.  Returns zero if
656
   the device was reselected, nonzero if the IO is deferred.  */
657
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
658
{
659
    lsi_request *p;
660

    
661
    QTAILQ_FOREACH(p, &s->queue, next) {
662
        if (p->tag == tag) {
663
            if (p->pending) {
664
                BADF("Multiple IO pending for tag %d\n", tag);
665
            }
666
            p->pending = arg;
667
            /* Reselect if waiting for it, or if reselection triggers an IRQ
668
               and the bus is free.
669
               Since no interrupt stacking is implemented in the emulation, it
670
               is also required that there are no pending interrupts waiting
671
               for service from the device driver. */
672
            if (s->waiting == 1 ||
673
                (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
674
                 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
675
                /* Reselect device.  */
676
                lsi_reselect(s, p);
677
                return 0;
678
            } else {
679
                DPRINTF("Queueing IO tag=0x%x\n", tag);
680
                p->pending = arg;
681
                return 1;
682
            }
683
        }
684
    }
685
    BADF("IO with unknown tag %d\n", tag);
686
    return 1;
687
}
688

    
689
/* Callback to indicate that the SCSI layer has completed a transfer.  */
690
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
691
                                 uint32_t arg)
692
{
693
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
694
    int out;
695

    
696
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
697
    if (reason == SCSI_REASON_DONE) {
698
        DPRINTF("Command complete sense=%d\n", (int)arg);
699
        s->sense = arg;
700
        s->command_complete = 2;
701
        if (s->waiting && s->dbc != 0) {
702
            /* Raise phase mismatch for short transfers.  */
703
            lsi_bad_phase(s, out, PHASE_ST);
704
        } else {
705
            lsi_set_phase(s, PHASE_ST);
706
        }
707

    
708
        qemu_free(s->current);
709
        s->current = NULL;
710

    
711
        lsi_resume_script(s);
712
        return;
713
    }
714

    
715
    if (s->waiting == 1 || !s->current || tag != s->current->tag ||
716
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
717
        if (lsi_queue_tag(s, tag, arg))
718
            return;
719
    }
720

    
721
    /* host adapter (re)connected */
722
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
723
    s->current->dma_len = arg;
724
    s->command_complete = 1;
725
    if (!s->waiting)
726
        return;
727
    if (s->waiting == 1 || s->dbc == 0) {
728
        lsi_resume_script(s);
729
    } else {
730
        lsi_do_dma(s, out);
731
    }
732
}
733

    
734
static void lsi_do_command(LSIState *s)
735
{
736
    SCSIDevice *dev;
737
    uint8_t buf[16];
738
    uint32_t id;
739
    int n;
740

    
741
    DPRINTF("Send command len=%d\n", s->dbc);
742
    if (s->dbc > 16)
743
        s->dbc = 16;
744
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
745
    s->sfbr = buf[0];
746
    s->command_complete = 0;
747

    
748
    id = (s->select_tag >> 8) & 0xf;
749
    dev = s->bus.devs[id];
750
    if (!dev) {
751
        lsi_bad_selection(s, id);
752
        return;
753
    }
754

    
755
    assert(s->current == NULL);
756
    s->current = qemu_mallocz(sizeof(lsi_request));
757
    s->current->tag = s->select_tag;
758

    
759
    n = dev->info->send_command(dev, s->current->tag, buf, s->current_lun);
760
    if (n > 0) {
761
        lsi_set_phase(s, PHASE_DI);
762
        dev->info->read_data(dev, s->current->tag);
763
    } else if (n < 0) {
764
        lsi_set_phase(s, PHASE_DO);
765
        dev->info->write_data(dev, s->current->tag);
766
    }
767

    
768
    if (!s->command_complete) {
769
        if (n) {
770
            /* Command did not complete immediately so disconnect.  */
771
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
772
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
773
            /* wait data */
774
            lsi_set_phase(s, PHASE_MI);
775
            s->msg_action = 1;
776
            lsi_queue_command(s);
777
        } else {
778
            /* wait command complete */
779
            lsi_set_phase(s, PHASE_DI);
780
        }
781
    }
782
}
783

    
784
static void lsi_do_status(LSIState *s)
785
{
786
    uint8_t sense;
787
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
788
    if (s->dbc != 1)
789
        BADF("Bad Status move\n");
790
    s->dbc = 1;
791
    sense = s->sense;
792
    s->sfbr = sense;
793
    cpu_physical_memory_write(s->dnad, &sense, 1);
794
    lsi_set_phase(s, PHASE_MI);
795
    s->msg_action = 1;
796
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
797
}
798

    
799
static void lsi_do_msgin(LSIState *s)
800
{
801
    int len;
802
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
803
    s->sfbr = s->msg[0];
804
    len = s->msg_len;
805
    if (len > s->dbc)
806
        len = s->dbc;
807
    cpu_physical_memory_write(s->dnad, s->msg, len);
808
    /* Linux drivers rely on the last byte being in the SIDL.  */
809
    s->sidl = s->msg[len - 1];
810
    s->msg_len -= len;
811
    if (s->msg_len) {
812
        memmove(s->msg, s->msg + len, s->msg_len);
813
    } else {
814
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
815
           switch to PHASE_MO.  */
816
        switch (s->msg_action) {
817
        case 0:
818
            lsi_set_phase(s, PHASE_CMD);
819
            break;
820
        case 1:
821
            lsi_disconnect(s);
822
            break;
823
        case 2:
824
            lsi_set_phase(s, PHASE_DO);
825
            break;
826
        case 3:
827
            lsi_set_phase(s, PHASE_DI);
828
            break;
829
        default:
830
            abort();
831
        }
832
    }
833
}
834

    
835
/* Read the next byte during a MSGOUT phase.  */
836
static uint8_t lsi_get_msgbyte(LSIState *s)
837
{
838
    uint8_t data;
839
    cpu_physical_memory_read(s->dnad, &data, 1);
840
    s->dnad++;
841
    s->dbc--;
842
    return data;
843
}
844

    
845
static void lsi_do_msgout(LSIState *s)
846
{
847
    uint8_t msg;
848
    int len;
849

    
850
    DPRINTF("MSG out len=%d\n", s->dbc);
851
    while (s->dbc) {
852
        msg = lsi_get_msgbyte(s);
853
        s->sfbr = msg;
854

