Statistics
| Branch: | Revision:

root / qemu-tech.texi @ feature-archipelago

History | View | Annotate | Download (22.9 kB)

1 1f673135 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-tech.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 debc7065 bellard
@settitle QEMU Internals
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 1f673135 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU Internals: (qemu-tech).   The QEMU Emulator Internals.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 1f673135 bellard
@iftex
20 1f673135 bellard
@titlepage
21 1f673135 bellard
@sp 7
22 1f673135 bellard
@center @titlefont{QEMU Internals}
23 1f673135 bellard
@sp 3
24 1f673135 bellard
@end titlepage
25 1f673135 bellard
@end iftex
26 1f673135 bellard
27 debc7065 bellard
@ifnottex
28 debc7065 bellard
@node Top
29 debc7065 bellard
@top
30 debc7065 bellard
31 debc7065 bellard
@menu
32 debc7065 bellard
* Introduction::
33 debc7065 bellard
* QEMU Internals::
34 debc7065 bellard
* Regression Tests::
35 debc7065 bellard
* Index::
36 debc7065 bellard
@end menu
37 debc7065 bellard
@end ifnottex
38 debc7065 bellard
39 debc7065 bellard
@contents
40 debc7065 bellard
41 debc7065 bellard
@node Introduction
42 1f673135 bellard
@chapter Introduction
43 1f673135 bellard
44 debc7065 bellard
@menu
45 3aeaea65 Max Filippov
* intro_features::         Features
46 3aeaea65 Max Filippov
* intro_x86_emulation::    x86 and x86-64 emulation
47 3aeaea65 Max Filippov
* intro_arm_emulation::    ARM emulation
48 3aeaea65 Max Filippov
* intro_mips_emulation::   MIPS emulation
49 3aeaea65 Max Filippov
* intro_ppc_emulation::    PowerPC emulation
50 3aeaea65 Max Filippov
* intro_sparc_emulation::  Sparc32 and Sparc64 emulation
51 3aeaea65 Max Filippov
* intro_xtensa_emulation:: Xtensa emulation
52 3aeaea65 Max Filippov
* intro_other_emulation::  Other CPU emulation
53 debc7065 bellard
@end menu
54 debc7065 bellard
55 debc7065 bellard
@node intro_features
56 1f673135 bellard
@section Features
57 1f673135 bellard
58 1f673135 bellard
QEMU is a FAST! processor emulator using a portable dynamic
59 1f673135 bellard
translator.
60 1f673135 bellard
61 1f673135 bellard
QEMU has two operating modes:
62 1f673135 bellard
63 1f673135 bellard
@itemize @minus
64 1f673135 bellard
65 5fafdf24 ths
@item
66 998a0501 blueswir1
Full system emulation. In this mode (full platform virtualization),
67 998a0501 blueswir1
QEMU emulates a full system (usually a PC), including a processor and
68 998a0501 blueswir1
various peripherals. It can be used to launch several different
69 998a0501 blueswir1
Operating Systems at once without rebooting the host machine or to
70 998a0501 blueswir1
debug system code.
71 1f673135 bellard
72 5fafdf24 ths
@item
73 998a0501 blueswir1
User mode emulation. In this mode (application level virtualization),
74 998a0501 blueswir1
QEMU can launch processes compiled for one CPU on another CPU, however
75 998a0501 blueswir1
the Operating Systems must match. This can be used for example to ease
76 998a0501 blueswir1
cross-compilation and cross-debugging.
77 1f673135 bellard
@end itemize
78 1f673135 bellard
79 1f673135 bellard
As QEMU requires no host kernel driver to run, it is very safe and
80 1f673135 bellard
easy to use.
81 1f673135 bellard
82 1f673135 bellard
QEMU generic features:
83 1f673135 bellard
84 5fafdf24 ths
@itemize
85 1f673135 bellard
86 1f673135 bellard
@item User space only or full system emulation.
87 1f673135 bellard
88 debc7065 bellard
@item Using dynamic translation to native code for reasonable speed.
89 1f673135 bellard
90 998a0501 blueswir1
@item
91 998a0501 blueswir1
Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
92 998a0501 blueswir1
HPPA, Sparc32 and Sparc64. Previous versions had some support for
93 998a0501 blueswir1
Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
94 1f673135 bellard
95 1f673135 bellard
@item Self-modifying code support.
96 1f673135 bellard
97 1f673135 bellard
@item Precise exceptions support.
98 1f673135 bellard
99 998a0501 blueswir1
@item
100 998a0501 blueswir1
Floating point library supporting both full software emulation and
101 998a0501 blueswir1
native host FPU instructions.
102 998a0501 blueswir1
103 1f673135 bellard
@end itemize
104 1f673135 bellard
105 1f673135 bellard
QEMU user mode emulation features:
106 5fafdf24 ths
@itemize
107 1f673135 bellard
@item Generic Linux system call converter, including most ioctls.
