Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ fbd97532

History | View | Annotate | Download (63.9 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserved or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c0
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
#define ITD_BUFPTR_MULT_SH       0
202
} EHCIitd;
203

    
204
/*  EHCI spec version 1.0 Section 3.4
205
 */
206
typedef struct EHCIsitd {
207
    uint32_t next;                  // Standard next link pointer
208
    uint32_t epchar;
209
#define SITD_EPCHAR_IO              (1 << 31)
210
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
211
#define SITD_EPCHAR_PORTNUM_SH      24
212
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
213
#define SITD_EPCHAR_HUBADDR_SH      16
214
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
215
#define SITD_EPCHAR_EPNUM_SH        8
216
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
217

    
218
    uint32_t uframe;
219
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
220
#define SITD_UFRAME_CMASK_SH        8
221
#define SITD_UFRAME_SMASK_MASK      0x000000ff
222

    
223
    uint32_t results;
224
#define SITD_RESULTS_IOC              (1 << 31)
225
#define SITD_RESULTS_PGSEL            (1 << 30)
226
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
227
#define SITD_RESULTS_TYBYTES_SH       16
228
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
229
#define SITD_RESULTS_CPROGMASK_SH     8
230
#define SITD_RESULTS_ACTIVE           (1 << 7)
231
#define SITD_RESULTS_ERR              (1 << 6)
232
#define SITD_RESULTS_DBERR            (1 << 5)
233
#define SITD_RESULTS_BABBLE           (1 << 4)
234
#define SITD_RESULTS_XACTERR          (1 << 3)
235
#define SITD_RESULTS_MISSEDUF         (1 << 2)
236
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
237

    
238
    uint32_t bufptr[2];
239
#define SITD_BUFPTR_MASK              0xfffff000
240
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
241
#define SITD_BUFPTR_TPOS_MASK         0x00000018
242
#define SITD_BUFPTR_TPOS_SH           3
243
#define SITD_BUFPTR_TCNT_MASK         0x00000007
244

    
245
    uint32_t backptr;                 // Standard next link pointer
246
} EHCIsitd;
247

    
248
/*  EHCI spec version 1.0 Section 3.5
249
 */
250
typedef struct EHCIqtd {
251
    uint32_t next;                    // Standard next link pointer
252
    uint32_t altnext;                 // Standard next link pointer
253
    uint32_t token;
254
#define QTD_TOKEN_DTOGGLE             (1 << 31)
255
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
256
#define QTD_TOKEN_TBYTES_SH           16
257
#define QTD_TOKEN_IOC                 (1 << 15)
258
#define QTD_TOKEN_CPAGE_MASK          0x00007000
259
#define QTD_TOKEN_CPAGE_SH            12
260
#define QTD_TOKEN_CERR_MASK           0x00000c00
261
#define QTD_TOKEN_CERR_SH             10
262
#define QTD_TOKEN_PID_MASK            0x00000300
263
#define QTD_TOKEN_PID_SH              8
264
#define QTD_TOKEN_ACTIVE              (1 << 7)
265
#define QTD_TOKEN_HALT                (1 << 6)
266
#define QTD_TOKEN_DBERR               (1 << 5)
267
#define QTD_TOKEN_BABBLE              (1 << 4)
268
#define QTD_TOKEN_XACTERR             (1 << 3)
269
#define QTD_TOKEN_MISSEDUF            (1 << 2)
270
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
271
#define QTD_TOKEN_PING                (1 << 0)
272

    
273
    uint32_t bufptr[5];               // Standard buffer pointer
274
#define QTD_BUFPTR_MASK               0xfffff000
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen;
352
    uint64_t ts;
353

    
354
    /* cached data from guest - needs to be flushed
355
     * when guest removes an entry (doorbell, handshake sequence)
356
     */
357
    EHCIqh qh;             // copy of current QH (being worked on)
358
    uint32_t qhaddr;       // address QH read from
359
    EHCIqtd qtd;           // copy of current QTD (being worked on)
360
    uint32_t qtdaddr;      // address QTD read from
361

    
362
    USBPacket packet;
363
    uint8_t buffer[BUFF_SIZE];
364
    int pid;
365
    uint32_t tbytes;
366
    enum async_state async;
367
    int usb_status;
368
};
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    target_phys_addr_t mem_base;
375
    int mem;
376

    
377
    /* properties */
378
    uint32_t freq;
379
    uint32_t maxframes;
380

    
381
    /*
382
     *  EHCI spec version 1.0 Section 2.3
383
     *  Host Controller Operational Registers
384
     */
385
    union {
386
        uint8_t mmio[MMIO_SIZE];
387
        struct {
388
            uint8_t cap[OPREGBASE];
389
            uint32_t usbcmd;
390
            uint32_t usbsts;
391
            uint32_t usbintr;
392
            uint32_t frindex;
393
            uint32_t ctrldssegment;
394
            uint32_t periodiclistbase;
395
            uint32_t asynclistaddr;
396
            uint32_t notused[9];
397
            uint32_t configflag;
398
            uint32_t portsc[NB_PORTS];
399
        };
400
    };
401

    
402
    /*
403
     *  Internal states, shadow registers, etc
404
     */
405
    uint32_t sofv;
406
    QEMUTimer *frame_timer;
407
    int attach_poll_counter;
408
    int astate;                        // Current state in asynchronous schedule
409
    int pstate;                        // Current state in periodic schedule
410
    USBPort ports[NB_PORTS];
411
    uint32_t usbsts_pending;
412
    QTAILQ_HEAD(, EHCIQueue) queues;
413

    
414
    uint32_t a_fetch_addr;   // which address to look at next
415
    uint32_t p_fetch_addr;   // which address to look at next
416

    
417
    USBPacket ipacket;
418
    uint8_t ibuffer[BUFF_SIZE];
419
    int isoch_pause;
420

    
421
    uint64_t last_run_ns;
422
};
423

    
424
#define SET_LAST_RUN_CLOCK(s) \
425
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426

    
427
/* nifty macros from Arnon's EHCI version  */
428
#define get_field(data, field) \
429
    (((data) & field##_MASK) >> field##_SH)
430

    
431
#define set_field(data, newval, field) do { \
432
    uint32_t val = *data; \
433
    val &= ~ field##_MASK; \
434
    val |= ((newval) << field##_SH) & field##_MASK; \
435
    *data = val; \
436
    } while(0)
437

    
438
static const char *ehci_state_names[] = {
439
    [ EST_INACTIVE ]     = "INACTIVE",
440
    [ EST_ACTIVE ]       = "ACTIVE",
441
    [ EST_EXECUTING ]    = "EXECUTING",
442
    [ EST_SLEEPING ]     = "SLEEPING",
443
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
444
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
445
    [ EST_FETCHQH ]      = "FETCH QH",
446
    [ EST_FETCHITD ]     = "FETCH ITD",
447
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
448
    [ EST_FETCHQTD ]     = "FETCH QTD",
449
    [ EST_EXECUTE ]      = "EXECUTE",
450
    [ EST_WRITEBACK ]    = "WRITEBACK",
451
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
452
};
453