    
855
        switch (msg) {
856
        case 0x04:
857
            DPRINTF("MSG: Disconnect\n");
858
            lsi_disconnect(s);
859
            break;
860
        case 0x08:
861
            DPRINTF("MSG: No Operation\n");
862
            lsi_set_phase(s, PHASE_CMD);
863
            break;
864
        case 0x01:
865
            len = lsi_get_msgbyte(s);
866
            msg = lsi_get_msgbyte(s);
867
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
868
            switch (msg) {
869
            case 1:
870
                DPRINTF("SDTR (ignored)\n");
871
                s->dbc -= 2;
872
                break;
873
            case 3:
874
                DPRINTF("WDTR (ignored)\n");
875
                s->dbc -= 1;
876
                break;
877
            default:
878
                goto bad;
879
            }
880
            break;
881
        case 0x20: /* SIMPLE queue */
882
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
883
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
884
            break;
885
        case 0x21: /* HEAD of queue */
886
            BADF("HEAD queue not implemented\n");
887
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
888
            break;
889
        case 0x22: /* ORDERED queue */
890
            BADF("ORDERED queue not implemented\n");
891
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
892
            break;
893
        default:
894
            if ((msg & 0x80) == 0) {
895
                goto bad;
896
            }
897
            s->current_lun = msg & 7;
898
            DPRINTF("Select LUN %d\n", s->current_lun);
899
            lsi_set_phase(s, PHASE_CMD);
900
            break;
901
        }
902
    }
903
    return;
904
bad:
905
    BADF("Unimplemented message 0x%02x\n", msg);
906
    lsi_set_phase(s, PHASE_MI);
907
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
908
    s->msg_action = 0;
909
}
910

    
911
/* Sign extend a 24-bit value.  */
912
static inline int32_t sxt24(int32_t n)
913
{
914
    return (n << 8) >> 8;
915
}
916

    
917
#define LSI_BUF_SIZE 4096
918
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
919
{
920
    int n;
921
    uint8_t buf[LSI_BUF_SIZE];
922

    
923
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
924
    while (count) {
925
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
926
        cpu_physical_memory_read(src, buf, n);
927
        cpu_physical_memory_write(dest, buf, n);
928
        src += n;
929
        dest += n;
930
        count -= n;
931
    }
932
}
933

    
934
static void lsi_wait_reselect(LSIState *s)
935
{
936
    lsi_request *p;
937

    
938
    DPRINTF("Wait Reselect\n");
939

    
940
    QTAILQ_FOREACH(p, &s->queue, next) {
941
        if (p->pending) {
942
            lsi_reselect(s, p);
943
            break;
944
        }
945
    }
946
    if (s->current == NULL) {
947
        s->waiting = 1;
948
    }
949
}
950

    
951
static void lsi_execute_script(LSIState *s)
952
{
953
    uint32_t insn;
954
    uint32_t addr, addr_high;
955
    int opcode;
956
    int insn_processed = 0;
957

    
958
    s->istat1 |= LSI_ISTAT1_SRUN;
959
again:
960
    insn_processed++;
961
    insn = read_dword(s, s->dsp);
962
    if (!insn) {
963
        /* If we receive an empty opcode increment the DSP by 4 bytes
964
           instead of 8 and execute the next opcode at that location */
965
        s->dsp += 4;
966
        goto again;
967
    }
968
    addr = read_dword(s, s->dsp + 4);
969
    addr_high = 0;
970
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
971
    s->dsps = addr;
972
    s->dcmd = insn >> 24;
973
    s->dsp += 8;
974
    switch (insn >> 30) {
975
    case 0: /* Block move.  */
976
        if (s->sist1 & LSI_SIST1_STO) {
977
            DPRINTF("Delayed select timeout\n");
978
            lsi_stop_script(s);
979
            break;
980
        }
981
        s->dbc = insn & 0xffffff;
982
        s->rbc = s->dbc;
983
        /* ??? Set ESA.  */
984
        s->ia = s->dsp - 8;
985
        if (insn & (1 << 29)) {
986
            /* Indirect addressing.  */
987
            addr = read_dword(s, addr);
988
        } else if (insn & (1 << 28)) {
989
            uint32_t buf[2];
990
            int32_t offset;
991
            /* Table indirect addressing.  */
992

    
993
            /* 32-bit Table indirect */
994
            offset = sxt24(addr);
995
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
996
            /* byte count is stored in bits 0:23 only */
997
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
998
            s->rbc = s->dbc;
999
            addr = cpu_to_le32(buf[1]);
1000

    
1001
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1002
             * table, bits [31:24] */
1003
            if (lsi_dma_40bit(s))
1004
                addr_high = cpu_to_le32(buf[0]) >> 24;
1005
            else if (lsi_dma_ti64bit(s)) {
1006
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1007
                switch (selector) {
1008
                case 0 ... 0x0f:
1009
                    /* offset index into scratch registers since
1010
                     * TI64 mode can use registers C to R */
1011
                    addr_high = s->scratch[2 + selector];
1012
                    break;
1013
                case 0x10:
1014
                    addr_high = s->mmrs;
1015
                    break;
1016
                case 0x11:
1017
                    addr_high = s->mmws;
1018
                    break;
1019
                case 0x12:
1020
                    addr_high = s->sfs;
1021
                    break;
1022
                case 0x13:
1023
                    addr_high = s->drs;
1024
                    break;
1025
                case 0x14:
1026
                    addr_high = s->sbms;
1027
                    break;
1028
                case 0x15:
1029
                    addr_high = s->dbms;
1030
                    break;
1031
                default:
1032
                    BADF("Illegal selector specified (0x%x > 0x15)"
1033
                         " for 64-bit DMA block move", selector);
1034
                    break;
1035
                }
1036
            }
1037
        } else if (lsi_dma_64bit(s)) {
1038
            /* fetch a 3rd dword if 64-bit direct move is enabled and
1039
               only if we're not doing table indirect or indirect addressing */
1040
            s->dbms = read_dword(s, s->dsp);
1041
            s->dsp += 4;
1042
            s->ia = s->dsp - 12;
1043
        }
1044
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1045
            DPRINTF("Wrong phase got %d expected %d\n",
1046
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1047
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1048
            break;
1049
        }
1050
        s->dnad = addr;
1051
        s->dnad64 = addr_high;
1052
        switch (s->sstat1 & 0x7) {
1053
        case PHASE_DO:
1054
            s->waiting = 2;
1055
            lsi_do_dma(s, 1);
1056
            if (s->waiting)
1057
                s->waiting = 3;
1058
            break;
1059
        case PHASE_DI:
1060
            s->waiting = 2;
1061
            lsi_do_dma(s, 0);
1062
            if (s->waiting)
1063
                s->waiting = 3;
1064
            break;
1065
        case PHASE_CMD:
1066
            lsi_do_command(s);
1067
            break;
1068
        case PHASE_ST:
1069
            lsi_do_status(s);
1070
            break;
1071
        case PHASE_MO:
1072
            lsi_do_msgout(s);
1073
            break;
1074
        case PHASE_MI:
1075
            lsi_do_msgin(s);
1076
            break;
1077
        default:
1078
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1079
            exit(1);
1080
        }
1081
        s->dfifo = s->dbc & 0xff;
1082
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1083
        s->sbc = s->dbc;
1084
        s->rbc -= s->dbc;
1085
        s->ua = addr + s->dbc;
1086
        break;
1087