108 1f673135 bellard
109 1f673135 bellard
@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
110 1f673135 bellard
111 5fafdf24 ths
@item Accurate signal handling by remapping host signals to target signals.
112 1f673135 bellard
@end itemize
113 1f673135 bellard
114 998a0501 blueswir1
Linux user emulator (Linux host only) can be used to launch the Wine
115 0adb1246 Andreas Färber
Windows API emulator (@url{http://www.winehq.org}). A BSD user emulator for BSD
116 998a0501 blueswir1
hosts is under development. It would also be possible to develop a
117 998a0501 blueswir1
similar user emulator for Solaris.
118 998a0501 blueswir1
119 1f673135 bellard
QEMU full system emulation features:
120 5fafdf24 ths
@itemize
121 998a0501 blueswir1
@item
122 998a0501 blueswir1
QEMU uses a full software MMU for maximum portability.
123 998a0501 blueswir1
124 998a0501 blueswir1
@item
125 4a1418e0 Anthony Liguori
QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
126 4a1418e0 Anthony Liguori
execute some of the guest code natively, while
127 998a0501 blueswir1
continuing to emulate the rest of the machine.
128 998a0501 blueswir1
129 998a0501 blueswir1
@item
130 998a0501 blueswir1
Various hardware devices can be emulated and in some cases, host
131 998a0501 blueswir1
devices (e.g. serial and parallel ports, USB, drives) can be used
132 998a0501 blueswir1
transparently by the guest Operating System. Host device passthrough
133 998a0501 blueswir1
can be used for talking to external physical peripherals (e.g. a
134 998a0501 blueswir1
webcam, modem or tape drive).
135 998a0501 blueswir1
136 998a0501 blueswir1
@item
137 998a0501 blueswir1
Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
138 998a0501 blueswir1
SMP host system, QEMU can use only one CPU fully due to difficulty in
139 998a0501 blueswir1
implementing atomic memory accesses efficiently.
140 998a0501 blueswir1
141 1f673135 bellard
@end itemize
142 1f673135 bellard
143 debc7065 bellard
@node intro_x86_emulation
144 998a0501 blueswir1
@section x86 and x86-64 emulation
145 1f673135 bellard
146 1f673135 bellard
QEMU x86 target features:
147 1f673135 bellard
148 5fafdf24 ths
@itemize
149 1f673135 bellard
150 5fafdf24 ths
@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
151 998a0501 blueswir1
LDT/GDT and IDT are emulated. VM86 mode is also supported to run
152 998a0501 blueswir1
DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
153 998a0501 blueswir1
and SSE4 as well as x86-64 SVM.
154 1f673135 bellard
155 1f673135 bellard
@item Support of host page sizes bigger than 4KB in user mode emulation.
156 1f673135 bellard
157 1f673135 bellard
@item QEMU can emulate itself on x86.
158 1f673135 bellard
159 5fafdf24 ths
@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
160 1f673135 bellard
It can be used to test other x86 virtual CPUs.
161 1f673135 bellard
162 1f673135 bellard
@end itemize
163 1f673135 bellard
164 1f673135 bellard
Current QEMU limitations:
165 1f673135 bellard
166 5fafdf24 ths
@itemize
167 1f673135 bellard
168 998a0501 blueswir1
@item Limited x86-64 support.
169 1f673135 bellard
170 1f673135 bellard
@item IPC syscalls are missing.
171 1f673135 bellard
172 5fafdf24 ths
@item The x86 segment limits and access rights are not tested at every
173 1f673135 bellard
memory access (yet). Hopefully, very few OSes seem to rely on that for
174 1f673135 bellard
normal use.
175 1f673135 bellard
176 1f673135 bellard
@end itemize
177 1f673135 bellard
178 debc7065 bellard
@node intro_arm_emulation
179 1f673135 bellard
@section ARM emulation
180 1f673135 bellard
181 1f673135 bellard
@itemize
182 1f673135 bellard
183 1f673135 bellard
@item Full ARM 7 user emulation.
184 1f673135 bellard
185 1f673135 bellard
@item NWFPE FPU support included in user Linux emulation.
186 1f673135 bellard
187 1f673135 bellard
@item Can run most ARM Linux binaries.
188 1f673135 bellard
189 1f673135 bellard
@end itemize
190 1f673135 bellard
191 24d4de45 ths
@node intro_mips_emulation
192 24d4de45 ths
@section MIPS emulation
193 24d4de45 ths
194 24d4de45 ths
@itemize
195 24d4de45 ths
196 24d4de45 ths
@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
197 24d4de45 ths
including privileged instructions, FPU and MMU, in both little and big
198 24d4de45 ths
endian modes.
199 24d4de45 ths
200 24d4de45 ths
@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
201 24d4de45 ths
202 24d4de45 ths
@end itemize
203 24d4de45 ths
204 24d4de45 ths
Current QEMU limitations:
205 24d4de45 ths
206 24d4de45 ths
@itemize
207 24d4de45 ths
208 24d4de45 ths
@item Self-modifying code is not always handled correctly.
