Statistics
| Branch: | Revision:

root / memory.c @ feature-archipelago

History | View | Annotate | Download (57.3 kB)

1
/*
2
 * Physical memory management
3
 *
4
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5
 *
6
 * Authors:
7
 *  Avi Kivity <avi@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2.  See
10
 * the COPYING file in the top-level directory.
11
 *
12
 * Contributions after 2012-01-13 are licensed under the terms of the
13
 * GNU GPL, version 2 or (at your option) any later version.
14
 */
15

    
16
#include "exec/memory.h"
17
#include "exec/address-spaces.h"
18
#include "exec/ioport.h"
19
#include "qemu/bitops.h"
20
#include "qom/object.h"
21
#include "trace.h"
22
#include <assert.h>
23

    
24
#include "exec/memory-internal.h"
25
#include "exec/ram_addr.h"
26

    
27
//#define DEBUG_UNASSIGNED
28

    
29
static unsigned memory_region_transaction_depth;
30
static bool memory_region_update_pending;
31
static bool global_dirty_log = false;
32

    
33
/* flat_view_mutex is taken around reading as->current_map; the critical
34
 * section is extremely short, so I'm using a single mutex for every AS.
35
 * We could also RCU for the read-side.
36
 *
37
 * The BQL is taken around transaction commits, hence both locks are taken
38
 * while writing to as->current_map (with the BQL taken outside).
39
 */
40
static QemuMutex flat_view_mutex;
41

    
42
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
43
    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
44

    
45
static QTAILQ_HEAD(, AddressSpace) address_spaces
46
    = QTAILQ_HEAD_INITIALIZER(address_spaces);
47

    
48
static void memory_init(void)
49
{
50
    qemu_mutex_init(&flat_view_mutex);
51
}
52

    
53
typedef struct AddrRange AddrRange;
54

    
55
/*
56
 * Note using signed integers limits us to physical addresses at most
57
 * 63 bits wide.  They are needed for negative offsetting in aliases
58
 * (large MemoryRegion::alias_offset).
59
 */
60
struct AddrRange {
61
    Int128 start;
62
    Int128 size;
63
};
64

    
65
static AddrRange addrrange_make(Int128 start, Int128 size)
66
{
67
    return (AddrRange) { start, size };
68
}
69

    
70
static bool addrrange_equal(AddrRange r1, AddrRange r2)
71
{
72
    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73
}
74

    
75
static Int128 addrrange_end(AddrRange r)
76
{
77
    return int128_add(r.start, r.size);
78
}
79

    
80
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81
{
82
    int128_addto(&range.start, delta);
83
    return range;
84
}
85

    
86
static bool addrrange_contains(AddrRange range, Int128 addr)
87
{
88
    return int128_ge(addr, range.start)
89
        && int128_lt(addr, addrrange_end(range));
90
}
91

    
92
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93
{
94
    return addrrange_contains(r1, r2.start)
95
        || addrrange_contains(r2, r1.start);
96
}
97

    
98
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99
{
100
    Int128 start = int128_max(r1.start, r2.start);
101
    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102
    return addrrange_make(start, int128_sub(end, start));
103
}
104

    
105
enum ListenerDirection { Forward, Reverse };
106

    
107
static bool memory_listener_match(MemoryListener *listener,
108
                                  MemoryRegionSection *section)
109
{
110
    return !listener->address_space_filter
111
        || listener->address_space_filter == section->address_space;
112
}
113

    
114
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
115
    do {                                                                \
116
        MemoryListener *_listener;                                      \
117
                                                                        \
118
        switch (_direction) {                                           \
119
        case Forward:                                                   \
120
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
121
                if (_listener->_callback) {                             \
122
                    _listener->_callback(_listener, ##_args);           \
123
                }                                                       \
124
            }                                                           \
125
            break;                                                      \
126
        case Reverse:                                                   \
127
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
128
                                   memory_listeners, link) {            \
129
                if (_listener->_callback) {                             \
130
                    _listener->_callback(_listener, ##_args);           \
131
                }                                                       \
132
            }                                                           \
133
            break;                                                      \
134
        default:                                                        \
135
            abort();                                                    \
136
        }                                                               \
137
    } while (0)
138