    
1088
    case 1: /* IO or Read/Write instruction.  */
1089
        opcode = (insn >> 27) & 7;
1090
        if (opcode < 5) {
1091
            uint32_t id;
1092

    
1093
            if (insn & (1 << 25)) {
1094
                id = read_dword(s, s->dsa + sxt24(insn));
1095
            } else {
1096
                id = insn;
1097
            }
1098
            id = (id >> 16) & 0xf;
1099
            if (insn & (1 << 26)) {
1100
                addr = s->dsp + sxt24(addr);
1101
            }
1102
            s->dnad = addr;
1103
            switch (opcode) {
1104
            case 0: /* Select */
1105
                s->sdid = id;
1106
                if (s->scntl1 & LSI_SCNTL1_CON) {
1107
                    DPRINTF("Already reselected, jumping to alternative address\n");
1108
                    s->dsp = s->dnad;
1109
                    break;
1110
                }
1111
                s->sstat0 |= LSI_SSTAT0_WOA;
1112
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1113
                if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1114
                    lsi_bad_selection(s, id);
1115
                    break;
1116
                }
1117
                DPRINTF("Selected target %d%s\n",
1118
                        id, insn & (1 << 3) ? " ATN" : "");
1119
                /* ??? Linux drivers compain when this is set.  Maybe
1120
                   it only applies in low-level mode (unimplemented).
1121
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1122
                s->select_tag = id << 8;
1123
                s->scntl1 |= LSI_SCNTL1_CON;
1124
                if (insn & (1 << 3)) {
1125
                    s->socl |= LSI_SOCL_ATN;
1126
                }
1127
                lsi_set_phase(s, PHASE_MO);
1128
                break;
1129
            case 1: /* Disconnect */
1130
                DPRINTF("Wait Disconnect\n");
1131
                s->scntl1 &= ~LSI_SCNTL1_CON;
1132
                break;
1133
            case 2: /* Wait Reselect */
1134
                if (!lsi_irq_on_rsl(s)) {
1135
                    lsi_wait_reselect(s);
1136
                }
1137
                break;
1138
            case 3: /* Set */
1139
                DPRINTF("Set%s%s%s%s\n",
1140
                        insn & (1 << 3) ? " ATN" : "",
1141
                        insn & (1 << 6) ? " ACK" : "",
1142
                        insn & (1 << 9) ? " TM" : "",
1143
                        insn & (1 << 10) ? " CC" : "");
1144
                if (insn & (1 << 3)) {
1145
                    s->socl |= LSI_SOCL_ATN;
1146
                    lsi_set_phase(s, PHASE_MO);
1147
                }
1148
                if (insn & (1 << 9)) {
1149
                    BADF("Target mode not implemented\n");
1150
                    exit(1);
1151
                }
1152
                if (insn & (1 << 10))
1153
                    s->carry = 1;
1154
                break;
1155
            case 4: /* Clear */
1156
                DPRINTF("Clear%s%s%s%s\n",
1157
                        insn & (1 << 3) ? " ATN" : "",
1158
                        insn & (1 << 6) ? " ACK" : "",
1159
                        insn & (1 << 9) ? " TM" : "",
1160
                        insn & (1 << 10) ? " CC" : "");
1161
                if (insn & (1 << 3)) {
1162
                    s->socl &= ~LSI_SOCL_ATN;
1163
                }
1164
                if (insn & (1 << 10))
1165
                    s->carry = 0;
1166
                break;
1167
            }
1168
        } else {
1169
            uint8_t op0;
1170
            uint8_t op1;
1171
            uint8_t data8;
1172
            int reg;
1173
            int operator;
1174
#ifdef DEBUG_LSI
1175
            static const char *opcode_names[3] =
1176
                {"Write", "Read", "Read-Modify-Write"};
1177
            static const char *operator_names[8] =
1178
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1179
#endif
1180

    
1181
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1182
            data8 = (insn >> 8) & 0xff;
1183
            opcode = (insn >> 27) & 7;
1184
            operator = (insn >> 24) & 7;
1185
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1186
                    opcode_names[opcode - 5], reg,
1187
                    operator_names[operator], data8, s->sfbr,
1188
                    (insn & (1 << 23)) ? " SFBR" : "");
1189
            op0 = op1 = 0;
1190
            switch (opcode) {
1191
            case 5: /* From SFBR */
1192
                op0 = s->sfbr;
1193
                op1 = data8;
1194
                break;
1195
            case 6: /* To SFBR */
1196
                if (operator)
1197
                    op0 = lsi_reg_readb(s, reg);
1198
                op1 = data8;
1199
                break;
1200
            case 7: /* Read-modify-write */
1201
                if (operator)
1202
                    op0 = lsi_reg_readb(s, reg);
1203
                if (insn & (1 << 23)) {
1204
                    op1 = s->sfbr;
1205
                } else {
1206
                    op1 = data8;
1207
                }
1208
                break;
1209
            }
1210

    
1211
            switch (operator) {
1212
            case 0: /* move */
1213
                op0 = op1;
1214
                break;
1215
            case 1: /* Shift left */
1216
                op1 = op0 >> 7;
1217
                op0 = (op0 << 1) | s->carry;
1218
                s->carry = op1;
1219
                break;
1220
            case 2: /* OR */
1221
                op0 |= op1;
1222
                break;
1223
            case 3: /* XOR */
1224
                op0 ^= op1;
1225
                break;
1226
            case 4: /* AND */
1227
                op0 &= op1;
1228
                break;
1229
            case 5: /* SHR */
1230
                op1 = op0 & 1;
1231
                op0 = (op0 >> 1) | (s->carry << 7);
1232
                s->carry = op1;
1233
                break;
1234
            case 6: /* ADD */
1235
                op0 += op1;
1236
                s->carry = op0 < op1;
1237
                break;
1238
            case 7: /* ADC */
1239
                op0 += op1 + s->carry;
1240
                if (s->carry)
1241
                    s->carry = op0 <= op1;
1242
                else
1243
                    s->carry = op0 < op1;
1244
                break;
1245
            }
1246

    
1247
            switch (opcode) {
1248
            case 5: /* From SFBR */
1249
            case 7: /* Read-modify-write */
1250
                lsi_reg_writeb(s, reg, op0);
1251
                break;
1252
            case 6: /* To SFBR */
1253
                s->sfbr = op0;
1254
                break;
1255
            }
1256
        }
1257
        break;
1258

    
1259
    case 2: /* Transfer Control.  */
1260
        {
1261
            int cond;
1262
            int jmp;
1263