209 24d4de45 ths
210 24d4de45 ths
@item 64 bit userland emulation is not implemented.
211 24d4de45 ths
212 24d4de45 ths
@item The system emulation is not complete enough to run real firmware.
213 24d4de45 ths
214 b1f45238 ths
@item The watchpoint debug facility is not implemented.
215 b1f45238 ths
216 24d4de45 ths
@end itemize
217 24d4de45 ths
218 debc7065 bellard
@node intro_ppc_emulation
219 1f673135 bellard
@section PowerPC emulation
220 1f673135 bellard
221 1f673135 bellard
@itemize
222 1f673135 bellard
223 5fafdf24 ths
@item Full PowerPC 32 bit emulation, including privileged instructions,
224 1f673135 bellard
FPU and MMU.
225 1f673135 bellard
226 1f673135 bellard
@item Can run most PowerPC Linux binaries.
227 1f673135 bellard
228 1f673135 bellard
@end itemize
229 1f673135 bellard
230 debc7065 bellard
@node intro_sparc_emulation
231 998a0501 blueswir1
@section Sparc32 and Sparc64 emulation
232 1f673135 bellard
233 1f673135 bellard
@itemize
234 1f673135 bellard
235 f6b647cd blueswir1
@item Full SPARC V8 emulation, including privileged
236 3475187d bellard
instructions, FPU and MMU. SPARC V9 emulation includes most privileged
237 a785e42e blueswir1
and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
238 1f673135 bellard
239 a785e42e blueswir1
@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
240 a785e42e blueswir1
some 64-bit SPARC Linux binaries.
241 3475187d bellard
242 3475187d bellard
@end itemize
243 3475187d bellard
244 3475187d bellard
Current QEMU limitations:
245 3475187d bellard
246 5fafdf24 ths
@itemize
247 3475187d bellard
248 3475187d bellard
@item IPC syscalls are missing.
249 3475187d bellard
250 1f587329 blueswir1
@item Floating point exception support is buggy.
251 3475187d bellard
252 3475187d bellard
@item Atomic instructions are not correctly implemented.
253 3475187d bellard
254 998a0501 blueswir1
@item There are still some problems with Sparc64 emulators.
255 998a0501 blueswir1
256 998a0501 blueswir1
@end itemize
257 998a0501 blueswir1
258 3aeaea65 Max Filippov
@node intro_xtensa_emulation
259 3aeaea65 Max Filippov
@section Xtensa emulation
260 3aeaea65 Max Filippov
261 3aeaea65 Max Filippov
@itemize
262 3aeaea65 Max Filippov
263 3aeaea65 Max Filippov
@item Core Xtensa ISA emulation, including most options: code density,
264 3aeaea65 Max Filippov
loop, extended L32R, 16- and 32-bit multiplication, 32-bit division,
265 044d003d Max Filippov
MAC16, miscellaneous operations, boolean, FP coprocessor, coprocessor
266 044d003d Max Filippov
context, debug, multiprocessor synchronization,
267 3aeaea65 Max Filippov
conditional store, exceptions, relocatable vectors, unaligned exception,
268 3aeaea65 Max Filippov
interrupts (including high priority and timer), hardware alignment,
269 3aeaea65 Max Filippov
region protection, region translation, MMU, windowed registers, thread
270 3aeaea65 Max Filippov
pointer, processor ID.
271 3aeaea65 Max Filippov
272 044d003d Max Filippov
@item Not implemented options: data/instruction cache (including cache
273 044d003d Max Filippov
prefetch and locking), XLMI, processor interface. Also options not
274 044d003d Max Filippov
covered by the core ISA (e.g. FLIX, wide branches) are not implemented.
275 3aeaea65 Max Filippov
276 3aeaea65 Max Filippov
@item Can run most Xtensa Linux binaries.
277 3aeaea65 Max Filippov
278 3aeaea65 Max Filippov
@item New core configuration that requires no additional instructions
279 3aeaea65 Max Filippov
may be created from overlay with minimal amount of hand-written code.