    
454
static const char *ehci_mmio_names[] = {
455
    [ CAPLENGTH ]        = "CAPLENGTH",
456
    [ HCIVERSION ]       = "HCIVERSION",
457
    [ HCSPARAMS ]        = "HCSPARAMS",
458
    [ HCCPARAMS ]        = "HCCPARAMS",
459
    [ USBCMD ]           = "USBCMD",
460
    [ USBSTS ]           = "USBSTS",
461
    [ USBINTR ]          = "USBINTR",
462
    [ FRINDEX ]          = "FRINDEX",
463
    [ PERIODICLISTBASE ] = "P-LIST BASE",
464
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
465
    [ PORTSC_BEGIN ]     = "PORTSC #0",
466
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
467
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
468
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
469
    [ CONFIGFLAG ]       = "CONFIGFLAG",
470
};
471

    
472
static const char *nr2str(const char **n, size_t len, uint32_t nr)
473
{
474
    if (nr < len && n[nr] != NULL) {
475
        return n[nr];
476
    } else {
477
        return "unknown";
478
    }
479
}
480

    
481
static const char *state2str(uint32_t state)
482
{
483
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
484
}
485

    
486
static const char *addr2str(target_phys_addr_t addr)
487
{
488
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
489
}
490

    
491
static void ehci_trace_usbsts(uint32_t mask, int state)
492
{
493
    /* interrupts */
494
    if (mask & USBSTS_INT) {
495
        trace_usb_ehci_usbsts("INT", state);
496
    }
497
    if (mask & USBSTS_ERRINT) {
498
        trace_usb_ehci_usbsts("ERRINT", state);
499
    }
500
    if (mask & USBSTS_PCD) {
501
        trace_usb_ehci_usbsts("PCD", state);
502
    }
503
    if (mask & USBSTS_FLR) {
504
        trace_usb_ehci_usbsts("FLR", state);
505
    }
506
    if (mask & USBSTS_HSE) {
507
        trace_usb_ehci_usbsts("HSE", state);
508
    }
509
    if (mask & USBSTS_IAA) {
510
        trace_usb_ehci_usbsts("IAA", state);
511
    }
512

    
513
    /* status */
514
    if (mask & USBSTS_HALT) {
515
        trace_usb_ehci_usbsts("HALT", state);
516
    }
517
    if (mask & USBSTS_REC) {
518
        trace_usb_ehci_usbsts("REC", state);
519
    }
520
    if (mask & USBSTS_PSS) {
521
        trace_usb_ehci_usbsts("PSS", state);
522
    }
523
    if (mask & USBSTS_ASS) {
524
        trace_usb_ehci_usbsts("ASS", state);
525
    }
526
}
527

    
528
static inline void ehci_set_usbsts(EHCIState *s, int mask)
529
{
530
    if ((s->usbsts & mask) == mask) {
531
        return;
532
    }
533
    ehci_trace_usbsts(mask, 1);
534
    s->usbsts |= mask;
535
}
536

    
537
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
538
{
539
    if ((s->usbsts & mask) == 0) {
540
        return;
541
    }
542
    ehci_trace_usbsts(mask, 0);
543
    s->usbsts &= ~mask;
544
}
545

    
546
static inline void ehci_set_interrupt(EHCIState *s, int intr)
547
{
548
    int level = 0;
549

    
550
    // TODO honour interrupt threshold requests
551

    
552
    ehci_set_usbsts(s, intr);
553

    
554
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
555
        level = 1;
556
    }
557

    
558
    qemu_set_irq(s->irq, level);
559
}
560

    
561
static inline void ehci_record_interrupt(EHCIState *s, int intr)
562
{
563
    s->usbsts_pending |= intr;
564
}
565

    
566
static inline void ehci_commit_interrupt(EHCIState *s)
567
{
568
    if (!s->usbsts_pending) {
569
        return;
570
    }
571
    ehci_set_interrupt(s, s->usbsts_pending);
572
    s->usbsts_pending = 0;
573
}
574

    
575
static void ehci_set_state(EHCIState *s, int async, int state)
576
{
577
    if (async) {
578
        trace_usb_ehci_state("async", state2str(state));
579
        s->astate = state;
580
    } else {
581
        trace_usb_ehci_state("periodic", state2str(state));
582
        s->pstate = state;
583
    }
584
}
585

    
586
static int ehci_get_state(EHCIState *s, int async)
587
{
588
    return async ? s->astate : s->pstate;
589
}
590

    
591
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
592
{
593
    if (async) {
594
        s->a_fetch_addr = addr;
595
    } else {
596
        s->p_fetch_addr = addr;
597
    }
598
}
599

    
600
static int ehci_get_fetch_addr(EHCIState *s, int async)
601
{
602
    return async ? s->a_fetch_addr : s->p_fetch_addr;
603
}
604

    
605
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
606
{
607
    /* need three here due to argument count limits */
608
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
609
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
610
    trace_usb_ehci_qh_fields(addr,
611
                             get_field(qh->epchar, QH_EPCHAR_RL),
612
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
613
                             get_field(qh->epchar, QH_EPCHAR_EPS),
614
                             get_field(qh->epchar, QH_EPCHAR_EP),
615
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
616
    trace_usb_ehci_qh_bits(addr,
617
                           (bool)(qh->epchar & QH_EPCHAR_C),
618
                           (bool)(qh->epchar & QH_EPCHAR_H),
619
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
620
                           (bool)(qh->epchar & QH_EPCHAR_I));
621
}
622

    
623
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
624
{
625
    /* need three here due to argument count limits */
626
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
627
    trace_usb_ehci_qtd_fields(addr,
628
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
629
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
630
                              get_field(qtd->token, QTD_TOKEN_CERR),
631
                              get_field(qtd->token, QTD_TOKEN_PID));
632
    trace_usb_ehci_qtd_bits(addr,
633
                            (bool)(qtd->token & QTD_TOKEN_IOC),
634
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
635
                            (bool)(qtd->token & QTD_TOKEN_HALT),
636
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
637
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
638
}
639

    
640
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
641
{
642
    trace_usb_ehci_itd(addr, itd->next,
643
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
644
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
645
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
646
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
647
}
648

    
649
/* queue management */
650

    
651
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
652
{
653
    EHCIQueue *q;
654

    
655
    q = qemu_mallocz(sizeof(*q));
656
    q->ehci = ehci;
657
    q->async_schedule = async;
658
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
659
    trace_usb_ehci_queue_action(q, "alloc");
660
    return q;
661
}
662

    
663
static void ehci_free_queue(EHCIQueue *q)
664
{
665
    trace_usb_ehci_queue_action(q, "free");
666
    if (q->async == EHCI_ASYNC_INFLIGHT) {
667
        usb_cancel_packet(&q->packet);
668
    }
669
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
670
    qemu_free(q);
671
}
672

    
673
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
674
{
675
    EHCIQueue *q;
676

    
677
    QTAILQ_FOREACH(q, &ehci->queues, next) {
678
        if (addr == q->qhaddr) {
679
            return q;
680
        }
681
    }
682
    return NULL;
683
}
684

    
685
static void ehci_queues_rip_unused(EHCIState *ehci)
686
{
687
    EHCIQueue *q, *tmp;
688