    
1264
            if ((insn & 0x002e0000) == 0) {
1265
                DPRINTF("NOP\n");
1266
                break;
1267
            }
1268
            if (s->sist1 & LSI_SIST1_STO) {
1269
                DPRINTF("Delayed select timeout\n");
1270
                lsi_stop_script(s);
1271
                break;
1272
            }
1273
            cond = jmp = (insn & (1 << 19)) != 0;
1274
            if (cond == jmp && (insn & (1 << 21))) {
1275
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1276
                cond = s->carry != 0;
1277
            }
1278
            if (cond == jmp && (insn & (1 << 17))) {
1279
                DPRINTF("Compare phase %d %c= %d\n",
1280
                        (s->sstat1 & PHASE_MASK),
1281
                        jmp ? '=' : '!',
1282
                        ((insn >> 24) & 7));
1283
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1284
            }
1285
            if (cond == jmp && (insn & (1 << 18))) {
1286
                uint8_t mask;
1287

    
1288
                mask = (~insn >> 8) & 0xff;
1289
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1290
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1291
                cond = (s->sfbr & mask) == (insn & mask);
1292
            }
1293
            if (cond == jmp) {
1294
                if (insn & (1 << 23)) {
1295
                    /* Relative address.  */
1296
                    addr = s->dsp + sxt24(addr);
1297
                }
1298
                switch ((insn >> 27) & 7) {
1299
                case 0: /* Jump */
1300
                    DPRINTF("Jump to 0x%08x\n", addr);
1301
                    s->dsp = addr;
1302
                    break;
1303
                case 1: /* Call */
1304
                    DPRINTF("Call 0x%08x\n", addr);
1305
                    s->temp = s->dsp;
1306
                    s->dsp = addr;
1307
                    break;
1308
                case 2: /* Return */
1309
                    DPRINTF("Return to 0x%08x\n", s->temp);
1310
                    s->dsp = s->temp;
1311
                    break;
1312
                case 3: /* Interrupt */
1313
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1314
                    if ((insn & (1 << 20)) != 0) {
1315
                        s->istat0 |= LSI_ISTAT0_INTF;
1316
                        lsi_update_irq(s);
1317
                    } else {
1318
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1319
                    }
1320
                    break;
1321
                default:
1322
                    DPRINTF("Illegal transfer control\n");
1323
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1324
                    break;
1325
                }
1326
            } else {
1327
                DPRINTF("Control condition failed\n");
1328
            }
1329
        }
1330
        break;
1331

    
1332
    case 3:
1333
        if ((insn & (1 << 29)) == 0) {
1334
            /* Memory move.  */
1335
            uint32_t dest;
1336
            /* ??? The docs imply the destination address is loaded into
1337
               the TEMP register.  However the Linux drivers rely on
1338
               the value being presrved.  */
1339
            dest = read_dword(s, s->dsp);
1340
            s->dsp += 4;
1341
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1342
        } else {
1343
            uint8_t data[7];
1344
            int reg;
1345
            int n;
1346
            int i;
1347

    
1348
            if (insn & (1 << 28)) {
1349
                addr = s->dsa + sxt24(addr);
1350
            }
1351
            n = (insn & 7);
1352
            reg = (insn >> 16) & 0xff;
1353
            if (insn & (1 << 24)) {
1354
                cpu_physical_memory_read(addr, data, n);
1355
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1356
                        addr, *(int *)data);
1357
                for (i = 0; i < n; i++) {
1358
                    lsi_reg_writeb(s, reg + i, data[i]);
1359
                }
1360
            } else {
1361
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1362
                for (i = 0; i < n; i++) {
1363
                    data[i] = lsi_reg_readb(s, reg + i);
1364
                }
1365
                cpu_physical_memory_write(addr, data, n);
1366
            }
1367
        }
1368
    }
1369
    if (insn_processed > 10000 && !s->waiting) {
1370
        /* Some windows drivers make the device spin waiting for a memory
1371
           location to change.  If we have been executed a lot of code then
1372
           assume this is the case and force an unexpected device disconnect.
1373
           This is apparently sufficient to beat the drivers into submission.
1374
         */
1375
        if (!(s->sien0 & LSI_SIST0_UDC))
1376
            fprintf(stderr, "inf. loop with UDC masked\n");
1377
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1378
        lsi_disconnect(s);
1379
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1380
        if (s->dcntl & LSI_DCNTL_SSM) {
1381
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1382
        } else {
1383
            goto again;
1384
        }
1385
    }
1386
    DPRINTF("SCRIPTS execution stopped\n");
1387
}
1388

    
1389
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1390
{
1391
    uint8_t tmp;
1392
#define CASE_GET_REG24(name, addr) \
1393
    case addr: return s->name & 0xff; \
1394
    case addr + 1: return (s->name >> 8) & 0xff; \
1395
    case addr + 2: return (s->name >> 16) & 0xff;
1396

    
1397
#define CASE_GET_REG32(name, addr) \
1398
    case addr: return s->name & 0xff; \
1399
    case addr + 1: return (s->name >> 8) & 0xff; \
1400
    case addr + 2: return (s->name >> 16) & 0xff; \
1401
    case addr + 3: return (s->name >> 24) & 0xff;
1402