280 3aeaea65 Max Filippov
281 3aeaea65 Max Filippov
@end itemize
282 3aeaea65 Max Filippov
283 998a0501 blueswir1
@node intro_other_emulation
284 998a0501 blueswir1
@section Other CPU emulation
285 1f673135 bellard
286 998a0501 blueswir1
In addition to the above, QEMU supports emulation of other CPUs with
287 998a0501 blueswir1
varying levels of success. These are:
288 998a0501 blueswir1
289 998a0501 blueswir1
@itemize
290 998a0501 blueswir1
291 998a0501 blueswir1
@item
292 998a0501 blueswir1
Alpha
293 998a0501 blueswir1
@item
294 998a0501 blueswir1
CRIS
295 998a0501 blueswir1
@item
296 998a0501 blueswir1
M68k
297 998a0501 blueswir1
@item
298 998a0501 blueswir1
SH4
299 1f673135 bellard
@end itemize
300 1f673135 bellard
301 debc7065 bellard
@node QEMU Internals
302 1f673135 bellard
@chapter QEMU Internals
303 1f673135 bellard
304 debc7065 bellard
@menu
305 debc7065 bellard
* QEMU compared to other emulators::
306 debc7065 bellard
* Portable dynamic translation::
307 debc7065 bellard
* Condition code optimisations::
308 debc7065 bellard
* CPU state optimisations::
309 debc7065 bellard
* Translation cache::
310 debc7065 bellard
* Direct block chaining::
311 debc7065 bellard
* Self-modifying code and translated code invalidation::
312 debc7065 bellard
* Exception support::
313 debc7065 bellard
* MMU emulation::
314 998a0501 blueswir1
* Device emulation::
315 debc7065 bellard
* Hardware interrupts::
316 debc7065 bellard
* User emulation specific details::
317 debc7065 bellard
* Bibliography::
318 debc7065 bellard
@end menu
319 debc7065 bellard
320 debc7065 bellard
@node QEMU compared to other emulators
321 1f673135 bellard
@section QEMU compared to other emulators
322 1f673135 bellard
323 1f673135 bellard
Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
324 1f673135 bellard
bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
325 1f673135 bellard
emulation while QEMU can emulate several processors.
326 1f673135 bellard
327 1f673135 bellard
Like Valgrind [2], QEMU does user space emulation and dynamic
328 1f673135 bellard
translation. Valgrind is mainly a memory debugger while QEMU has no
329 1f673135 bellard
support for it (QEMU could be used to detect out of bound memory
330 1f673135 bellard
accesses as Valgrind, but it has no support to track uninitialised data
331 1f673135 bellard
as Valgrind does). The Valgrind dynamic translator generates better code
332 1f673135 bellard
than QEMU (in particular it does register allocation) but it is closely
333 1f673135 bellard
tied to an x86 host and target and has no support for precise exceptions
334 1f673135 bellard
and system emulation.
335 1f673135 bellard
336 1f673135 bellard
EM86 [4] is the closest project to user space QEMU (and QEMU still uses
337 1f673135 bellard
some of its code, in particular the ELF file loader). EM86 was limited
338 1f673135 bellard
to an alpha host and used a proprietary and slow interpreter (the
339 1f673135 bellard
interpreter part of the FX!32 Digital Win32 code translator [5]).
340 1f673135 bellard
341 1f673135 bellard
TWIN [6] is a Windows API emulator like Wine. It is less accurate than
342 1f673135 bellard
Wine but includes a protected mode x86 interpreter to launch x86 Windows
343 36d54d15 bellard
executables. Such an approach has greater potential because most of the
344 1f673135 bellard
Windows API is executed natively but it is far more difficult to develop
345 1f673135 bellard
because all the data structures and function parameters exchanged
346 1f673135 bellard
between the API and the x86 code must be converted.
347 1f673135 bellard
348 1f673135 bellard
User mode Linux [7] was the only solution before QEMU to launch a
349 1f673135 bellard
Linux kernel as a process while not needing any host kernel
350 1f673135 bellard
patches. However, user mode Linux requires heavy kernel patches while
351 1f673135 bellard
QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
352 1f673135 bellard
slower.
353 1f673135 bellard
354 998a0501 blueswir1
The Plex86 [8] PC virtualizer is done in the same spirit as the now
355 998a0501 blueswir1
obsolete qemu-fast system emulator. It requires a patched Linux kernel
356 998a0501 blueswir1
to work (you cannot launch the same kernel on your PC), but the
357 998a0501 blueswir1
patches are really small. As it is a PC virtualizer (no emulation is
358 998a0501 blueswir1
done except for some privileged instructions), it has the potential of
359 998a0501 blueswir1
being faster than QEMU. The downside is that a complicated (and
360 998a0501 blueswir1
potentially unsafe) host kernel patch is needed.
361 1f673135 bellard
362 1f673135 bellard
The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
363 1f673135 bellard
[11]) are faster than QEMU, but they all need specific, proprietary
364 1f673135 bellard
and potentially unsafe host drivers. Moreover, they are unable to
365 1f673135 bellard
provide cycle exact simulation as an emulator can.
366 1f673135 bellard
367 998a0501 blueswir1
VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
368 998a0501 blueswir1
[15] uses QEMU to simulate a system where some hardware devices are
369 998a0501 blueswir1
developed in SystemC.
370 998a0501 blueswir1
371 debc7065 bellard
@node Portable dynamic translation
372 1f673135 bellard
@section Portable dynamic translation
373 1f673135 bellard
374 1f673135 bellard
QEMU is a dynamic translator. When it first encounters a piece of code,
375 1f673135 bellard
it converts it to the host instruction set. Usually dynamic translators
376 1f673135 bellard
are very complicated and highly CPU dependent. QEMU uses some tricks
377 1f673135 bellard
which make it relatively easily portable and simple while achieving good
378 1f673135 bellard
performances.