    
689
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
690
        if (q->seen) {
691
            q->seen = 0;
692
            q->ts = ehci->last_run_ns;
693
            continue;
694
        }
695
        if (ehci->last_run_ns < q->ts + 250000000) {
696
            /* allow 0.25 sec idle */
697
            continue;
698
        }
699
        ehci_free_queue(q);
700
    }
701
}
702

    
703
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
704
{
705
    EHCIQueue *q, *tmp;
706

    
707
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
708
        if (q->packet.owner != dev) {
709
            continue;
710
        }
711
        ehci_free_queue(q);
712
    }
713
}
714

    
715
static void ehci_queues_rip_all(EHCIState *ehci)
716
{
717
    EHCIQueue *q, *tmp;
718

    
719
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
720
        ehci_free_queue(q);
721
    }
722
}
723

    
724
/* Attach or detach a device on root hub */
725

    
726
static void ehci_attach(USBPort *port)
727
{
728
    EHCIState *s = port->opaque;
729
    uint32_t *portsc = &s->portsc[port->index];
730

    
731
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
732

    
733
    *portsc |= PORTSC_CONNECT;
734
    *portsc |= PORTSC_CSC;
735

    
736
    /*
737
     *  If a high speed device is attached then we own this port(indicated
738
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
739
     *  and set an interrupt if enabled.
740
     */
741
    if ( !(*portsc & PORTSC_POWNER)) {
742
        ehci_set_interrupt(s, USBSTS_PCD);
743
    }
744
}
745

    
746
static void ehci_detach(USBPort *port)
747
{
748
    EHCIState *s = port->opaque;
749
    uint32_t *portsc = &s->portsc[port->index];
750

    
751
    trace_usb_ehci_port_detach(port->index);
752

    
753
    ehci_queues_rip_device(s, port->dev);
754

    
755
    *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
756
    *portsc |= PORTSC_CSC;
757

    
758
    /*
759
     *  If a high speed device is attached then we own this port(indicated
760
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
761
     *  and set an interrupt if enabled.
762
     */
763
    if ( !(*portsc & PORTSC_POWNER)) {
764
        ehci_set_interrupt(s, USBSTS_PCD);
765
    }
766
}
767

    
768
static void ehci_child_detach(USBPort *port, USBDevice *child)
769
{
770
    EHCIState *s = port->opaque;
771

    
772
    ehci_queues_rip_device(s, child);
773
}
774

    
775
/* 4.1 host controller initialization */
776
static void ehci_reset(void *opaque)
777
{
778
    EHCIState *s = opaque;
779
    int i;
780

    
781
    trace_usb_ehci_reset();
782

    
783
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
784

    
785
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
786
    s->usbsts = USBSTS_HALT;
787

    
788
    s->astate = EST_INACTIVE;
789
    s->pstate = EST_INACTIVE;
790
    s->isoch_pause = -1;
791
    s->attach_poll_counter = 0;
792

    
793
    for(i = 0; i < NB_PORTS; i++) {
794
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
795

    
796
        if (s->ports[i].dev) {
797
            usb_attach(&s->ports[i], s->ports[i].dev);
798
        }
799
    }
800
    ehci_queues_rip_all(s);
801
}
802

    
803
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
804
{
805
    EHCIState *s = ptr;
806
    uint32_t val;
807

    
808
    val = s->mmio[addr];
809

    
810
    return val;
811
}
812

    
813
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
814
{
815
    EHCIState *s = ptr;
816
    uint32_t val;
817

    
818
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
819

    
820
    return val;
821
}
822

    
823
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
824
{
825
    EHCIState *s = ptr;
826
    uint32_t val;
827

    
828
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
829
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
830

    
831
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
832
    return val;
833
}
834

    
835
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
836
{
837
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
838
    exit(1);
839
}
840

    
841
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
842
{
843
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
844
    exit(1);
845
}
846

    
847
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
848
{
849
    uint32_t *portsc = &s->portsc[port];
850
    USBDevice *dev = s->ports[port].dev;
851

    
852
    /* Clear rwc bits */
853
    *portsc &= ~(val & PORTSC_RWC_MASK);
854
    /* The guest may clear, but not set the PED bit */
855
    *portsc &= val | ~PORTSC_PED;
856
    val &= PORTSC_RO_MASK;
857

    
858
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
859
        trace_usb_ehci_port_reset(port, 1);
860
    }
861

    
862
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
863
        trace_usb_ehci_port_reset(port, 0);
864
        if (dev) {
865
            usb_attach(&s->ports[port], dev);
866
            usb_send_msg(dev, USB_MSG_RESET);
867
            *portsc &= ~PORTSC_CSC;
868
        }
869

    
870
        /*
871
         *  Table 2.16 Set the enable bit(and enable bit change) to indicate
872
         *  to SW that this port has a high speed device attached
873
         */
874
        if (dev && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
875
            val |= PORTSC_PED;
876
        }
877
    }
878

    
879
    *portsc &= ~PORTSC_RO_MASK;
880
    *portsc |= val;
881
}
882

    
883
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
884
{
885
    EHCIState *s = ptr;
886
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
887
    uint32_t old = *mmio;
888
    int i;
889

    
890
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
891

    
892
    /* Only aligned reads are allowed on OHCI */
893
    if (addr & 3) {
894
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
895
                TARGET_FMT_plx "\n", addr);
896
        return;
897
    }
898

    
899
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
900
        handle_port_status_write(s, (addr-PORTSC)/4, val);
901
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
902
        return;
903
    }
904

    
905
    if (addr < OPREGBASE) {
906
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
907
                TARGET_FMT_plx "\n", addr);
908
        return;
909
    }
910

    
911

    
912
    /* Do any register specific pre-write processing here.  */
913
    switch(addr) {
914
    case USBCMD:
915
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
916
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
917
            SET_LAST_RUN_CLOCK(s);
918
            ehci_clear_usbsts(s, USBSTS_HALT);
919
        }
920

    
921
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
922
            qemu_del_timer(s->frame_timer);
923
            // TODO - should finish out some stuff before setting halt
924
            ehci_set_usbsts(s, USBSTS_HALT);
925
        }
926

    
927
        if (val & USBCMD_HCRESET) {
928
            ehci_reset(s);
929
            val &= ~USBCMD_HCRESET;
930
        }
931

    
932
        /* not supporting dynamic frame list size at the moment */
933
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
934
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
935
                    val & USBCMD_FLS);
936
            val &= ~USBCMD_FLS;
937
        }
938
        break;
939

    
940
    case USBSTS:
941
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
942
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
943
        val = s->usbsts;
944
        ehci_set_interrupt(s, 0);
945
        break;
946

    
947
    case USBINTR:
948
        val &= USBINTR_MASK;
949
        break;
950

    
951
    case FRINDEX:
952
        s->sofv = val >> 3;
953
        break;
954

    
955
    case CONFIGFLAG:
956
        val &= 0x1;
957
        if (val) {
958
            for(i = 0; i < NB_PORTS; i++)
959
                s->portsc[i] &= ~PORTSC_POWNER;
960
        }
961
        break;
962