    
139
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
140
    do {                                                                \
141
        MemoryListener *_listener;                                      \
142
                                                                        \
143
        switch (_direction) {                                           \
144
        case Forward:                                                   \
145
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
146
                if (_listener->_callback                                \
147
                    && memory_listener_match(_listener, _section)) {    \
148
                    _listener->_callback(_listener, _section, ##_args); \
149
                }                                                       \
150
            }                                                           \
151
            break;                                                      \
152
        case Reverse:                                                   \
153
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
154
                                   memory_listeners, link) {            \
155
                if (_listener->_callback                                \
156
                    && memory_listener_match(_listener, _section)) {    \
157
                    _listener->_callback(_listener, _section, ##_args); \
158
                }                                                       \
159
            }                                                           \
160
            break;                                                      \
161
        default:                                                        \
162
            abort();                                                    \
163
        }                                                               \
164
    } while (0)
165

    
166
/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
167
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
168
    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
169
        .mr = (fr)->mr,                                                 \
170
        .address_space = (as),                                          \
171
        .offset_within_region = (fr)->offset_in_region,                 \
172
        .size = (fr)->addr.size,                                        \
173
        .offset_within_address_space = int128_get64((fr)->addr.start),  \
174
        .readonly = (fr)->readonly,                                     \
175
              }))
176

    
177
struct CoalescedMemoryRange {
178
    AddrRange addr;
179
    QTAILQ_ENTRY(CoalescedMemoryRange) link;
180
};
181

    
182
struct MemoryRegionIoeventfd {
183
    AddrRange addr;
184
    bool match_data;
185
    uint64_t data;
186
    EventNotifier *e;
187
};
188

    
189
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
190
                                           MemoryRegionIoeventfd b)
191
{
192
    if (int128_lt(a.addr.start, b.addr.start)) {
193
        return true;
194
    } else if (int128_gt(a.addr.start, b.addr.start)) {
195
        return false;
196
    } else if (int128_lt(a.addr.size, b.addr.size)) {
197
        return true;
198
    } else if (int128_gt(a.addr.size, b.addr.size)) {
199
        return false;
200
    } else if (a.match_data < b.match_data) {
201
        return true;
202
    } else  if (a.match_data > b.match_data) {
203
        return false;
204
    } else if (a.match_data) {
205
        if (a.data < b.data) {
206
            return true;
207
        } else if (a.data > b.data) {
208
            return false;
209
        }
210
    }
211
    if (a.e < b.e) {
212
        return true;
213
    } else if (a.e > b.e) {
214
        return false;
215
    }
216
    return false;
217
}
218

    
219
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
220
                                          MemoryRegionIoeventfd b)
221
{
222
    return !memory_region_ioeventfd_before(a, b)
223
        && !memory_region_ioeventfd_before(b, a);
224
}
225

    
226
typedef struct FlatRange FlatRange;
227
typedef struct FlatView FlatView;
228

    
229
/* Range of memory in the global map.  Addresses are absolute. */
230
struct FlatRange {
231
    MemoryRegion *mr;
232
    hwaddr offset_in_region;
233
    AddrRange addr;
234
    uint8_t dirty_log_mask;
235
    bool romd_mode;
236
    bool readonly;
237
};
238

    
239
/* Flattened global view of current active memory hierarchy.  Kept in sorted
240
 * order.
241
 */
242
struct FlatView {
243
    unsigned ref;
244
    FlatRange *ranges;
245
    unsigned nr;
246
    unsigned nr_allocated;
247
};
248

    
249
typedef struct AddressSpaceOps AddressSpaceOps;
250

    
251
#define FOR_EACH_FLAT_RANGE(var, view)          \
252
    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
253