379 1f673135 bellard
380 998a0501 blueswir1
After the release of version 0.9.1, QEMU switched to a new method of
381 998a0501 blueswir1
generating code, Tiny Code Generator or TCG. TCG relaxes the
382 998a0501 blueswir1
dependency on the exact version of the compiler used. The basic idea
383 998a0501 blueswir1
is to split every target instruction into a couple of RISC-like TCG
384 998a0501 blueswir1
ops (see @code{target-i386/translate.c}). Some optimizations can be
385 998a0501 blueswir1
performed at this stage, including liveness analysis and trivial
386 998a0501 blueswir1
constant expression evaluation. TCG ops are then implemented in the
387 998a0501 blueswir1
host CPU back end, also known as TCG target (see
388 998a0501 blueswir1
@code{tcg/i386/tcg-target.c}). For more information, please take a
389 998a0501 blueswir1
look at @code{tcg/README}.
390 1f673135 bellard
391 debc7065 bellard
@node Condition code optimisations
392 1f673135 bellard
@section Condition code optimisations
393 1f673135 bellard
394 998a0501 blueswir1
Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
395 998a0501 blueswir1
is important for CPUs where every instruction sets the condition
396 998a0501 blueswir1
codes. It tends to be less important on conventional RISC systems
397 f0f26a06 Blue Swirl
where condition codes are only updated when explicitly requested. On
398 f0f26a06 Blue Swirl
Sparc64, costly update of both 32 and 64 bit condition codes can be
399 f0f26a06 Blue Swirl
avoided with lazy evaluation.
400 998a0501 blueswir1
401 998a0501 blueswir1
Instead of computing the condition codes after each x86 instruction,
402 998a0501 blueswir1
QEMU just stores one operand (called @code{CC_SRC}), the result
403 998a0501 blueswir1
(called @code{CC_DST}) and the type of operation (called
404 998a0501 blueswir1
@code{CC_OP}). When the condition codes are needed, the condition
405 998a0501 blueswir1
codes can be calculated using this information. In addition, an
406 998a0501 blueswir1
optimized calculation can be performed for some instruction types like
407 998a0501 blueswir1
conditional branches.
408 1f673135 bellard
409 1235fc06 ths
@code{CC_OP} is almost never explicitly set in the generated code
410 1f673135 bellard
because it is known at translation time.
411 1f673135 bellard
412 f0f26a06 Blue Swirl
The lazy condition code evaluation is used on x86, m68k, cris and
413 f0f26a06 Blue Swirl
Sparc. ARM uses a simplified variant for the N and Z flags.
414 1f673135 bellard
415 debc7065 bellard
@node CPU state optimisations
416 1f673135 bellard
@section CPU state optimisations
417 1f673135 bellard
418 998a0501 blueswir1
The target CPUs have many internal states which change the way it
419 998a0501 blueswir1
evaluates instructions. In order to achieve a good speed, the
420 998a0501 blueswir1
translation phase considers that some state information of the virtual
421 998a0501 blueswir1
CPU cannot change in it. The state is recorded in the Translation
422 998a0501 blueswir1
Block (TB). If the state changes (e.g. privilege level), a new TB will
423 998a0501 blueswir1
be generated and the previous TB won't be used anymore until the state
424 998a0501 blueswir1
matches the state recorded in the previous TB. For example, if the SS,
425 998a0501 blueswir1
DS and ES segments have a zero base, then the translator does not even
426 998a0501 blueswir1
generate an addition for the segment base.
427 1f673135 bellard
428 1f673135 bellard
[The FPU stack pointer register is not handled that way yet].
429 1f673135 bellard
430 debc7065 bellard
@node Translation cache
431 1f673135 bellard
@section Translation cache
432 1f673135 bellard
433 27c8efcb 陳韋任
A 32 MByte cache holds the most recently used translations. For
434 1f673135 bellard
simplicity, it is completely flushed when it is full. A translation unit
435 1f673135 bellard
contains just a single basic block (a block of x86 instructions
436 1f673135 bellard
terminated by a jump or by a virtual CPU state change which the
437 1f673135 bellard
translator cannot deduce statically).
438 1f673135 bellard
439 debc7065 bellard
@node Direct block chaining
440 1f673135 bellard
@section Direct block chaining
441 1f673135 bellard
442 1f673135 bellard
After each translated basic block is executed, QEMU uses the simulated
443 1f673135 bellard
Program Counter (PC) and other cpu state informations (such as the CS
444 1f673135 bellard
segment base value) to find the next basic block.
445 1f673135 bellard
446 1f673135 bellard
In order to accelerate the most common cases where the new simulated PC
447 1f673135 bellard
is known, QEMU can patch a basic block so that it jumps directly to the
448 1f673135 bellard
next one.
449 1f673135 bellard
450 1f673135 bellard
The most portable code uses an indirect jump. An indirect jump makes
451 1f673135 bellard
it easier to make the jump target modification atomic. On some host
452 1f673135 bellard
architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
453 1f673135 bellard
directly patched so that the block chaining has no overhead.