    
963
    case PERIODICLISTBASE:
964
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
965
            fprintf(stderr,
966
              "ehci: PERIODIC list base register set while periodic schedule\n"
967
              "      is enabled and HC is enabled\n");
968
        }
969
        break;
970

    
971
    case ASYNCLISTADDR:
972
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
973
            fprintf(stderr,
974
              "ehci: ASYNC list address register set while async schedule\n"
975
              "      is enabled and HC is enabled\n");
976
        }
977
        break;
978
    }
979

    
980
    *mmio = val;
981
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
982
}
983

    
984

    
985
// TODO : Put in common header file, duplication from usb-ohci.c
986

    
987
/* Get an array of dwords from main memory */
988
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
989
{
990
    int i;
991

    
992
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
993
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
994
        *buf = le32_to_cpu(*buf);
995
    }
996

    
997
    return 1;
998
}
999

    
1000
/* Put an array of dwords in to main memory */
1001
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1002
{
1003
    int i;
1004

    
1005
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1006
        uint32_t tmp = cpu_to_le32(*buf);
1007
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1008
    }
1009

    
1010
    return 1;
1011
}
1012

    
1013
// 4.10.2
1014

    
1015
static int ehci_qh_do_overlay(EHCIQueue *q)
1016
{
1017
    int i;
1018
    int dtoggle;
1019
    int ping;
1020
    int eps;
1021
    int reload;
1022

    
1023
    // remember values in fields to preserve in qh after overlay
1024

    
1025
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1026
    ping    = q->qh.token & QTD_TOKEN_PING;
1027

    
1028
    q->qh.current_qtd = q->qtdaddr;
1029
    q->qh.next_qtd    = q->qtd.next;
1030
    q->qh.altnext_qtd = q->qtd.altnext;
1031
    q->qh.token       = q->qtd.token;
1032

    
1033

    
1034
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1035
    if (eps == EHCI_QH_EPS_HIGH) {
1036
        q->qh.token &= ~QTD_TOKEN_PING;
1037
        q->qh.token |= ping;
1038
    }
1039

    
1040
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1041
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1042

    
1043
    for (i = 0; i < 5; i++) {
1044
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1045
    }
1046

    
1047
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1048
        // preserve QH DT bit
1049
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1050
        q->qh.token |= dtoggle;
1051
    }
1052

    
1053
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1054
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1055

    
1056
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1057

    
1058
    return 0;
1059
}
1060

    
1061
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1062
{
1063
    int bufpos = 0;
1064
    int cpage, offset;
1065
    uint32_t head;
1066
    uint32_t tail;
1067

    
1068

    
1069
    if (!bytes) {
1070
        return 0;
1071
    }
1072

    
1073
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1074
    if (cpage > 4) {
1075
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1076
        return USB_RET_PROCERR;
1077
    }
1078

    
1079
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1080

    
1081
    do {
1082
        /* start and end of this page */
1083
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1084
        tail = head + ~QTD_BUFPTR_MASK + 1;
1085
        /* add offset into page */
1086
        head |= offset;
1087

    
1088
        if (bytes <= (tail - head)) {
1089
            tail = head + bytes;
1090
        }
1091

    
1092
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1093
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1094

    
1095
        bufpos += (tail - head);
1096
        offset += (tail - head);
1097
        bytes -= (tail - head);
1098

    
1099
        if (bytes > 0) {
1100
            cpage++;
1101
            offset = 0;
1102
        }
1103
    } while (bytes > 0);
1104

    
1105
    /* save cpage */
1106
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1107

    
1108
    /* save offset into cpage */
1109
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1110
    q->qh.bufptr[0] |= offset;
1111

    
1112
    return 0;
1113
}
1114

    
1115
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1116
{
1117
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1118

    
1119
    trace_usb_ehci_queue_action(q, "wakeup");
1120
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1121
    q->async = EHCI_ASYNC_FINISHED;
1122
    q->usb_status = packet->len;
1123
}
1124

    
1125
static void ehci_execute_complete(EHCIQueue *q)
1126
{
1127
    int c_err, reload;
1128

    
1129
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1130
    q->async = EHCI_ASYNC_NONE;
1131

    
1132
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1133
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1134

    
1135
    if (q->usb_status < 0) {
1136
err:
1137
        /* TO-DO: put this is in a function that can be invoked below as well */
1138
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1139
        c_err--;
1140
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1141

    
1142
        switch(q->usb_status) {
1143
        case USB_RET_NODEV:
1144
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1145
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1146
            break;
1147
        case USB_RET_STALL:
1148
            q->qh.token |= QTD_TOKEN_HALT;
1149
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1150
            break;
1151
        case USB_RET_NAK:
1152
            /* 4.10.3 */
1153
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1154
            if ((q->pid == USB_TOKEN_IN) && reload) {
1155
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1156
                nakcnt--;
1157
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1158
            } else if (!reload) {
1159
                return;
1160
            }
1161
            break;
1162
        case USB_RET_BABBLE:
1163
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1164
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1165
            break;
1166
        default:
1167
            /* should not be triggerable */
1168
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1169
            assert(0);
1170
            break;
1171
        }
1172
    } else {
1173
        // DPRINTF("Short packet condition\n");
1174
        // TODO check 4.12 for splits
1175

    
1176
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1177
            q->usb_status = USB_RET_BABBLE;
1178
            goto err;
1179
        }
1180

    
1181
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1182
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1183
                q->usb_status = USB_RET_PROCERR;
1184
                return;
1185
            }
1186
            q->tbytes -= q->usb_status;
1187
        } else {
1188
            q->tbytes = 0;
1189
        }
1190

    
1191
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1192
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1193
    }
1194

    
1195
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1196
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1197

    
1198
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1199
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1200
    }
1201
}
1202

    
1203
// 4.10.3
1204

    
1205
static int ehci_execute(EHCIQueue *q)
1206
{
1207
    USBPort *port;
1208
    USBDevice *dev;
1209
    int ret;
1210
    int i;
1211
    int endp;
1212
    int devadr;
1213

    
1214
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1215
        fprintf(stderr, "Attempting to execute inactive QH\n");
1216
        return USB_RET_PROCERR;
1217
    }
1218

    
1219
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1220
    if (q->tbytes > BUFF_SIZE) {
1221
        fprintf(stderr, "Request for more bytes than allowed\n");
1222
        return USB_RET_PROCERR;
1223
    }
1224

    
1225
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1226
    switch(q->pid) {
1227
        case 0: q->pid = USB_TOKEN_OUT; break;
1228
        case 1: q->pid = USB_TOKEN_IN; break;
1229
        case 2: q->pid = USB_TOKEN_SETUP; break;
1230
        default: fprintf(stderr, "bad token\n"); break;
1231
    }
1232

    
1233
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1234
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1235
        return USB_RET_PROCERR;
1236
    }
1237

    
1238
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1239
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1240

    
1241
    ret = USB_RET_NODEV;
1242

    
1243
    // TO-DO: associating device with ehci port
1244
    for(i = 0; i < NB_PORTS; i++) {
1245
        port = &q->ehci->ports[i];
1246
        dev = port->dev;
1247

    
1248
        // TODO sometime we will also need to check if we are the port owner
1249