    
254
static bool flatrange_equal(FlatRange *a, FlatRange *b)
255
{
256
    return a->mr == b->mr
257
        && addrrange_equal(a->addr, b->addr)
258
        && a->offset_in_region == b->offset_in_region
259
        && a->romd_mode == b->romd_mode
260
        && a->readonly == b->readonly;
261
}
262

    
263
static void flatview_init(FlatView *view)
264
{
265
    view->ref = 1;
266
    view->ranges = NULL;
267
    view->nr = 0;
268
    view->nr_allocated = 0;
269
}
270

    
271
/* Insert a range into a given position.  Caller is responsible for maintaining
272
 * sorting order.
273
 */
274
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
275
{
276
    if (view->nr == view->nr_allocated) {
277
        view->nr_allocated = MAX(2 * view->nr, 10);
278
        view->ranges = g_realloc(view->ranges,
279
                                    view->nr_allocated * sizeof(*view->ranges));
280
    }
281
    memmove(view->ranges + pos + 1, view->ranges + pos,
282
            (view->nr - pos) * sizeof(FlatRange));
283
    view->ranges[pos] = *range;
284
    memory_region_ref(range->mr);
285
    ++view->nr;
286
}
287

    
288
static void flatview_destroy(FlatView *view)
289
{
290
    int i;
291

    
292
    for (i = 0; i < view->nr; i++) {
293
        memory_region_unref(view->ranges[i].mr);
294
    }
295
    g_free(view->ranges);
296
    g_free(view);
297
}
298

    
299
static void flatview_ref(FlatView *view)
300
{
301
    atomic_inc(&view->ref);
302
}
303

    
304
static void flatview_unref(FlatView *view)
305
{
306
    if (atomic_fetch_dec(&view->ref) == 1) {
307
        flatview_destroy(view);
308
    }
309
}
310

    
311
static bool can_merge(FlatRange *r1, FlatRange *r2)
312
{
313
    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
314
        && r1->mr == r2->mr
315
        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
316
                                r1->addr.size),
317
                     int128_make64(r2->offset_in_region))
318
        && r1->dirty_log_mask == r2->dirty_log_mask
319
        && r1->romd_mode == r2->romd_mode
320
        && r1->readonly == r2->readonly;
321
}
322

    
323
/* Attempt to simplify a view by merging adjacent ranges */
324
static void flatview_simplify(FlatView *view)
325
{
326
    unsigned i, j;
327

    
328
    i = 0;
329
    while (i < view->nr) {
330
        j = i + 1;
331
        while (j < view->nr
332
               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
333
            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
334
            ++j;
335
        }
336
        ++i;
337
        memmove(&view->ranges[i], &view->ranges[j],
338
                (view->nr - j) * sizeof(view->ranges[j]));
339
        view->nr -= j - i;
340
    }
341
}
342

    
343
static bool memory_region_big_endian(MemoryRegion *mr)
344
{
345
#ifdef TARGET_WORDS_BIGENDIAN
346
    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
347
#else
348
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
349
#endif
350
}
351

    
352
static bool memory_region_wrong_endianness(MemoryRegion *mr)
353
{
354
#ifdef TARGET_WORDS_BIGENDIAN
355
    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
356
#else
357
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
358
#endif
359
}
360

    
361
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
362
{
363
    if (memory_region_wrong_endianness(mr)) {
364
        switch (size) {
365
        case 1:
366
            break;
367
        case 2:
368
            *data = bswap16(*data);
369
            break;
370
        case 4:
371
            *data = bswap32(*data);
372
            break;
373
        case 8:
374
            *data = bswap64(*data);
375
            break;
376
        default:
377
            abort();
378
        }
379
    }
380
}
381

    
382
static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
383
                                                hwaddr addr,
384
                                                uint64_t *value,
385
                                                unsigned size,
386
                                                unsigned shift,
387
                                                uint64_t mask)
388
{
389
    uint64_t tmp;
390

    
391
    tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
392
    trace_memory_region_ops_read(mr, addr, tmp, size);
393
    *value |= (tmp & mask) << shift;
394
}
395