454 1f673135 bellard
455 debc7065 bellard
@node Self-modifying code and translated code invalidation
456 1f673135 bellard
@section Self-modifying code and translated code invalidation
457 1f673135 bellard
458 1f673135 bellard
Self-modifying code is a special challenge in x86 emulation because no
459 1f673135 bellard
instruction cache invalidation is signaled by the application when code
460 1f673135 bellard
is modified.
461 1f673135 bellard
462 1f673135 bellard
When translated code is generated for a basic block, the corresponding
463 998a0501 blueswir1
host page is write protected if it is not already read-only. Then, if
464 998a0501 blueswir1
a write access is done to the page, Linux raises a SEGV signal. QEMU
465 998a0501 blueswir1
then invalidates all the translated code in the page and enables write
466 998a0501 blueswir1
accesses to the page.
467 1f673135 bellard
468 1f673135 bellard
Correct translated code invalidation is done efficiently by maintaining
469 1f673135 bellard
a linked list of every translated block contained in a given page. Other
470 5fafdf24 ths
linked lists are also maintained to undo direct block chaining.
471 1f673135 bellard
472 998a0501 blueswir1
On RISC targets, correctly written software uses memory barriers and
473 998a0501 blueswir1
cache flushes, so some of the protection above would not be
474 998a0501 blueswir1
necessary. However, QEMU still requires that the generated code always
475 998a0501 blueswir1
matches the target instructions in memory in order to handle
476 998a0501 blueswir1
exceptions correctly.
477 1f673135 bellard
478 debc7065 bellard
@node Exception support
479 1f673135 bellard
@section Exception support
480 1f673135 bellard
481 1f673135 bellard
longjmp() is used when an exception such as division by zero is
482 5fafdf24 ths
encountered.
483 1f673135 bellard
484 1f673135 bellard
The host SIGSEGV and SIGBUS signal handlers are used to get invalid
485 998a0501 blueswir1
memory accesses. The simulated program counter is found by
486 998a0501 blueswir1
retranslating the corresponding basic block and by looking where the
487 998a0501 blueswir1
host program counter was at the exception point.
488 1f673135 bellard
489 1f673135 bellard
The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
490 1f673135 bellard
in some cases it is not computed because of condition code
491 1f673135 bellard
optimisations. It is not a big concern because the emulated code can
492 1f673135 bellard
still be restarted in any cases.
493 1f673135 bellard
494 debc7065 bellard
@node MMU emulation
495 1f673135 bellard
@section MMU emulation
496 1f673135 bellard
497 998a0501 blueswir1
For system emulation QEMU supports a soft MMU. In that mode, the MMU
498 998a0501 blueswir1
virtual to physical address translation is done at every memory
499 998a0501 blueswir1
access. QEMU uses an address translation cache to speed up the
500 998a0501 blueswir1
translation.
501 1f673135 bellard
502 1f673135 bellard
In order to avoid flushing the translated code each time the MMU
503 1f673135 bellard
mappings change, QEMU uses a physically indexed translation cache. It
504 5fafdf24 ths
means that each basic block is indexed with its physical address.
505 1f673135 bellard
506 1f673135 bellard
When MMU mappings change, only the chaining of the basic blocks is
507 1f673135 bellard
reset (i.e. a basic block can no longer jump directly to another one).
508 1f673135 bellard
509 998a0501 blueswir1
@node Device emulation
510 998a0501 blueswir1
@section Device emulation
511 998a0501 blueswir1
512 998a0501 blueswir1
Systems emulated by QEMU are organized by boards. At initialization
513 998a0501 blueswir1
phase, each board instantiates a number of CPUs, devices, RAM and
514 998a0501 blueswir1
ROM. Each device in turn can assign I/O ports or memory areas (for
515 998a0501 blueswir1
MMIO) to its handlers. When the emulation starts, an access to the
516 998a0501 blueswir1
ports or MMIO memory areas assigned to the device causes the
517 998a0501 blueswir1
corresponding handler to be called.
518 998a0501 blueswir1
519 998a0501 blueswir1
RAM and ROM are handled more optimally, only the offset to the host
520 998a0501 blueswir1
memory needs to be added to the guest address.
521 998a0501 blueswir1
522 998a0501 blueswir1
The video RAM of VGA and other display cards is special: it can be
523 998a0501 blueswir1
read or written directly like RAM, but write accesses cause the memory
524 998a0501 blueswir1
to be marked with VGA_DIRTY flag as well.
525 998a0501 blueswir1
526 998a0501 blueswir1
QEMU supports some device classes like serial and parallel ports, USB,
527 998a0501 blueswir1
drives and network devices, by providing APIs for easier connection to
528 998a0501 blueswir1
the generic, higher level implementations. The API hides the
529 998a0501 blueswir1
implementation details from the devices, like native device use or
530 998a0501 blueswir1
advanced block device formats like QCOW.