    
1403
#ifdef DEBUG_LSI_REG
1404
    DPRINTF("Read reg %x\n", offset);
1405
#endif
1406
    switch (offset) {
1407
    case 0x00: /* SCNTL0 */
1408
        return s->scntl0;
1409
    case 0x01: /* SCNTL1 */
1410
        return s->scntl1;
1411
    case 0x02: /* SCNTL2 */
1412
        return s->scntl2;
1413
    case 0x03: /* SCNTL3 */
1414
        return s->scntl3;
1415
    case 0x04: /* SCID */
1416
        return s->scid;
1417
    case 0x05: /* SXFER */
1418
        return s->sxfer;
1419
    case 0x06: /* SDID */
1420
        return s->sdid;
1421
    case 0x07: /* GPREG0 */
1422
        return 0x7f;
1423
    case 0x08: /* Revision ID */
1424
        return 0x00;
1425
    case 0xa: /* SSID */
1426
        return s->ssid;
1427
    case 0xb: /* SBCL */
1428
        /* ??? This is not correct. However it's (hopefully) only
1429
           used for diagnostics, so should be ok.  */
1430
        return 0;
1431
    case 0xc: /* DSTAT */
1432
        tmp = s->dstat | 0x80;
1433
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1434
            s->dstat = 0;
1435
        lsi_update_irq(s);
1436
        return tmp;
1437
    case 0x0d: /* SSTAT0 */
1438
        return s->sstat0;
1439
    case 0x0e: /* SSTAT1 */
1440
        return s->sstat1;
1441
    case 0x0f: /* SSTAT2 */
1442
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1443
    CASE_GET_REG32(dsa, 0x10)
1444
    case 0x14: /* ISTAT0 */
1445
        return s->istat0;
1446
    case 0x15: /* ISTAT1 */
1447
        return s->istat1;
1448
    case 0x16: /* MBOX0 */
1449
        return s->mbox0;
1450
    case 0x17: /* MBOX1 */
1451
        return s->mbox1;
1452
    case 0x18: /* CTEST0 */
1453
        return 0xff;
1454
    case 0x19: /* CTEST1 */
1455
        return 0;
1456
    case 0x1a: /* CTEST2 */
1457
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1458
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1459
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1460
            tmp |= LSI_CTEST2_SIGP;
1461
        }
1462
        return tmp;
1463
    case 0x1b: /* CTEST3 */
1464
        return s->ctest3;
1465
    CASE_GET_REG32(temp, 0x1c)
1466
    case 0x20: /* DFIFO */
1467
        return 0;
1468
    case 0x21: /* CTEST4 */
1469
        return s->ctest4;
1470
    case 0x22: /* CTEST5 */
1471
        return s->ctest5;
1472
    case 0x23: /* CTEST6 */
1473
         return 0;
1474
    CASE_GET_REG24(dbc, 0x24)
1475
    case 0x27: /* DCMD */
1476
        return s->dcmd;
1477
    CASE_GET_REG32(dnad, 0x28)
1478
    CASE_GET_REG32(dsp, 0x2c)
1479
    CASE_GET_REG32(dsps, 0x30)
1480
    CASE_GET_REG32(scratch[0], 0x34)
1481
    case 0x38: /* DMODE */
1482
        return s->dmode;
1483
    case 0x39: /* DIEN */
1484
        return s->dien;
1485
    case 0x3a: /* SBR */
1486
        return s->sbr;
1487
    case 0x3b: /* DCNTL */
1488
        return s->dcntl;
1489
    case 0x40: /* SIEN0 */
1490
        return s->sien0;
1491
    case 0x41: /* SIEN1 */
1492
        return s->sien1;
1493
    case 0x42: /* SIST0 */
1494
        tmp = s->sist0;
1495
        s->sist0 = 0;
1496
        lsi_update_irq(s);
1497
        return tmp;
1498
    case 0x43: /* SIST1 */
1499
        tmp = s->sist1;
1500
        s->sist1 = 0;
1501
        lsi_update_irq(s);
1502
        return tmp;
1503
    case 0x46: /* MACNTL */
1504
        return 0x0f;
1505
    case 0x47: /* GPCNTL0 */
1506
        return 0x0f;
1507
    case 0x48: /* STIME0 */
1508
        return s->stime0;
1509
    case 0x4a: /* RESPID0 */
1510
        return s->respid0;
1511
    case 0x4b: /* RESPID1 */
1512
        return s->respid1;
1513
    case 0x4d: /* STEST1 */
1514
        return s->stest1;
1515
    case 0x4e: /* STEST2 */
1516
        return s->stest2;
1517
    case 0x4f: /* STEST3 */
1518
        return s->stest3;
1519
    case 0x50: /* SIDL */
1520
        /* This is needed by the linux drivers.  We currently only update it
1521
           during the MSG IN phase.  */
1522
        return s->sidl;
1523
    case 0x52: /* STEST4 */
1524
        return 0xe0;
1525
    case 0x56: /* CCNTL0 */
1526
        return s->ccntl0;
1527
    case 0x57: /* CCNTL1 */
1528
        return s->ccntl1;
1529
    case 0x58: /* SBDL */
1530
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1531
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1532
            return s->msg[0];
1533
        return 0;
1534
    case 0x59: /* SBDL high */
1535
        return 0;
1536
    CASE_GET_REG32(mmrs, 0xa0)
1537
    CASE_GET_REG32(mmws, 0xa4)
1538
    CASE_GET_REG32(sfs, 0xa8)
1539
    CASE_GET_REG32(drs, 0xac)
1540
    CASE_GET_REG32(sbms, 0xb0)
1541
    CASE_GET_REG32(dbms, 0xb4)
1542
    CASE_GET_REG32(dnad64, 0xb8)
1543
    CASE_GET_REG32(pmjad1, 0xc0)
1544
    CASE_GET_REG32(pmjad2, 0xc4)
1545
    CASE_GET_REG32(rbc, 0xc8)
1546
    CASE_GET_REG32(ua, 0xcc)
1547
    CASE_GET_REG32(ia, 0xd4)
1548
    CASE_GET_REG32(sbc, 0xd8)
1549
    CASE_GET_REG32(csbc, 0xdc)
1550
    }
1551
    if (offset >= 0x5c && offset < 0xa0) {
1552
        int n;
1553
        int shift;
1554
        n = (offset - 0x58) >> 2;
1555
        shift = (offset & 3) * 8;
1556
        return (s->scratch[n] >> shift) & 0xff;
1557
    }
1558
    BADF("readb 0x%x\n", offset);
1559
    exit(1);
1560
#undef CASE_GET_REG24
1561
#undef CASE_GET_REG32
1562
}
1563

    
1564
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1565
{
1566
#define CASE_SET_REG24(name, addr) \
1567
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1568
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1569
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1570

    
1571
#define CASE_SET_REG32(name, addr) \
1572
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1573
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1574
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1575
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1576