    
396
static void memory_region_read_accessor(MemoryRegion *mr,
397
                                        hwaddr addr,
398
                                        uint64_t *value,
399
                                        unsigned size,
400
                                        unsigned shift,
401
                                        uint64_t mask)
402
{
403
    uint64_t tmp;
404

    
405
    if (mr->flush_coalesced_mmio) {
406
        qemu_flush_coalesced_mmio_buffer();
407
    }
408
    tmp = mr->ops->read(mr->opaque, addr, size);
409
    trace_memory_region_ops_read(mr, addr, tmp, size);
410
    *value |= (tmp & mask) << shift;
411
}
412

    
413
static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
414
                                                 hwaddr addr,
415
                                                 uint64_t *value,
416
                                                 unsigned size,
417
                                                 unsigned shift,
418
                                                 uint64_t mask)
419
{
420
    uint64_t tmp;
421

    
422
    tmp = (*value >> shift) & mask;
423
    trace_memory_region_ops_write(mr, addr, tmp, size);
424
    mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
425
}
426

    
427
static void memory_region_write_accessor(MemoryRegion *mr,
428
                                         hwaddr addr,
429
                                         uint64_t *value,
430
                                         unsigned size,
431
                                         unsigned shift,
432
                                         uint64_t mask)
433
{
434
    uint64_t tmp;
435

    
436
    if (mr->flush_coalesced_mmio) {
437
        qemu_flush_coalesced_mmio_buffer();
438
    }
439
    tmp = (*value >> shift) & mask;
440
    trace_memory_region_ops_write(mr, addr, tmp, size);
441
    mr->ops->write(mr->opaque, addr, tmp, size);
442
}
443

    
444
static void access_with_adjusted_size(hwaddr addr,
445
                                      uint64_t *value,
446
                                      unsigned size,
447
                                      unsigned access_size_min,
448
                                      unsigned access_size_max,
449
                                      void (*access)(MemoryRegion *mr,
450
                                                     hwaddr addr,
451
                                                     uint64_t *value,
452
                                                     unsigned size,
453
                                                     unsigned shift,
454
                                                     uint64_t mask),
455
                                      MemoryRegion *mr)
456
{
457
    uint64_t access_mask;
458
    unsigned access_size;
459
    unsigned i;
460

    
461
    if (!access_size_min) {
462
        access_size_min = 1;
463
    }
464
    if (!access_size_max) {
465
        access_size_max = 4;
466
    }
467

    
468
    /* FIXME: support unaligned access? */
469
    access_size = MAX(MIN(size, access_size_max), access_size_min);
470
    access_mask = -1ULL >> (64 - access_size * 8);
471
    if (memory_region_big_endian(mr)) {
472
        for (i = 0; i < size; i += access_size) {
473
            access(mr, addr + i, value, access_size,
474
                   (size - access_size - i) * 8, access_mask);
475
        }
476
    } else {
477
        for (i = 0; i < size; i += access_size) {
478
            access(mr, addr + i, value, access_size, i * 8, access_mask);
479
        }
480
    }
481
}
482

    
483
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
484
{
485
    AddressSpace *as;
486

    
487
    while (mr->parent) {
488
        mr = mr->parent;
489
    }
490
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
491
        if (mr == as->root) {
492
            return as;
493
        }
494
    }
495
    abort();
496
}
497

    
498
/* Render a memory region into the global view.  Ranges in @view obscure
499
 * ranges in @mr.
500
 */
501
static void render_memory_region(FlatView *view,
502
                                 MemoryRegion *mr,
503
                                 Int128 base,
504
                                 AddrRange clip,
505
                                 bool readonly)
506
{
507
    MemoryRegion *subregion;
508
    unsigned i;
509
    hwaddr offset_in_region;
510
    Int128 remain;
511
    Int128 now;
512
    FlatRange fr;
513
    AddrRange tmp;
514