    
1250
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1251
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1252
                    i, q->ehci->portsc[i]);
1253
            continue;
1254
        }
1255

    
1256
        q->packet.pid = q->pid;
1257
        q->packet.devaddr = devadr;
1258
        q->packet.devep = endp;
1259
        q->packet.data = q->buffer;
1260
        q->packet.len = q->tbytes;
1261

    
1262
        ret = usb_handle_packet(dev, &q->packet);
1263

    
1264
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1265
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1266
                q->packet.len, q->tbytes, endp, ret);
1267

    
1268
        if (ret != USB_RET_NODEV) {
1269
            break;
1270
        }
1271
    }
1272

    
1273
    if (ret > BUFF_SIZE) {
1274
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1275
        return USB_RET_PROCERR;
1276
    }
1277

    
1278
    return ret;
1279
}
1280

    
1281
/*  4.7.2
1282
 */
1283

    
1284
static int ehci_process_itd(EHCIState *ehci,
1285
                            EHCIitd *itd)
1286
{
1287
    USBPort *port;
1288
    USBDevice *dev;
1289
    int ret;
1290
    uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1291
    uint32_t pg, off, ptr1, ptr2, max, mult;
1292

    
1293
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1294
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1295
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1296
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1297
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1298

    
1299
    for(i = 0; i < 8; i++) {
1300
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1301
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1302
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1303
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1304
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1305
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1306

    
1307
            if (len > max * mult) {
1308
                len = max * mult;
1309
            }
1310

    
1311
            if (len > BUFF_SIZE) {
1312
                return USB_RET_PROCERR;
1313
            }
1314

    
1315
            if (off + len > 4096) {
1316
                /* transfer crosses page border */
1317
                len2 = off + len - 4096;
1318
                len1 = len - len2;
1319
            } else {
1320
                len1 = len;
1321
                len2 = 0;
1322
            }
1323

    
1324
            if (!dir) {
1325
                pid = USB_TOKEN_OUT;
1326
                trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1327
                cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1328
                if (len2) {
1329
                    trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1330
                    cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1331
                }
1332
            } else {
1333
                pid = USB_TOKEN_IN;
1334
            }
1335

    
1336
            ret = USB_RET_NODEV;
1337

    
1338
            for (j = 0; j < NB_PORTS; j++) {
1339
                port = &ehci->ports[j];
1340
                dev = port->dev;
1341

    
1342
                // TODO sometime we will also need to check if we are the port owner
1343

    
1344
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1345
                    continue;
1346
                }
1347

    
1348
                ehci->ipacket.pid = pid;
1349
                ehci->ipacket.devaddr = devaddr;
1350
                ehci->ipacket.devep = endp;
1351
                ehci->ipacket.data = ehci->ibuffer;
1352
                ehci->ipacket.len = len;
1353

    
1354
                ret = usb_handle_packet(dev, &ehci->ipacket);
1355

    
1356
                if (ret != USB_RET_NODEV) {
1357
                    break;
1358
                }
1359
            }
1360

    
1361
#if 0
1362
            /*  In isoch, there is no facility to indicate a NAK so let's
1363
             *  instead just complete a zero-byte transaction.  Setting
1364
             *  DBERR seems too draconian.
1365
             */
1366

1367
            if (ret == USB_RET_NAK) {
1368
                if (ehci->isoch_pause > 0) {
1369
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1370
                    ehci->isoch_pause--;
1371
                    return 0;
1372
                } else if (ehci->isoch_pause == -1) {
1373
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1374
                    // Pause frindex for up to 50 msec waiting for data from
1375
                    // remote
1376
                    ehci->isoch_pause = 50;
1377
                    return 0;
1378
                } else {
1379
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1380
                    ret = 0;
1381
                }
1382
            } else {
1383
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1384
                ehci->isoch_pause = -1;
1385
            }
1386
#else
1387
            if (ret == USB_RET_NAK) {
1388
                ret = 0;
1389
            }
1390
#endif
1391

    
1392
            if (ret >= 0) {
1393
                if (!dir) {
1394
                    /* OUT */
1395
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1396
                } else {
1397
                    /* IN */
1398
                    if (len1 > ret) {
1399
                        len1 = ret;
1400
                    }
1401
                    if (len2 > ret - len1) {
1402
                        len2 = ret - len1;
1403
                    }
1404
                    if (len1) {
1405
                        trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1406
                        cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1407
                    }
1408
                    if (len2) {
1409
                        trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1410
                        cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1411
                    }
1412
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1413
                }
1414

    
1415
                if (itd->transact[i] & ITD_XACT_IOC) {
1416
                    ehci_record_interrupt(ehci, USBSTS_INT);
1417
                }
1418
            }
1419
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1420
        }
1421
    }
1422
    return 0;
1423
}
1424

    
1425
/*  This state is the entry point for asynchronous schedule
1426
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1427
 */
1428
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1429
{
1430
    EHCIqh qh;
1431
    int i = 0;
1432
    int again = 0;
1433
    uint32_t entry = ehci->asynclistaddr;
1434

    
1435
    /* set reclamation flag at start event (4.8.6) */
1436
    if (async) {
1437
        ehci_set_usbsts(ehci, USBSTS_REC);
1438
    }
1439

    
1440
    ehci_queues_rip_unused(ehci);
1441

    
1442
    /*  Find the head of the list (4.9.1.1) */
1443
    for(i = 0; i < MAX_QH; i++) {
1444
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1445
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1446

    
1447
        if (qh.epchar & QH_EPCHAR_H) {
1448
            if (async) {
1449
                entry |= (NLPTR_TYPE_QH << 1);
1450
            }
1451

    
1452
            ehci_set_fetch_addr(ehci, async, entry);
1453
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1454
            again = 1;
1455
            goto out;
1456
        }
1457

    
1458
        entry = qh.next;
1459
        if (entry == ehci->asynclistaddr) {
1460
            break;
1461
        }
1462
    }
1463

    
1464
    /* no head found for list. */
1465

    
1466
    ehci_set_state(ehci, async, EST_ACTIVE);
1467

    
1468
out:
1469
    return again;
1470
}
1471

    
1472

    
1473
/*  This state is the entry point for periodic schedule processing as
1474
 *  well as being a continuation state for async processing.
1475
 */
1476
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1477
{
1478
    int again = 0;
1479
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1480

    
1481
    if (entry < 0x1000) {
1482
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1483
        ehci_set_state(ehci, async, EST_ACTIVE);
1484
        goto out;
1485
    }
1486

    
1487
    /* section 4.8, only QH in async schedule */
1488
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1489
        fprintf(stderr, "non queue head request in async schedule\n");
1490
        return -1;
1491
    }
1492

    
1493
    switch (NLPTR_TYPE_GET(entry)) {
1494
    case NLPTR_TYPE_QH:
1495
        ehci_set_state(ehci, async, EST_FETCHQH);
1496
        again = 1;
1497
        break;
1498

    
1499
    case NLPTR_TYPE_ITD:
1500
        ehci_set_state(ehci, async, EST_FETCHITD);
1501
        again = 1;
1502
        break;
1503

    
1504
    default:
1505
        // TODO: handle siTD and FSTN types
1506
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1507
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1508
        return -1;
1509
    }
1510

