Statistics
| Branch: | Revision:

root / fpu / softfloat-native.h @ fc81ba53

History | View | Annotate | Download (11.4 kB)

1
/* Native implementation of soft float functions */
2
#include <math.h>
3

    
4
#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
5
#include <ieeefp.h>
6
#define fabsf(f) ((float)fabs(f))
7
#else
8
#include <fenv.h>
9
#endif
10

    
11
/*
12
 * Define some C99-7.12.3 classification macros and
13
 *        some C99-.12.4 for Solaris systems OS less than 10,
14
 *        or Solaris 10 systems running GCC 3.x or less.
15
 *   Solaris 10 with GCC4 does not need these macros as they
16
 *   are defined in <iso/math_c99.h> with a compiler directive
17
 */
18
#if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) && (__GNUC__ <= 4)))
19
/*
20
 * C99 7.12.3 classification macros
21
 * and
22
 * C99 7.12.14 comparison macros
23
 *
24
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
25
 * Try to workaround the missing / broken C99 math macros.
26
 */
27

    
28
#define isnormal(x)             (fpclass(x) >= FP_NZERO)
29
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
30
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
31
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
32
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
33
#define isunordered(x,y)        unordered(x, y)
34
#endif
35

    
36
#if defined(__sun__) && !defined(NEED_LIBSUNMATH)
37

    
38
#ifndef isnan
39
# define isnan(x) \
40
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
41
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
42
     : isnan_f (x))
43
static inline int isnan_f  (float       x) { return x != x; }
44
static inline int isnan_d  (double      x) { return x != x; }
45
static inline int isnan_ld (long double x) { return x != x; }
46
#endif
47

    
48
#ifndef isinf
49
# define isinf(x) \
50
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
51
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
52
     : isinf_f (x))
53
static inline int isinf_f  (float       x) { return isnan (x - x); }
54
static inline int isinf_d  (double      x) { return isnan (x - x); }
55
static inline int isinf_ld (long double x) { return isnan (x - x); }
56
#endif
57
#endif
58

    
59
typedef float float32;
60
typedef double float64;
61
#ifdef FLOATX80
62
typedef long double floatx80;
63
#endif
64

    
65
typedef union {
66
    float32 f;
67
    uint32_t i;
68
} float32u;
69
typedef union {
70
    float64 f;
71
    uint64_t i;
72
} float64u;
73
#ifdef FLOATX80
74
typedef union {
75
    floatx80 f;
76
    struct {
77
        uint64_t low;
78
        uint16_t high;
79
    } i;
80
} floatx80u;
81
#endif
82

    
83
/*----------------------------------------------------------------------------
84
| Software IEC/IEEE floating-point rounding mode.
85
*----------------------------------------------------------------------------*/
86
#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
87
enum {
88
    float_round_nearest_even = FP_RN,
89
    float_round_down         = FP_RM,
90
    float_round_up           = FP_RP,
91
    float_round_to_zero      = FP_RZ
92
};
93
#elif defined(__arm__)
94
enum {
95
    float_round_nearest_even = 0,
96
    float_round_down         = 1,
97
    float_round_up           = 2,
98
    float_round_to_zero      = 3
99
};
100
#else
101
enum {
102
    float_round_nearest_even = FE_TONEAREST,
103
    float_round_down         = FE_DOWNWARD,
104
    float_round_up           = FE_UPWARD,
105
    float_round_to_zero      = FE_TOWARDZERO
106
};
107
#endif
108

    
109
typedef struct float_status {
110
    signed char float_rounding_mode;
111
#ifdef FLOATX80
112
    signed char floatx80_rounding_precision;
113
#endif
114
} float_status;
115

    
116
void set_float_rounding_mode(int val STATUS_PARAM);
117
#ifdef FLOATX80
118
void set_floatx80_rounding_precision(int val STATUS_PARAM);
119
#endif
120

    
121
/*----------------------------------------------------------------------------
122
| Software IEC/IEEE integer-to-floating-point conversion routines.
123
*----------------------------------------------------------------------------*/
124
float32 int32_to_float32( int STATUS_PARAM);
125
float32 uint32_to_float32( unsigned int STATUS_PARAM);
126
float64 int32_to_float64( int STATUS_PARAM);
127
float64 uint32_to_float64( unsigned int STATUS_PARAM);
128
#ifdef FLOATX80
129
floatx80 int32_to_floatx80( int STATUS_PARAM);
130
#endif
131
#ifdef FLOAT128
132
float128 int32_to_float128( int STATUS_PARAM);
133
#endif
134
float32 int64_to_float32( int64_t STATUS_PARAM);
135
float32 uint64_to_float32( uint64_t STATUS_PARAM);
136
float64 int64_to_float64( int64_t STATUS_PARAM);
137
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
138
#ifdef FLOATX80
139
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
140
#endif
141
#ifdef FLOAT128
142
float128 int64_to_float128( int64_t STATUS_PARAM);
143
#endif
144

    
145
/*----------------------------------------------------------------------------
146
| Software IEC/IEEE single-precision conversion routines.
147
*----------------------------------------------------------------------------*/
148
int float32_to_int32( float32  STATUS_PARAM);
149
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
150
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
151
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
152
int64_t float32_to_int64( float32  STATUS_PARAM);
153
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
154
float64 float32_to_float64( float32  STATUS_PARAM);
155
#ifdef FLOATX80
156
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
157
#endif
158
#ifdef FLOAT128
159
float128 float32_to_float128( float32  STATUS_PARAM);
160
#endif
161