    
515
    if (!mr->enabled) {
516
        return;
517
    }
518

    
519
    int128_addto(&base, int128_make64(mr->addr));
520
    readonly |= mr->readonly;
521

    
522
    tmp = addrrange_make(base, mr->size);
523

    
524
    if (!addrrange_intersects(tmp, clip)) {
525
        return;
526
    }
527

    
528
    clip = addrrange_intersection(tmp, clip);
529

    
530
    if (mr->alias) {
531
        int128_subfrom(&base, int128_make64(mr->alias->addr));
532
        int128_subfrom(&base, int128_make64(mr->alias_offset));
533
        render_memory_region(view, mr->alias, base, clip, readonly);
534
        return;
535
    }
536

    
537
    /* Render subregions in priority order. */
538
    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
539
        render_memory_region(view, subregion, base, clip, readonly);
540
    }
541

    
542
    if (!mr->terminates) {
543
        return;
544
    }
545

    
546
    offset_in_region = int128_get64(int128_sub(clip.start, base));
547
    base = clip.start;
548
    remain = clip.size;
549

    
550
    fr.mr = mr;
551
    fr.dirty_log_mask = mr->dirty_log_mask;
552
    fr.romd_mode = mr->romd_mode;
553
    fr.readonly = readonly;
554

    
555
    /* Render the region itself into any gaps left by the current view. */
556
    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
557
        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
558
            continue;
559
        }
560
        if (int128_lt(base, view->ranges[i].addr.start)) {
561
            now = int128_min(remain,
562
                             int128_sub(view->ranges[i].addr.start, base));
563
            fr.offset_in_region = offset_in_region;
564
            fr.addr = addrrange_make(base, now);
565
            flatview_insert(view, i, &fr);
566
            ++i;
567
            int128_addto(&base, now);
568
            offset_in_region += int128_get64(now);
569
            int128_subfrom(&remain, now);
570
        }
571
        now = int128_sub(int128_min(int128_add(base, remain),
572
                                    addrrange_end(view->ranges[i].addr)),
573
                         base);
574
        int128_addto(&base, now);
575
        offset_in_region += int128_get64(now);
576
        int128_subfrom(&remain, now);
577
    }
578
    if (int128_nz(remain)) {
579
        fr.offset_in_region = offset_in_region;
580
        fr.addr = addrrange_make(base, remain);
581
        flatview_insert(view, i, &fr);
582
    }
583
}
584

    
585
/* Render a memory topology into a list of disjoint absolute ranges. */
586
static FlatView *generate_memory_topology(MemoryRegion *mr)
587
{
588
    FlatView *view;
589

    
590
    view = g_new(FlatView, 1);
591
    flatview_init(view);
592

    
593
    if (mr) {
594
        render_memory_region(view, mr, int128_zero(),
595
                             addrrange_make(int128_zero(), int128_2_64()), false);
596
    }
597
    flatview_simplify(view);
598

    
599
    return view;
600
}
601

    
602
static void address_space_add_del_ioeventfds(AddressSpace *as,
603
                                             MemoryRegionIoeventfd *fds_new,
604
                                             unsigned fds_new_nb,
605
                                             MemoryRegionIoeventfd *fds_old,
606
                                             unsigned fds_old_nb)
607
{
608
    unsigned iold, inew;
609
    MemoryRegionIoeventfd *fd;
610
    MemoryRegionSection section;
611

    
612
    /* Generate a symmetric difference of the old and new fd sets, adding
613
     * and deleting as necessary.
614
     */
615