    
1577
#ifdef DEBUG_LSI_REG
1578
    DPRINTF("Write reg %x = %02x\n", offset, val);
1579
#endif
1580
    switch (offset) {
1581
    case 0x00: /* SCNTL0 */
1582
        s->scntl0 = val;
1583
        if (val & LSI_SCNTL0_START) {
1584
            BADF("Start sequence not implemented\n");
1585
        }
1586
        break;
1587
    case 0x01: /* SCNTL1 */
1588
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1589
        if (val & LSI_SCNTL1_IARB) {
1590
            BADF("Immediate Arbritration not implemented\n");
1591
        }
1592
        if (val & LSI_SCNTL1_RST) {
1593
            s->sstat0 |= LSI_SSTAT0_RST;
1594
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1595
        } else {
1596
            s->sstat0 &= ~LSI_SSTAT0_RST;
1597
        }
1598
        break;
1599
    case 0x02: /* SCNTL2 */
1600
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1601
        s->scntl2 = val;
1602
        break;
1603
    case 0x03: /* SCNTL3 */
1604
        s->scntl3 = val;
1605
        break;
1606
    case 0x04: /* SCID */
1607
        s->scid = val;
1608
        break;
1609
    case 0x05: /* SXFER */
1610
        s->sxfer = val;
1611
        break;
1612
    case 0x06: /* SDID */
1613
        if ((val & 0xf) != (s->ssid & 0xf))
1614
            BADF("Destination ID does not match SSID\n");
1615
        s->sdid = val & 0xf;
1616
        break;
1617
    case 0x07: /* GPREG0 */
1618
        break;
1619
    case 0x08: /* SFBR */
1620
        /* The CPU is not allowed to write to this register.  However the
1621
           SCRIPTS register move instructions are.  */
1622
        s->sfbr = val;
1623
        break;
1624
    case 0x0a: case 0x0b:
1625
        /* Openserver writes to these readonly registers on startup */
1626
        return;
1627
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1628
        /* Linux writes to these readonly registers on startup.  */
1629
        return;
1630
    CASE_SET_REG32(dsa, 0x10)
1631
    case 0x14: /* ISTAT0 */
1632
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1633
        if (val & LSI_ISTAT0_ABRT) {
1634
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1635
        }
1636
        if (val & LSI_ISTAT0_INTF) {
1637
            s->istat0 &= ~LSI_ISTAT0_INTF;
1638
            lsi_update_irq(s);
1639
        }
1640
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1641
            DPRINTF("Woken by SIGP\n");
1642
            s->waiting = 0;
1643
            s->dsp = s->dnad;
1644
            lsi_execute_script(s);
1645
        }
1646
        if (val & LSI_ISTAT0_SRST) {
1647
            lsi_soft_reset(s);
1648
        }
1649
        break;
1650
    case 0x16: /* MBOX0 */
1651
        s->mbox0 = val;
1652
        break;
1653
    case 0x17: /* MBOX1 */
1654
        s->mbox1 = val;
1655
        break;
1656
    case 0x1a: /* CTEST2 */
1657
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1658
        break;
1659
    case 0x1b: /* CTEST3 */
1660
        s->ctest3 = val & 0x0f;
1661
        break;
1662
    CASE_SET_REG32(temp, 0x1c)
1663
    case 0x21: /* CTEST4 */
1664
        if (val & 7) {
1665
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1666
        }
1667
        s->ctest4 = val;
1668
        break;
1669
    case 0x22: /* CTEST5 */
1670
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1671
            BADF("CTEST5 DMA increment not implemented\n");
1672
        }
1673
        s->ctest5 = val;
1674
        break;
1675
    CASE_SET_REG24(dbc, 0x24)
1676
    CASE_SET_REG32(dnad, 0x28)
1677
    case 0x2c: /* DSP[0:7] */
1678
        s->dsp &= 0xffffff00;
1679
        s->dsp |= val;
1680
        break;
1681
    case 0x2d: /* DSP[8:15] */
1682
        s->dsp &= 0xffff00ff;
1683
        s->dsp |= val << 8;
1684
        break;
1685
    case 0x2e: /* DSP[16:23] */
1686
        s->dsp &= 0xff00ffff;
1687
        s->dsp |= val << 16;
1688
        break;
1689
    case 0x2f: /* DSP[24:31] */
1690
        s->dsp &= 0x00ffffff;
1691
        s->dsp |= val << 24;
1692
        if ((s->dmode & LSI_DMODE_MAN) == 0
1693
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1694
            lsi_execute_script(s);
1695
        break;
1696
    CASE_SET_REG32(dsps, 0x30)
1697
    CASE_SET_REG32(scratch[0], 0x34)
1698
    case 0x38: /* DMODE */
1699
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1700
            BADF("IO mappings not implemented\n");
1701
        }
1702
        s->dmode = val;
1703
        break;
1704
    case 0x39: /* DIEN */
1705
        s->dien = val;
1706
        lsi_update_irq(s);
1707
        break;
1708
    case 0x3a: /* SBR */
1709
        s->sbr = val;
1710
        break;
1711
    case 0x3b: /* DCNTL */
1712
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1713
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1714
            lsi_execute_script(s);
1715
        break;
1716
    case 0x40: /* SIEN0 */
1717
        s->sien0 = val;
1718
        lsi_update_irq(s);
1719
        break;
1720
    case 0x41: /* SIEN1 */
1721
        s->sien1 = val;
1722
        lsi_update_irq(s);
1723
        break;
1724
    case 0x47: /* GPCNTL0 */
1725
        break;
1726
    case 0x48: /* STIME0 */
1727
        s->stime0 = val;
1728
        break;
1729
    case 0x49: /* STIME1 */
1730
        if (val & 0xf) {
1731
            DPRINTF("General purpose timer not implemented\n");
1732
            /* ??? Raising the interrupt immediately seems to be sufficient
1733
               to keep the FreeBSD driver happy.  */
1734
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1735
        }
1736
        break;
1737
    case 0x4a: /* RESPID0 */
1738
        s->respid0 = val;
1739
        break;
1740
    case 0x4b: /* RESPID1 */
1741
        s->respid1 = val;
1742
        break;
1743
    case 0x4d: /* STEST1 */
1744
        s->stest1 = val;
1745
        break;
1746
    case 0x4e: /* STEST2 */
1747
        if (val & 1) {
1748
            BADF("Low level mode not implemented\n");
1749
        }
1750
        s->stest2 = val;
1751
        break;
1752
    case 0x4f: /* STEST3 */
1753
        if (val & 0x41) {
1754
            BADF("SCSI FIFO test mode not implemented\n");
1755
        }
1756
        s->stest3 = val;
1757
        break;
1758
    case 0x56: /* CCNTL0 */
1759
        s->ccntl0 = val;
1760
        break;
1761
    case 0x57: /* CCNTL1 */
1762
        s->ccntl1 = val;
1763
        break;
1764
    CASE_SET_REG32(mmrs, 0xa0)
1765
    CASE_SET_REG32(mmws, 0xa4)
1766
    CASE_SET_REG32(sfs, 0xa8)
1767
    CASE_SET_REG32(drs, 0xac)
1768
    CASE_SET_REG32(sbms, 0xb0)
1769
    CASE_SET_REG32(dbms, 0xb4)
1770
    CASE_SET_REG32(dnad64, 0xb8)
1771
    CASE_SET_REG32(pmjad1, 0xc0)
1772
    CASE_SET_REG32(pmjad2, 0xc4)
1773
    CASE_SET_REG32(rbc, 0xc8)
1774
    CASE_SET_REG32(ua, 0xcc)
1775
    CASE_SET_REG32(ia, 0xd4)
1776
    CASE_SET_REG32(sbc, 0xd8)
1777
    CASE_SET_REG32(csbc, 0xdc)
1778
    default:
1779
        if (offset >= 0x5c && offset < 0xa0) {
1780
            int n;
1781
            int shift;
1782
            n = (offset - 0x58) >> 2;
1783
            shift = (offset & 3) * 8;
1784
            s->scratch[n] &= ~(0xff << shift);
1785
            s->scratch[n] |= (val & 0xff) << shift;
1786
        } else {
1787
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1788
        }
1789
    }
1790
#undef CASE_SET_REG24
1791
#undef CASE_SET_REG32
1792
}
1793

    
1794
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1795
{
1796
    LSIState *s = opaque;
1797

    
1798
    lsi_reg_writeb(s, addr & 0xff, val);
1799
}
1800

    
1801
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1802
{
1803
    LSIState *s = opaque;
1804