531 998a0501 blueswir1
532 998a0501 blueswir1
Usually the devices implement a reset method and register support for
533 998a0501 blueswir1
saving and loading of the device state. The devices can also use
534 998a0501 blueswir1
timers, especially together with the use of bottom halves (BHs).
535 998a0501 blueswir1
536 debc7065 bellard
@node Hardware interrupts
537 1f673135 bellard
@section Hardware interrupts
538 1f673135 bellard
539 e1b4382c Stefan Weil
In order to be faster, QEMU does not check at every basic block if a
540 e8dc0938 Stefan Weil
hardware interrupt is pending. Instead, the user must asynchronously
541 1f673135 bellard
call a specific function to tell that an interrupt is pending. This
542 1f673135 bellard
function resets the chaining of the currently executing basic
543 1f673135 bellard
block. It ensures that the execution will return soon in the main loop
544 1f673135 bellard
of the CPU emulator. Then the main loop can test if the interrupt is
545 1f673135 bellard
pending and handle it.
546 1f673135 bellard
547 debc7065 bellard
@node User emulation specific details
548 1f673135 bellard
@section User emulation specific details
549 1f673135 bellard
550 1f673135 bellard
@subsection Linux system call translation
551 1f673135 bellard
552 1f673135 bellard
QEMU includes a generic system call translator for Linux. It means that
553 1f673135 bellard
the parameters of the system calls can be converted to fix the
554 1f673135 bellard
endianness and 32/64 bit issues. The IOCTLs are converted with a generic
555 1f673135 bellard
type description system (see @file{ioctls.h} and @file{thunk.c}).
556 1f673135 bellard
557 1f673135 bellard
QEMU supports host CPUs which have pages bigger than 4KB. It records all
558 1f673135 bellard
the mappings the process does and try to emulated the @code{mmap()}
559 1f673135 bellard
system calls in cases where the host @code{mmap()} call would fail
560 1f673135 bellard
because of bad page alignment.
561 1f673135 bellard
562 1f673135 bellard
@subsection Linux signals
563 1f673135 bellard
564 1f673135 bellard
Normal and real-time signals are queued along with their information
565 1f673135 bellard
(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
566 1f673135 bellard
request is done to the virtual CPU. When it is interrupted, one queued
567 1f673135 bellard
signal is handled by generating a stack frame in the virtual CPU as the
568 1f673135 bellard
Linux kernel does. The @code{sigreturn()} system call is emulated to return
569 1f673135 bellard
from the virtual signal handler.
570 1f673135 bellard
571 1f673135 bellard
Some signals (such as SIGALRM) directly come from the host. Other
572 e8dc0938 Stefan Weil
signals are synthesized from the virtual CPU exceptions such as SIGFPE
573 1f673135 bellard
when a division by zero is done (see @code{main.c:cpu_loop()}).
574 1f673135 bellard
575 1f673135 bellard
The blocked signal mask is still handled by the host Linux kernel so
576 1f673135 bellard
that most signal system calls can be redirected directly to the host
577 1f673135 bellard
Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
578 1f673135 bellard
calls need to be fully emulated (see @file{signal.c}).
579 1f673135 bellard
580 1f673135 bellard
@subsection clone() system call and threads
581 1f673135 bellard
582 1f673135 bellard
The Linux clone() system call is usually used to create a thread. QEMU
583 1f673135 bellard
uses the host clone() system call so that real host threads are created
584 1f673135 bellard
for each emulated thread. One virtual CPU instance is created for each
585 1f673135 bellard
thread.
586 1f673135 bellard
587 1f673135 bellard
The virtual x86 CPU atomic operations are emulated with a global lock so
588 1f673135 bellard
that their semantic is preserved.
589 1f673135 bellard
590 1f673135 bellard
Note that currently there are still some locking issues in QEMU. In
591 1f673135 bellard
particular, the translated cache flush is not protected yet against
592 1f673135 bellard
reentrancy.
593 1f673135 bellard
594 1f673135 bellard
@subsection Self-virtualization
595 1f673135 bellard
596 1f673135 bellard
QEMU was conceived so that ultimately it can emulate itself. Although
597 1f673135 bellard
it is not very useful, it is an important test to show the power of the
598 1f673135 bellard
emulator.
599 1f673135 bellard
600 1f673135 bellard
Achieving self-virtualization is not easy because there may be address
601 998a0501 blueswir1
space conflicts. QEMU user emulators solve this problem by being an
602 998a0501 blueswir1
executable ELF shared object as the ld-linux.so ELF interpreter. That
603 998a0501 blueswir1
way, it can be relocated at load time.
604 1f673135 bellard
605 debc7065 bellard
@node Bibliography
606 1f673135 bellard
@section Bibliography
607 1f673135 bellard
608 1f673135 bellard
@table @asis
609 1f673135 bellard
610 5fafdf24 ths
@item [1]
611 1f673135 bellard
@url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
612 1f673135 bellard
direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
613 1f673135 bellard
Riccardi.
614 1f673135 bellard
615 1f673135 bellard
@item [2]
616 1f673135 bellard
@url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
617 1f673135 bellard
memory debugger for x86-GNU/Linux, by Julian Seward.