    
616
    iold = inew = 0;
617
    while (iold < fds_old_nb || inew < fds_new_nb) {
618
        if (iold < fds_old_nb
619
            && (inew == fds_new_nb
620
                || memory_region_ioeventfd_before(fds_old[iold],
621
                                                  fds_new[inew]))) {
622
            fd = &fds_old[iold];
623
            section = (MemoryRegionSection) {
624
                .address_space = as,
625
                .offset_within_address_space = int128_get64(fd->addr.start),
626
                .size = fd->addr.size,
627
            };
628
            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
629
                                 fd->match_data, fd->data, fd->e);
630
            ++iold;
631
        } else if (inew < fds_new_nb
632
                   && (iold == fds_old_nb
633
                       || memory_region_ioeventfd_before(fds_new[inew],
634
                                                         fds_old[iold]))) {
635
            fd = &fds_new[inew];
636
            section = (MemoryRegionSection) {
637
                .address_space = as,
638
                .offset_within_address_space = int128_get64(fd->addr.start),
639
                .size = fd->addr.size,
640
            };
641
            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
642
                                 fd->match_data, fd->data, fd->e);
643
            ++inew;
644
        } else {
645
            ++iold;
646
            ++inew;
647
        }
648
    }
649
}
650

    
651
static FlatView *address_space_get_flatview(AddressSpace *as)
652
{
653
    FlatView *view;
654

    
655
    qemu_mutex_lock(&flat_view_mutex);
656
    view = as->current_map;
657
    flatview_ref(view);
658
    qemu_mutex_unlock(&flat_view_mutex);
659
    return view;
660
}
661

    
662
static void address_space_update_ioeventfds(AddressSpace *as)
663
{
664
    FlatView *view;
665
    FlatRange *fr;
666
    unsigned ioeventfd_nb = 0;
667
    MemoryRegionIoeventfd *ioeventfds = NULL;
668
    AddrRange tmp;
669
    unsigned i;
670

    
671
    view = address_space_get_flatview(as);
672
    FOR_EACH_FLAT_RANGE(fr, view) {
673
        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
674
            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
675
                                  int128_sub(fr->addr.start,
676
                                             int128_make64(fr->offset_in_region)));
677
            if (addrrange_intersects(fr->addr, tmp)) {
678
                ++ioeventfd_nb;
679
                ioeventfds = g_realloc(ioeventfds,
680
                                          ioeventfd_nb * sizeof(*ioeventfds));
681
                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
682
                ioeventfds[ioeventfd_nb-1].addr = tmp;
683
            }
684
        }
685
    }
686

    
687
    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
688
                                     as->ioeventfds, as->ioeventfd_nb);
689

    
690
    g_free(as->ioeventfds);
691
    as->ioeventfds = ioeventfds;
692
    as->ioeventfd_nb = ioeventfd_nb;
693
    flatview_unref(view);
694
}
695

    
696
static void address_space_update_topology_pass(AddressSpace *as,
697
                                               const FlatView *old_view,
698
                                               const FlatView *new_view,
699
                                               bool adding)
700
{
701
    unsigned iold, inew;
702
    FlatRange *frold, *frnew;
703

    
704
    /* Generate a symmetric difference of the old and new memory maps.
705
     * Kill ranges in the old map, and instantiate ranges in the new map.
706
     */
707
    iold = inew = 0;
708
    while (iold < old_view->nr || inew < new_view->nr) {
709
        if (iold < old_view->nr) {
710
            frold = &old_view->ranges[iold];
711
        } else {
712
            frold = NULL;
713
        }
714
        if (inew < new_view->nr) {
715
            frnew = &new_view->ranges[inew];
716
        } else {
717
            frnew = NULL;
718
        }
719

    
720
        if (frold
721
            && (!frnew
722
                || int128_lt(frold->addr.start, frnew->addr.start)
723
                || (int128_eq(frold->addr.start, frnew->addr.start)
724
                    && !flatrange_equal(frold, frnew)))) {
725
            /* In old but not in new, or in both but attributes changed. */
726

    
727
            if (!adding) {
728
                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
729
            }
730

    
731
            ++iold;
732
        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
733
            /* In both and unchanged (except logging may have changed) */
734

    
735
            if (adding) {
736
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
737
                if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
738
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
739
                } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
740
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
741
                }
742
            }
743

    
744
            ++iold;
745
            ++inew;
746
        } else {
747
            /* In new */
748

    
749
            if (adding) {
750
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
751
            }
752