    
1805
    addr &= 0xff;
1806
    lsi_reg_writeb(s, addr, val & 0xff);
1807
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1808
}
1809

    
1810
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1811
{
1812
    LSIState *s = opaque;
1813

    
1814
    addr &= 0xff;
1815
    lsi_reg_writeb(s, addr, val & 0xff);
1816
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1817
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1818
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1819
}
1820

    
1821
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1822
{
1823
    LSIState *s = opaque;
1824

    
1825
    return lsi_reg_readb(s, addr & 0xff);
1826
}
1827

    
1828
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1829
{
1830
    LSIState *s = opaque;
1831
    uint32_t val;
1832

    
1833
    addr &= 0xff;
1834
    val = lsi_reg_readb(s, addr);
1835
    val |= lsi_reg_readb(s, addr + 1) << 8;
1836
    return val;
1837
}
1838

    
1839
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1840
{
1841
    LSIState *s = opaque;
1842
    uint32_t val;
1843
    addr &= 0xff;
1844
    val = lsi_reg_readb(s, addr);
1845
    val |= lsi_reg_readb(s, addr + 1) << 8;
1846
    val |= lsi_reg_readb(s, addr + 2) << 16;
1847
    val |= lsi_reg_readb(s, addr + 3) << 24;
1848
    return val;
1849
}
1850

    
1851
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1852
    lsi_mmio_readb,
1853
    lsi_mmio_readw,
1854
    lsi_mmio_readl,
1855
};
1856

    
1857
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1858
    lsi_mmio_writeb,
1859
    lsi_mmio_writew,
1860
    lsi_mmio_writel,
1861
};
1862

    
1863
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1864
{
1865
    LSIState *s = opaque;
1866
    uint32_t newval;
1867
    int shift;
1868

    
1869
    addr &= 0x1fff;
1870
    newval = s->script_ram[addr >> 2];
1871
    shift = (addr & 3) * 8;
1872
    newval &= ~(0xff << shift);
1873
    newval |= val << shift;
1874
    s->script_ram[addr >> 2] = newval;
1875
}
1876

    
1877
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1878
{
1879
    LSIState *s = opaque;
1880
    uint32_t newval;
1881

    
1882
    addr &= 0x1fff;
1883
    newval = s->script_ram[addr >> 2];
1884
    if (addr & 2) {
1885
        newval = (newval & 0xffff) | (val << 16);
1886
    } else {
1887
        newval = (newval & 0xffff0000) | val;
1888
    }
1889
    s->script_ram[addr >> 2] = newval;
1890
}
1891

    
1892

    
1893
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1894
{
1895
    LSIState *s = opaque;
1896

    
1897
    addr &= 0x1fff;
1898
    s->script_ram[addr >> 2] = val;
1899
}
1900

    
1901
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1902
{
1903
    LSIState *s = opaque;
1904
    uint32_t val;
1905

    
1906
    addr &= 0x1fff;
1907
    val = s->script_ram[addr >> 2];
1908
    val >>= (addr & 3) * 8;
1909
    return val & 0xff;
1910
}
1911

    
1912
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1913
{
1914
    LSIState *s = opaque;
1915
    uint32_t val;
1916

    
1917
    addr &= 0x1fff;
1918
    val = s->script_ram[addr >> 2];
1919
    if (addr & 2)
1920
        val >>= 16;
1921
    return le16_to_cpu(val);
1922
}
1923

    
1924
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1925
{
1926
    LSIState *s = opaque;
1927

    
1928
    addr &= 0x1fff;
1929
    return le32_to_cpu(s->script_ram[addr >> 2]);
1930
}
1931

    
1932
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1933
    lsi_ram_readb,
1934
    lsi_ram_readw,
1935
    lsi_ram_readl,
1936
};
1937

    
1938
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1939
    lsi_ram_writeb,
1940
    lsi_ram_writew,
1941
    lsi_ram_writel,
1942
};
1943

    
1944
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1945
{
1946
    LSIState *s = opaque;
1947
    return lsi_reg_readb(s, addr & 0xff);
1948
}
1949

    
1950
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1951
{
1952
    LSIState *s = opaque;
1953
    uint32_t val;
1954
    addr &= 0xff;
1955
    val = lsi_reg_readb(s, addr);
1956
    val |= lsi_reg_readb(s, addr + 1) << 8;
1957
    return val;
1958
}
1959

    
1960
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1961
{
1962
    LSIState *s = opaque;
1963
    uint32_t val;
1964
    addr &= 0xff;
1965
    val = lsi_reg_readb(s, addr);
1966
    val |= lsi_reg_readb(s, addr + 1) << 8;
1967
    val |= lsi_reg_readb(s, addr + 2) << 16;
1968
    val |= lsi_reg_readb(s, addr + 3) << 24;
1969
    return val;
1970
}
1971

    
1972
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1973
{
1974
    LSIState *s = opaque;
1975
    lsi_reg_writeb(s, addr & 0xff, val);
1976
}
1977

    
1978
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1979
{
1980
    LSIState *s = opaque;
1981
    addr &= 0xff;
1982
    lsi_reg_writeb(s, addr, val & 0xff);
1983
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1984
}
1985

    
1986
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1987
{
1988
    LSIState *s = opaque;
1989
    addr &= 0xff;
1990
    lsi_reg_writeb(s, addr, val & 0xff);
1991
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1992
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1993
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1994
}
1995

    
1996
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1997
                           pcibus_t addr, pcibus_t size, int type)
1998
{
1999
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2000

    
2001
    DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2002

    
2003
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2004
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2005
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2006
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2007
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2008
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2009
}
2010

    
2011
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2012
                            pcibus_t addr, pcibus_t size, int type)
2013
{
2014
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2015

    
2016
    DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2017
    s->script_ram_base = addr;
2018
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2019
}
2020

    
2021
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2022
                             pcibus_t addr, pcibus_t size, int type)
2023
{
2024
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2025

    
2026
    DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2027
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2028
}
2029

    
2030
static void lsi_scsi_reset(DeviceState *dev)
2031
{
2032
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2033

    
2034
    lsi_soft_reset(s);
2035
}
2036

    
2037
static void lsi_pre_save(void *opaque)
2038
{
2039
    LSIState *s = opaque;
2040

    
2041
    if (s->current) {
2042
        assert(s->current->dma_buf == NULL);
2043
        assert(s->current->dma_len == 0);
2044
    }
2045
    assert(QTAILQ_EMPTY(&s->queue));
2046
}
2047

    
2048
static const VMStateDescription vmstate_lsi_scsi = {
2049
    .name = "lsiscsi",
2050
    .version_id = 0,
2051
    .minimum_version_id = 0,
2052
    .minimum_version_id_old = 0,
2053
    .pre_save = lsi_pre_save,
2054
    .fields      = (VMStateField []) {
2055
        VMSTATE_PCI_DEVICE(dev, LSIState),
2056