    
1511
out:
1512
    return again;
1513
}
1514

    
1515
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1516
{
1517
    uint32_t entry;
1518
    EHCIQueue *q;
1519
    int reload;
1520

    
1521
    entry = ehci_get_fetch_addr(ehci, async);
1522
    q = ehci_find_queue_by_qh(ehci, entry);
1523
    if (NULL == q) {
1524
        q = ehci_alloc_queue(ehci, async);
1525
    }
1526
    q->qhaddr = entry;
1527
    q->seen++;
1528

    
1529
    if (q->seen > 1) {
1530
        /* we are going in circles -- stop processing */
1531
        ehci_set_state(ehci, async, EST_ACTIVE);
1532
        q = NULL;
1533
        goto out;
1534
    }
1535

    
1536
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1537
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1538

    
1539
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1540
        /* I/O still in progress -- skip queue */
1541
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1542
        goto out;
1543
    }
1544
    if (q->async == EHCI_ASYNC_FINISHED) {
1545
        /* I/O finished -- continue processing queue */
1546
        trace_usb_ehci_queue_action(q, "resume");
1547
        ehci_set_state(ehci, async, EST_EXECUTING);
1548
        goto out;
1549
    }
1550

    
1551
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1552

    
1553
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1554
        if (ehci->usbsts & USBSTS_REC) {
1555
            ehci_clear_usbsts(ehci, USBSTS_REC);
1556
        } else {
1557
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1558
                       " - done processing\n", q->qhaddr);
1559
            ehci_set_state(ehci, async, EST_ACTIVE);
1560
            q = NULL;
1561
            goto out;
1562
        }
1563
    }
1564

    
1565
#if EHCI_DEBUG
1566
    if (q->qhaddr != q->qh.next) {
1567
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1568
               q->qhaddr,
1569
               q->qh.epchar & QH_EPCHAR_H,
1570
               q->qh.token & QTD_TOKEN_HALT,
1571
               q->qh.token & QTD_TOKEN_ACTIVE,
1572
               q->qh.next);
1573
    }
1574
#endif
1575

    
1576
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1577
    if (reload) {
1578
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1579
    }
1580

    
1581
    if (q->qh.token & QTD_TOKEN_HALT) {
1582
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1583

    
1584
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1585
        q->qtdaddr = q->qh.current_qtd;
1586
        ehci_set_state(ehci, async, EST_FETCHQTD);
1587

    
1588
    } else {
1589
        /*  EHCI spec version 1.0 Section 4.10.2 */
1590
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1591
    }
1592

    
1593
out:
1594
    return q;
1595
}
1596

    
1597
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1598
{
1599
    uint32_t entry;
1600
    EHCIitd itd;
1601

    
1602
    assert(!async);
1603
    entry = ehci_get_fetch_addr(ehci, async);
1604

    
1605
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1606
               sizeof(EHCIitd) >> 2);
1607
    ehci_trace_itd(ehci, entry, &itd);
1608

    
1609
    if (ehci_process_itd(ehci, &itd) != 0) {
1610
        return -1;
1611
    }
1612

    
1613
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1614
                sizeof(EHCIitd) >> 2);
1615
    ehci_set_fetch_addr(ehci, async, itd.next);
1616
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1617

    
1618
    return 1;
1619
}
1620

    
1621
/* Section 4.10.2 - paragraph 3 */
1622
static int ehci_state_advqueue(EHCIQueue *q, int async)
1623
{
1624
#if 0
1625
    /* TO-DO: 4.10.2 - paragraph 2
1626
     * if I-bit is set to 1 and QH is not active
1627
     * go to horizontal QH
1628
     */
1629
    if (I-bit set) {
1630
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1631
        goto out;
1632
    }
1633
#endif
1634

    
1635
    /*
1636
     * want data and alt-next qTD is valid
1637
     */
1638
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1639
        (q->qh.altnext_qtd > 0x1000) &&
1640
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1641
        q->qtdaddr = q->qh.altnext_qtd;
1642
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1643

    
1644
    /*
1645
     *  next qTD is valid
1646
     */
1647
    } else if ((q->qh.next_qtd > 0x1000) &&
1648
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1649
        q->qtdaddr = q->qh.next_qtd;
1650
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1651

    
1652
    /*
1653
     *  no valid qTD, try next QH
1654
     */
1655
    } else {
1656
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1657
    }
1658

    
1659
    return 1;
1660
}
1661

    
1662
/* Section 4.10.2 - paragraph 4 */
1663
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1664
{
1665
    int again = 0;
1666

    
1667
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1668
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1669

    
1670
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1671
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1672
        again = 1;
1673
    } else {
1674
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1675
        again = 1;
1676
    }
1677

    
1678
    return again;
1679
}
1680

    
1681
static int ehci_state_horizqh(EHCIQueue *q, int async)
1682
{
1683
    int again = 0;
1684

    
1685
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1686
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1687
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1688
        again = 1;
1689
    } else {
1690
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1691
    }
1692

    
1693
    return again;
1694
}
1695

    
1696
/*
1697
 *  Write the qh back to guest physical memory.  This step isn't
1698
 *  in the EHCI spec but we need to do it since we don't share
1699
 *  physical memory with our guest VM.
1700
 *
1701
 *  The first three dwords are read-only for the EHCI, so skip them
1702
 *  when writing back the qh.
1703
 */
1704
static void ehci_flush_qh(EHCIQueue *q)
1705
{
1706
    uint32_t *qh = (uint32_t *) &q->qh;
1707
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1708
    uint32_t addr = NLPTR_GET(q->qhaddr);
1709

    
1710
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1711
}
1712

    
1713
static int ehci_state_execute(EHCIQueue *q, int async)
1714
{
1715
    int again = 0;
1716
    int reload, nakcnt;
1717
    int smask;
1718

    
1719
    if (ehci_qh_do_overlay(q) != 0) {
1720
        return -1;
1721
    }
1722

    
1723
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1724

    
1725
    if (!smask) {
1726
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1727
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1728
        if (reload && !nakcnt) {
1729
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1730
            again = 1;
1731
            goto out;
1732
        }
1733
    }
1734

    
1735
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1736
    // TODO write back ptr to async list when done or out of time
1737
    // TODO Windows does not seem to ever set the MULT field
1738

    
1739
    if (!async) {
1740
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1741
        if (!transactCtr) {
1742
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1743
            again = 1;
1744
            goto out;
1745
        }
1746
    }
1747

    
1748
    if (async) {
1749
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1750
    }
1751

    
1752
    q->usb_status = ehci_execute(q);
1753
    if (q->usb_status == USB_RET_PROCERR) {
1754
        again = -1;
1755
        goto out;
1756
    }
1757
    if (q->usb_status == USB_RET_ASYNC) {
1758
        ehci_flush_qh(q);
1759
        trace_usb_ehci_queue_action(q, "suspend");
1760
        q->async = EHCI_ASYNC_INFLIGHT;
1761
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1762
        again = 1;
1763
        goto out;
1764
    }
1765

    
1766
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1767
    again = 1;
1768