    
753
            ++inew;
754
        }
755
    }
756
}
757

    
758

    
759
static void address_space_update_topology(AddressSpace *as)
760
{
761
    FlatView *old_view = address_space_get_flatview(as);
762
    FlatView *new_view = generate_memory_topology(as->root);
763

    
764
    address_space_update_topology_pass(as, old_view, new_view, false);
765
    address_space_update_topology_pass(as, old_view, new_view, true);
766

    
767
    qemu_mutex_lock(&flat_view_mutex);
768
    flatview_unref(as->current_map);
769
    as->current_map = new_view;
770
    qemu_mutex_unlock(&flat_view_mutex);
771

    
772
    /* Note that all the old MemoryRegions are still alive up to this
773
     * point.  This relieves most MemoryListeners from the need to
774
     * ref/unref the MemoryRegions they get---unless they use them
775
     * outside the iothread mutex, in which case precise reference
776
     * counting is necessary.
777
     */
778
    flatview_unref(old_view);
779

    
780
    address_space_update_ioeventfds(as);
781
}
782

    
783
void memory_region_transaction_begin(void)
784
{
785
    qemu_flush_coalesced_mmio_buffer();
786
    ++memory_region_transaction_depth;
787
}
788

    
789
void memory_region_transaction_commit(void)
790
{
791
    AddressSpace *as;
792

    
793
    assert(memory_region_transaction_depth);
794
    --memory_region_transaction_depth;
795
    if (!memory_region_transaction_depth && memory_region_update_pending) {
796
        memory_region_update_pending = false;
797
        MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
798

    
799
        QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
800
            address_space_update_topology(as);
801
        }
802

    
803
        MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
804
    }
805
}
806

    
807
static void memory_region_destructor_none(MemoryRegion *mr)
808
{
809
}
810

    
811
static void memory_region_destructor_ram(MemoryRegion *mr)
812
{
813
    qemu_ram_free(mr->ram_addr);
814
}
815

    
816
static void memory_region_destructor_alias(MemoryRegion *mr)
817
{
818
    memory_region_unref(mr->alias);
819
}
820

    
821
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
822
{
823
    qemu_ram_free_from_ptr(mr->ram_addr);
824
}
825

    
826
static void memory_region_destructor_rom_device(MemoryRegion *mr)
827
{
828
    qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
829
}
830

    
831
void memory_region_init(MemoryRegion *mr,
832
                        Object *owner,
833
                        const char *name,
834
                        uint64_t size)
835
{
836
    mr->ops = &unassigned_mem_ops;
837
    mr->opaque = NULL;
838
    mr->owner = owner;
839
    mr->iommu_ops = NULL;
840
    mr->parent = NULL;
841
    mr->size = int128_make64(size);
842
    if (size == UINT64_MAX) {
843
        mr->size = int128_2_64();
844
    }
845
    mr->addr = 0;
846
    mr->subpage = false;
847
    mr->enabled = true;
848
    mr->terminates = false;
849
    mr->ram = false;
850
    mr->romd_mode = true;
851
    mr->readonly = false;
852
    mr->rom_device = false;
853
    mr->destructor = memory_region_destructor_none;
854
    mr->priority = 0;
855
    mr->may_overlap = false;
856
    mr->alias = NULL;
857
    QTAILQ_INIT(&mr->subregions);
858
    memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
859
    QTAILQ_INIT(&mr->coalesced);
860
    mr->name = g_strdup(name);
861
    mr->dirty_log_mask = 0;
862
    mr->ioeventfd_nb = 0;
863
    mr->ioeventfds = NULL;
864
    mr->flush_coalesced_mmio = false;
865
}
866

    
867
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
868
                                    unsigned size)
869
{
870
#ifdef DEBUG_UNASSIGNED
871
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
872
#endif
873
    if (current_cpu != NULL) {
874
        cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
875
    }
876
    return 0;
877
}
878