618 1f673135 bellard
619 1f673135 bellard
@item [3]
620 1f673135 bellard
@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
621 1f673135 bellard
by Kevin Lawton et al.
622 1f673135 bellard
623 1f673135 bellard
@item [4]
624 1f673135 bellard
@url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
625 1f673135 bellard
x86 emulator on Alpha-Linux.
626 1f673135 bellard
627 1f673135 bellard
@item [5]
628 debc7065 bellard
@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
629 1f673135 bellard
DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
630 1f673135 bellard
Chernoff and Ray Hookway.
631 1f673135 bellard
632 1f673135 bellard
@item [6]
633 1f673135 bellard
@url{http://www.willows.com/}, Windows API library emulation from
634 1f673135 bellard
Willows Software.
635 1f673135 bellard
636 1f673135 bellard
@item [7]
637 5fafdf24 ths
@url{http://user-mode-linux.sourceforge.net/},
638 1f673135 bellard
The User-mode Linux Kernel.
639 1f673135 bellard
640 1f673135 bellard
@item [8]
641 5fafdf24 ths
@url{http://www.plex86.org/},
642 1f673135 bellard
The new Plex86 project.
643 1f673135 bellard
644 1f673135 bellard
@item [9]
645 5fafdf24 ths
@url{http://www.vmware.com/},
646 1f673135 bellard
The VMWare PC virtualizer.
647 1f673135 bellard
648 1f673135 bellard
@item [10]
649 5fafdf24 ths
@url{http://www.microsoft.com/windowsxp/virtualpc/},
650 1f673135 bellard
The VirtualPC PC virtualizer.
651 1f673135 bellard
652 1f673135 bellard
@item [11]
653 5fafdf24 ths
@url{http://www.twoostwo.org/},
654 1f673135 bellard
The TwoOStwo PC virtualizer.
655 1f673135 bellard
656 998a0501 blueswir1
@item [12]
657 998a0501 blueswir1
@url{http://virtualbox.org/},
658 998a0501 blueswir1
The VirtualBox PC virtualizer.
659 998a0501 blueswir1
660 998a0501 blueswir1
@item [13]
661 998a0501 blueswir1
@url{http://www.xen.org/},
662 998a0501 blueswir1
The Xen hypervisor.
663 998a0501 blueswir1
664 998a0501 blueswir1
@item [14]
665 998a0501 blueswir1
@url{http://kvm.qumranet.com/kvmwiki/Front_Page},
666 998a0501 blueswir1
Kernel Based Virtual Machine (KVM).
667 998a0501 blueswir1
668 998a0501 blueswir1
@item [15]
669 998a0501 blueswir1
@url{http://www.greensocs.com/projects/QEMUSystemC},
670 998a0501 blueswir1
QEMU-SystemC, a hardware co-simulator.
671 998a0501 blueswir1
672 1f673135 bellard
@end table
673 1f673135 bellard
674 debc7065 bellard
@node Regression Tests
675 1f673135 bellard
@chapter Regression Tests
676 1f673135 bellard
677 1f673135 bellard
In the directory @file{tests/}, various interesting testing programs
678 b1f45238 ths
are available. They are used for regression testing.
679 1f673135 bellard
680 debc7065 bellard
@menu
681 debc7065 bellard
* test-i386::
682 debc7065 bellard
* linux-test::
683 debc7065 bellard
@end menu
684 debc7065 bellard
685 debc7065 bellard
@node test-i386
686 1f673135 bellard
@section @file{test-i386}
687 1f673135 bellard
688 1f673135 bellard
This program executes most of the 16 bit and 32 bit x86 instructions and
689 1f673135 bellard
generates a text output. It can be compared with the output obtained with
690 1f673135 bellard
a real CPU or another emulator. The target @code{make test} runs this
691 1f673135 bellard
program and a @code{diff} on the generated output.
692 1f673135 bellard
693 1f673135 bellard
The Linux system call @code{modify_ldt()} is used to create x86 selectors
694 1f673135 bellard
to test some 16 bit addressing and 32 bit with segmentation cases.
695 1f673135 bellard
696 1f673135 bellard
The Linux system call @code{vm86()} is used to test vm86 emulation.
697 1f673135 bellard
698 1f673135 bellard
Various exceptions are raised to test most of the x86 user space
699 1f673135 bellard
exception reporting.
700 1f673135 bellard
701 debc7065 bellard
@node linux-test
702 1f673135 bellard
@section @file{linux-test}
703 1f673135 bellard
704 1f673135 bellard
This program tests various Linux system calls. It is used to verify
705 1f673135 bellard
that the system call parameters are correctly converted between target
706 1f673135 bellard
and host CPUs.
707 1f673135 bellard
708 debc7065 bellard
@node Index
709 debc7065 bellard
@chapter Index
710 debc7065 bellard
@printindex cp
711 debc7065 bellard
712 debc7065 bellard
@bye