    
1769
out:
1770
    return again;
1771
}
1772

    
1773
static int ehci_state_executing(EHCIQueue *q, int async)
1774
{
1775
    int again = 0;
1776
    int reload, nakcnt;
1777

    
1778
    ehci_execute_complete(q);
1779
    if (q->usb_status == USB_RET_ASYNC) {
1780
        goto out;
1781
    }
1782
    if (q->usb_status == USB_RET_PROCERR) {
1783
        again = -1;
1784
        goto out;
1785
    }
1786

    
1787
    // 4.10.3
1788
    if (!async) {
1789
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1790
        transactCtr--;
1791
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1792
        // 4.10.3, bottom of page 82, should exit this state when transaction
1793
        // counter decrements to 0
1794
    }
1795

    
1796
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1797
    if (reload) {
1798
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1799
        if (q->usb_status == USB_RET_NAK) {
1800
            if (nakcnt) {
1801
                nakcnt--;
1802
            }
1803
        } else {
1804
            nakcnt = reload;
1805
        }
1806
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1807
    }
1808

    
1809
    /* 4.10.5 */
1810
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1811
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1812
    } else {
1813
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1814
    }
1815

    
1816
    again = 1;
1817

    
1818
out:
1819
    ehci_flush_qh(q);
1820
    return again;
1821
}
1822

    
1823

    
1824
static int ehci_state_writeback(EHCIQueue *q, int async)
1825
{
1826
    int again = 0;
1827

    
1828
    /*  Write back the QTD from the QH area */
1829
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1830
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1831
                sizeof(EHCIqtd) >> 2);
1832

    
1833
    /*
1834
     * EHCI specs say go horizontal here.
1835
     *
1836
     * We can also advance the queue here for performance reasons.  We
1837
     * need to take care to only take that shortcut in case we've
1838
     * processed the qtd just written back without errors, i.e. halt
1839
     * bit is clear.
1840
     */
1841
    if (q->qh.token & QTD_TOKEN_HALT) {
1842
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1843
        again = 1;
1844
    } else {
1845
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1846
        again = 1;
1847
    }
1848
    return again;
1849
}
1850

    
1851
/*
1852
 * This is the state machine that is common to both async and periodic
1853
 */
1854

    
1855
static void ehci_advance_state(EHCIState *ehci,
1856
                               int async)
1857
{
1858
    EHCIQueue *q = NULL;
1859
    int again;
1860
    int iter = 0;
1861

    
1862
    do {
1863
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1864
            iter++;
1865
            /* if we are roaming a lot of QH without executing a qTD
1866
             * something is wrong with the linked list. TO-DO: why is
1867
             * this hack needed?
1868
             */
1869
            assert(iter < MAX_ITERATIONS);
1870
#if 0
1871
            if (iter > MAX_ITERATIONS) {
1872
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1873
                ehci_set_state(ehci, async, EST_ACTIVE);
1874
                break;
1875
            }
1876
#endif
1877
        }
1878
        switch(ehci_get_state(ehci, async)) {
1879
        case EST_WAITLISTHEAD:
1880
            again = ehci_state_waitlisthead(ehci, async);
1881
            break;
1882

    
1883
        case EST_FETCHENTRY:
1884
            again = ehci_state_fetchentry(ehci, async);
1885
            break;
1886

    
1887
        case EST_FETCHQH:
1888
            q = ehci_state_fetchqh(ehci, async);
1889
            again = q ? 1 : 0;
1890
            break;
1891

    
1892
        case EST_FETCHITD:
1893
            again = ehci_state_fetchitd(ehci, async);
1894
            break;
1895

    
1896
        case EST_ADVANCEQUEUE:
1897
            again = ehci_state_advqueue(q, async);
1898
            break;
1899

    
1900
        case EST_FETCHQTD:
1901
            again = ehci_state_fetchqtd(q, async);
1902
            break;
1903

    
1904
        case EST_HORIZONTALQH:
1905
            again = ehci_state_horizqh(q, async);
1906
            break;
1907

    
1908
        case EST_EXECUTE:
1909
            iter = 0;
1910
            again = ehci_state_execute(q, async);
1911
            break;
1912

    
1913
        case EST_EXECUTING:
1914
            assert(q != NULL);
1915
            again = ehci_state_executing(q, async);
1916
            break;
1917

    
1918
        case EST_WRITEBACK:
1919
            again = ehci_state_writeback(q, async);
1920
            break;
1921

    
1922
        default:
1923
            fprintf(stderr, "Bad state!\n");
1924
            again = -1;
1925
            assert(0);
1926
            break;
1927
        }
1928

    
1929
        if (again < 0) {
1930
            fprintf(stderr, "processing error - resetting ehci HC\n");
1931
            ehci_reset(ehci);
1932
            again = 0;
1933
            assert(0);
1934
        }
1935
    }
1936
    while (again);
1937

    
1938
    ehci_commit_interrupt(ehci);
1939
}
1940

    
1941
static void ehci_advance_async_state(EHCIState *ehci)
1942
{
1943
    int async = 1;
1944

    
1945
    switch(ehci_get_state(ehci, async)) {
1946
    case EST_INACTIVE:
1947
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1948
            break;
1949
        }
1950
        ehci_set_usbsts(ehci, USBSTS_ASS);
1951
        ehci_set_state(ehci, async, EST_ACTIVE);
1952
        // No break, fall through to ACTIVE
1953

    
1954
    case EST_ACTIVE:
1955
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1956
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1957
            ehci_set_state(ehci, async, EST_INACTIVE);
1958
            break;
1959
        }
1960

    
1961
        /* If the doorbell is set, the guest wants to make a change to the
1962
         * schedule. The host controller needs to release cached data.
1963
         * (section 4.8.2)
1964
         */
1965
        if (ehci->usbcmd & USBCMD_IAAD) {
1966
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1967
            ehci->usbcmd &= ~USBCMD_IAAD;
1968
            ehci_set_interrupt(ehci, USBSTS_IAA);
1969
            break;
1970
        }
1971

    
1972
        /* make sure guest has acknowledged */
1973
        /* TO-DO: is this really needed? */
1974
        if (ehci->usbsts & USBSTS_IAA) {
1975
            DPRINTF("IAA status bit still set.\n");
1976
            break;
1977
        }
1978

    
1979
        /* check that address register has been set */
1980
        if (ehci->asynclistaddr == 0) {
1981
            break;
1982
        }
1983

    
1984
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1985
        ehci_advance_state(ehci, async);
1986
        break;
1987

    
1988
    default:
1989
        /* this should only be due to a developer mistake */
1990
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1991
                "Resetting to active\n", ehci->astate);
1992
        assert(0);
1993
    }
1994
}
1995

    
1996
static void ehci_advance_periodic_state(EHCIState *ehci)
1997
{
1998
    uint32_t entry;
1999
    uint32_t list;
2000
    int async = 0;
2001

    
2002
    // 4.6
2003

    
2004
    switch(ehci_get_state(ehci, async)) {
2005
    case EST_INACTIVE:
2006
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2007
            ehci_set_usbsts(ehci, USBSTS_PSS);
2008
            ehci_set_state(ehci, async, EST_ACTIVE);
2009
            // No break, fall through to ACTIVE
2010
        } else
2011
            break;
2012