    
2057
        VMSTATE_INT32(carry, LSIState),
2058
        VMSTATE_INT32(sense, LSIState),
2059
        VMSTATE_INT32(msg_action, LSIState),
2060
        VMSTATE_INT32(msg_len, LSIState),
2061
        VMSTATE_BUFFER(msg, LSIState),
2062
        VMSTATE_INT32(waiting, LSIState),
2063

    
2064
        VMSTATE_UINT32(dsa, LSIState),
2065
        VMSTATE_UINT32(temp, LSIState),
2066
        VMSTATE_UINT32(dnad, LSIState),
2067
        VMSTATE_UINT32(dbc, LSIState),
2068
        VMSTATE_UINT8(istat0, LSIState),
2069
        VMSTATE_UINT8(istat1, LSIState),
2070
        VMSTATE_UINT8(dcmd, LSIState),
2071
        VMSTATE_UINT8(dstat, LSIState),
2072
        VMSTATE_UINT8(dien, LSIState),
2073
        VMSTATE_UINT8(sist0, LSIState),
2074
        VMSTATE_UINT8(sist1, LSIState),
2075
        VMSTATE_UINT8(sien0, LSIState),
2076
        VMSTATE_UINT8(sien1, LSIState),
2077
        VMSTATE_UINT8(mbox0, LSIState),
2078
        VMSTATE_UINT8(mbox1, LSIState),
2079
        VMSTATE_UINT8(dfifo, LSIState),
2080
        VMSTATE_UINT8(ctest2, LSIState),
2081
        VMSTATE_UINT8(ctest3, LSIState),
2082
        VMSTATE_UINT8(ctest4, LSIState),
2083
        VMSTATE_UINT8(ctest5, LSIState),
2084
        VMSTATE_UINT8(ccntl0, LSIState),
2085
        VMSTATE_UINT8(ccntl1, LSIState),
2086
        VMSTATE_UINT32(dsp, LSIState),
2087
        VMSTATE_UINT32(dsps, LSIState),
2088
        VMSTATE_UINT8(dmode, LSIState),
2089
        VMSTATE_UINT8(dcntl, LSIState),
2090
        VMSTATE_UINT8(scntl0, LSIState),
2091
        VMSTATE_UINT8(scntl1, LSIState),
2092
        VMSTATE_UINT8(scntl2, LSIState),
2093
        VMSTATE_UINT8(scntl3, LSIState),
2094
        VMSTATE_UINT8(sstat0, LSIState),
2095
        VMSTATE_UINT8(sstat1, LSIState),
2096
        VMSTATE_UINT8(scid, LSIState),
2097
        VMSTATE_UINT8(sxfer, LSIState),
2098
        VMSTATE_UINT8(socl, LSIState),
2099
        VMSTATE_UINT8(sdid, LSIState),
2100
        VMSTATE_UINT8(ssid, LSIState),
2101
        VMSTATE_UINT8(sfbr, LSIState),
2102
        VMSTATE_UINT8(stest1, LSIState),
2103
        VMSTATE_UINT8(stest2, LSIState),
2104
        VMSTATE_UINT8(stest3, LSIState),
2105
        VMSTATE_UINT8(sidl, LSIState),
2106
        VMSTATE_UINT8(stime0, LSIState),
2107
        VMSTATE_UINT8(respid0, LSIState),
2108
        VMSTATE_UINT8(respid1, LSIState),
2109
        VMSTATE_UINT32(mmrs, LSIState),
2110
        VMSTATE_UINT32(mmws, LSIState),
2111
        VMSTATE_UINT32(sfs, LSIState),
2112
        VMSTATE_UINT32(drs, LSIState),
2113
        VMSTATE_UINT32(sbms, LSIState),
2114
        VMSTATE_UINT32(dbms, LSIState),
2115
        VMSTATE_UINT32(dnad64, LSIState),
2116
        VMSTATE_UINT32(pmjad1, LSIState),
2117
        VMSTATE_UINT32(pmjad2, LSIState),
2118
        VMSTATE_UINT32(rbc, LSIState),
2119
        VMSTATE_UINT32(ua, LSIState),
2120
        VMSTATE_UINT32(ia, LSIState),
2121
        VMSTATE_UINT32(sbc, LSIState),
2122
        VMSTATE_UINT32(csbc, LSIState),
2123
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2124
        VMSTATE_UINT8(sbr, LSIState),
2125

    
2126
        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2127
        VMSTATE_END_OF_LIST()
2128
    }
2129
};
2130

    
2131
static int lsi_scsi_uninit(PCIDevice *d)
2132
{
2133
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2134

    
2135
    cpu_unregister_io_memory(s->mmio_io_addr);
2136
    cpu_unregister_io_memory(s->ram_io_addr);
2137

    
2138
    return 0;
2139
}
2140

    
2141
static int lsi_scsi_init(PCIDevice *dev)
2142
{
2143
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2144
    uint8_t *pci_conf;
2145

    
2146
    pci_conf = s->dev.config;
2147

    
2148
    /* PCI Vendor ID (word) */
2149
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2150
    /* PCI device ID (word) */
2151
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2152
    /* PCI base class code */
2153
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2154
    /* PCI subsystem ID */
2155
    pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2156
    pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2157
    /* PCI latency timer = 255 */
2158
    pci_conf[PCI_LATENCY_TIMER] = 0xff;
2159
    /* TODO: RST# value should be 0 */
2160
    /* Interrupt pin 1 */
2161
    pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2162

    
2163
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2164
                                             lsi_mmio_writefn, s);
2165
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2166
                                            lsi_ram_writefn, s);
2167

    
2168
    /* TODO: use dev and get rid of cast below */
2169
    pci_register_bar((struct PCIDevice *)s, 0, 256,
2170
                           PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2171
    pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2172
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2173
    pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2174
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2175
    QTAILQ_INIT(&s->queue);
2176

    
2177
    scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2178
    if (!dev->qdev.hotplugged) {
2179
        return scsi_bus_legacy_handle_cmdline(&s->bus);
2180
    }
2181
    return 0;
2182
}
2183

    
2184
static PCIDeviceInfo lsi_info = {
2185
    .qdev.name  = "lsi53c895a",
2186
    .qdev.alias = "lsi",
2187
    .qdev.size  = sizeof(LSIState),
2188
    .qdev.reset = lsi_scsi_reset,
2189
    .qdev.vmsd  = &vmstate_lsi_scsi,
2190
    .init       = lsi_scsi_init,
2191
    .exit       = lsi_scsi_uninit,
2192
};
2193

    
2194
static void lsi53c895a_register_devices(void)
2195
{
2196
    pci_qdev_register(&lsi_info);
2197
}
2198

    
2199
device_init(lsi53c895a_register_devices);