    
162
/*----------------------------------------------------------------------------
163
| Software IEC/IEEE single-precision operations.
164
*----------------------------------------------------------------------------*/
165
float32 float32_round_to_int( float32  STATUS_PARAM);
166
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
167
{
168
    return a + b;
169
}
170
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
171
{
172
    return a - b;
173
}
174
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
175
{
176
    return a * b;
177
}
178
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
179
{
180
    return a / b;
181
}
182
float32 float32_rem( float32, float32  STATUS_PARAM);
183
float32 float32_sqrt( float32  STATUS_PARAM);
184
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
185
{
186
    return a == b;
187
}
188
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
189
{
190
    return a <= b;
191
}
192
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
193
{
194
    return a < b;
195
}
196
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
197
{
198
    return a <= b && a >= b;
199
}
200
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
201
{
202
    return islessequal(a, b);
203
}
204
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
205
{
206
    return isless(a, b);
207
}
208
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
209
{
210
    return isunordered(a, b);
211

    
212
}
213
int float32_compare( float32, float32 STATUS_PARAM );
214
int float32_compare_quiet( float32, float32 STATUS_PARAM );
215
int float32_is_signaling_nan( float32 );
216

    
217
INLINE float32 float32_abs(float32 a)
218
{
219
    return fabsf(a);
220
}
221

    
222
INLINE float32 float32_chs(float32 a)
223
{
224
    return -a;
225
}
226

    
227
/*----------------------------------------------------------------------------
228
| Software IEC/IEEE double-precision conversion routines.
229
*----------------------------------------------------------------------------*/
230
int float64_to_int32( float64 STATUS_PARAM );
231
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
232
unsigned int float64_to_uint32( float64 STATUS_PARAM );
233
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
234
int64_t float64_to_int64( float64 STATUS_PARAM );
235
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
236
uint64_t float64_to_uint64( float64 STATUS_PARAM );
237
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
238
float32 float64_to_float32( float64 STATUS_PARAM );
239
#ifdef FLOATX80
240
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
241
#endif
242
#ifdef FLOAT128
243
float128 float64_to_float128( float64 STATUS_PARAM );
244
#endif
245

    
246
/*----------------------------------------------------------------------------
247
| Software IEC/IEEE double-precision operations.
248
*----------------------------------------------------------------------------*/
249
float64 float64_round_to_int( float64 STATUS_PARAM );
250
float64 float64_trunc_to_int( float64 STATUS_PARAM );
251
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
252
{
253
    return a + b;
254
}
255
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
256
{
257
    return a - b;
258
}
259
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
260
{
261
    return a * b;
262
}
263
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
264
{
265
    return a / b;
266
}
267
float64 float64_rem( float64, float64 STATUS_PARAM );
268
float64 float64_sqrt( float64 STATUS_PARAM );
269
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
270
{
271
    return a == b;
272
}
273
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
274
{
275
    return a <= b;
276
}
277
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
278
{
279
    return a < b;
280
}
281
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
282
{
283
    return a <= b && a >= b;
284
}
285
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
286
{
287
    return islessequal(a, b);
288
}
289
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
290
{
291
    return isless(a, b);
292

    
293
}
294
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
295
{
296
    return isunordered(a, b);
297

    
298
}
299
int float64_compare( float64, float64 STATUS_PARAM );
300
int float64_compare_quiet( float64, float64 STATUS_PARAM );
301
int float64_is_signaling_nan( float64 );
302
int float64_is_nan( float64 );
303

    
304
INLINE float64 float64_abs(float64 a)
305
{
306
    return fabs(a);
307
}
308

    
309
INLINE float64 float64_chs(float64 a)
310
{
311
    return -a;
312
}
313

    
314
#ifdef FLOATX80
315

    
316
/*----------------------------------------------------------------------------
317
| Software IEC/IEEE extended double-precision conversion routines.
318
*----------------------------------------------------------------------------*/
319
int floatx80_to_int32( floatx80 STATUS_PARAM );
320
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
321
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
322
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
323
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
324
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
325
#ifdef FLOAT128
326
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
327
#endif
328

    
329
/*----------------------------------------------------------------------------
330
| Software IEC/IEEE extended double-precision operations.
331
*----------------------------------------------------------------------------*/
332
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
333
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
334
{
335
    return a + b;
336
}
337
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
338
{
339
    return a - b;
340
}
341
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
342
{
343
    return a * b;
344
}
345
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
346
{
347
    return a / b;
348
}
349
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
350
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
351
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
352
{
353
    return a == b;
354
}
355
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
356
{
357
    return a <= b;
358
}
359
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
360
{
361
    return a < b;
362
}
363
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
364
{
365
    return a <= b && a >= b;
366
}
367
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
368
{
369
    return islessequal(a, b);
370
}
371
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
372
{
373
    return isless(a, b);
374

    
375
}
376
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
377
{
378
    return isunordered(a, b);
379

    
380
}
381
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
382
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
383
int floatx80_is_signaling_nan( floatx80 );
384

    
385
INLINE floatx80 floatx80_abs(floatx80 a)
386
{
387
    return fabsl(a);
388
}
389

    
390
INLINE floatx80 floatx80_chs(floatx80 a)
391
{
392
    return -a;
393
}
394
#endif