    
2013
    case EST_ACTIVE:
2014
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2015
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2016
            ehci_set_state(ehci, async, EST_INACTIVE);
2017
            break;
2018
        }
2019

    
2020
        list = ehci->periodiclistbase & 0xfffff000;
2021
        /* check that register has been set */
2022
        if (list == 0) {
2023
            break;
2024
        }
2025
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2026

    
2027
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2028
        entry = le32_to_cpu(entry);
2029

    
2030
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2031
                ehci->frindex / 8, list, entry);
2032
        ehci_set_fetch_addr(ehci, async,entry);
2033
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2034
        ehci_advance_state(ehci, async);
2035
        break;
2036

    
2037
    default:
2038
        /* this should only be due to a developer mistake */
2039
        fprintf(stderr, "ehci: Bad periodic state %d. "
2040
                "Resetting to active\n", ehci->pstate);
2041
        assert(0);
2042
    }
2043
}
2044

    
2045
static void ehci_frame_timer(void *opaque)
2046
{
2047
    EHCIState *ehci = opaque;
2048
    int64_t expire_time, t_now;
2049
    uint64_t ns_elapsed;
2050
    int frames;
2051
    int i;
2052
    int skipped_frames = 0;
2053

    
2054
    t_now = qemu_get_clock_ns(vm_clock);
2055
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2056

    
2057
    ns_elapsed = t_now - ehci->last_run_ns;
2058
    frames = ns_elapsed / FRAME_TIMER_NS;
2059

    
2060
    for (i = 0; i < frames; i++) {
2061
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2062
            if (ehci->isoch_pause <= 0) {
2063
                ehci->frindex += 8;
2064
            }
2065

    
2066
            if (ehci->frindex > 0x00001fff) {
2067
                ehci->frindex = 0;
2068
                ehci_set_interrupt(ehci, USBSTS_FLR);
2069
            }
2070

    
2071
            ehci->sofv = (ehci->frindex - 1) >> 3;
2072
            ehci->sofv &= 0x000003ff;
2073
        }
2074

    
2075
        if (frames - i > ehci->maxframes) {
2076
            skipped_frames++;
2077
        } else {
2078
            ehci_advance_periodic_state(ehci);
2079
        }
2080

    
2081
        ehci->last_run_ns += FRAME_TIMER_NS;
2082
    }
2083

    
2084
#if 0
2085
    if (skipped_frames) {
2086
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2087
    }
2088
#endif
2089

    
2090
    /*  Async is not inside loop since it executes everything it can once
2091
     *  called
2092
     */
2093
    ehci_advance_async_state(ehci);
2094

    
2095
    qemu_mod_timer(ehci->frame_timer, expire_time);
2096
}
2097

    
2098
static CPUReadMemoryFunc *ehci_readfn[3]={
2099
    ehci_mem_readb,
2100
    ehci_mem_readw,
2101
    ehci_mem_readl
2102
};
2103

    
2104
static CPUWriteMemoryFunc *ehci_writefn[3]={
2105
    ehci_mem_writeb,
2106
    ehci_mem_writew,
2107
    ehci_mem_writel
2108
};
2109

    
2110
static void ehci_map(PCIDevice *pci_dev, int region_num,
2111
                     pcibus_t addr, pcibus_t size, int type)
2112
{
2113
    EHCIState *s =(EHCIState *)pci_dev;
2114

    
2115
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2116
            region_num, addr, size, s->mem);
2117
    s->mem_base = addr;
2118
    cpu_register_physical_memory(addr, size, s->mem);
2119
}
2120

    
2121
static int usb_ehci_initfn(PCIDevice *dev);
2122

    
2123
static USBPortOps ehci_port_ops = {
2124
    .attach = ehci_attach,
2125
    .detach = ehci_detach,
2126
    .child_detach = ehci_child_detach,
2127
    .complete = ehci_async_complete_packet,
2128
};
2129

    
2130
static USBBusOps ehci_bus_ops = {
2131
};
2132

    
2133
static PCIDeviceInfo ehci_info = {
2134
    .qdev.name    = "usb-ehci",
2135
    .qdev.size    = sizeof(EHCIState),
2136
    .init         = usb_ehci_initfn,
2137
    .vendor_id    = PCI_VENDOR_ID_INTEL,
2138
    .device_id    = PCI_DEVICE_ID_INTEL_82801D,
2139
    .revision     = 0x10,
2140
    .class_id     = PCI_CLASS_SERIAL_USB,
2141
    .qdev.props   = (Property[]) {
2142
        DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2143
        DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2144
        DEFINE_PROP_END_OF_LIST(),
2145
    },
2146
};
2147

    
2148
static int usb_ehci_initfn(PCIDevice *dev)
2149
{
2150
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2151
    uint8_t *pci_conf = s->dev.config;
2152
    int i;
2153

    
2154
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2155

    
2156
    /* capabilities pointer */
2157
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2158
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2159

    
2160
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2161
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2162
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2163

    
2164
    // pci_conf[0x50] = 0x01; // power management caps
2165

    
2166
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2167
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2168
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2169

    
2170
    pci_conf[0x64] = 0x00;
2171
    pci_conf[0x65] = 0x00;
2172
    pci_conf[0x66] = 0x00;
2173
    pci_conf[0x67] = 0x00;
2174
    pci_conf[0x68] = 0x01;
2175
    pci_conf[0x69] = 0x00;
2176
    pci_conf[0x6a] = 0x00;
2177
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2178
    pci_conf[0x6c] = 0x00;
2179
    pci_conf[0x6d] = 0x00;
2180
    pci_conf[0x6e] = 0x00;
2181
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2182

    
2183
    // 2.2 host controller interface version
2184
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2185
    s->mmio[0x01] = 0x00;
2186
    s->mmio[0x02] = 0x00;
2187
    s->mmio[0x03] = 0x01;        // HC version
2188
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2189
    s->mmio[0x05] = 0x00;        // No companion ports at present
2190
    s->mmio[0x06] = 0x00;
2191
    s->mmio[0x07] = 0x00;
2192
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2193
    s->mmio[0x09] = 0x68;        // EECP
2194
    s->mmio[0x0a] = 0x00;
2195
    s->mmio[0x0b] = 0x00;
2196

    
2197
    s->irq = s->dev.irq[3];
2198

    
2199
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2200
    for(i = 0; i < NB_PORTS; i++) {
2201
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2202
                          USB_SPEED_MASK_HIGH);
2203
        s->ports[i].dev = 0;
2204
    }
2205

    
2206
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2207
    QTAILQ_INIT(&s->queues);
2208

    
2209
    qemu_register_reset(ehci_reset, s);
2210

    
2211
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2212
                                    DEVICE_LITTLE_ENDIAN);
2213

    
2214
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2215
                                                            ehci_map);
2216

    
2217
    fprintf(stderr, "*** EHCI support is under development ***\n");
2218

    
2219
    return 0;
2220
}
2221

    
2222
static void ehci_register(void)
2223
{
2224
    pci_qdev_register(&ehci_info);
2225
}
2226
device_init(ehci_register);
2227

    
2228
/*
2229
 * vim: expandtab ts=4
2230
 */