    
879
static void unassigned_mem_write(void *opaque, hwaddr addr,
880
                                 uint64_t val, unsigned size)
881
{
882
#ifdef DEBUG_UNASSIGNED
883
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
884
#endif
885
    if (current_cpu != NULL) {
886
        cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
887
    }
888
}
889

    
890
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
891
                                   unsigned size, bool is_write)
892
{
893
    return false;
894
}
895

    
896
const MemoryRegionOps unassigned_mem_ops = {
897
    .valid.accepts = unassigned_mem_accepts,
898
    .endianness = DEVICE_NATIVE_ENDIAN,
899
};
900

    
901
bool memory_region_access_valid(MemoryRegion *mr,
902
                                hwaddr addr,
903
                                unsigned size,
904
                                bool is_write)
905
{
906
    int access_size_min, access_size_max;
907
    int access_size, i;
908

    
909
    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
910
        return false;
911
    }
912

    
913
    if (!mr->ops->valid.accepts) {
914
        return true;
915
    }
916

    
917
    access_size_min = mr->ops->valid.min_access_size;
918
    if (!mr->ops->valid.min_access_size) {
919
        access_size_min = 1;
920
    }
921

    
922
    access_size_max = mr->ops->valid.max_access_size;
923
    if (!mr->ops->valid.max_access_size) {
924
        access_size_max = 4;
925
    }
926

    
927
    access_size = MAX(MIN(size, access_size_max), access_size_min);
928
    for (i = 0; i < size; i += access_size) {
929
        if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
930
                                    is_write)) {
931
            return false;
932
        }
933
    }
934

    
935
    return true;
936
}
937

    
938
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
939
                                             hwaddr addr,
940
                                             unsigned size)
941
{
942
    uint64_t data = 0;
943

    
944
    if (mr->ops->read) {
945
        access_with_adjusted_size(addr, &data, size,
946
                                  mr->ops->impl.min_access_size,
947
                                  mr->ops->impl.max_access_size,
948
                                  memory_region_read_accessor, mr);
949
    } else {
950
        access_with_adjusted_size(addr, &data, size, 1, 4,
951
                                  memory_region_oldmmio_read_accessor, mr);
952
    }
953

    
954
    return data;
955
}
956

    
957
static bool memory_region_dispatch_read(MemoryRegion *mr,
958
                                        hwaddr addr,
959
                                        uint64_t *pval,
960
                                        unsigned size)
961
{
962
    if (!memory_region_access_valid(mr, addr, size, false)) {
963
        *pval = unassigned_mem_read(mr, addr, size);
964
        return true;
965
    }
966

    
967
    *pval = memory_region_dispatch_read1(mr, addr, size);
968
    adjust_endianness(mr, pval, size);
969
    return false;
970
}
971

    
972
static bool memory_region_dispatch_write(MemoryRegion *mr,
973
                                         hwaddr addr,
974
                                         uint64_t data,
975
                                         unsigned size)
976
{
977
    if (!memory_region_access_valid(mr, addr, size, true)) {
978
        unassigned_mem_write(mr, addr, data, size);
979
        return true;
980
    }
981

    
982
    adjust_endianness(mr, &data, size);
983

    
984
    if (mr->ops->write) {
985
        access_with_adjusted_size(addr, &data, size,
986
                                  mr->ops->impl.min_access_size,
987
                                  mr->ops->impl.max_access_size,
988
                                  memory_region_write_accessor, mr);
989
    } else {
990
        access_with_adjusted_size(addr, &data, size, 1, 4,
991
                                  memory_region_oldmmio_write_accessor, mr);
992
    }
993
    return false;
994
}
995

    
996
void memory_region_init_io(MemoryRegion *mr,
997
                           Object *owner,
998
                           const MemoryRegionOps *ops,
999
                           void *opaque,
1000
                           const char *name,
1001
                           uint64_t size)
1002
{
1003
    memory_region_init(mr, owner, name, size);
1004
    mr->ops = ops;
1005
    mr->opaque = opaque;
1006
    mr->terminates = true;
1007
    mr->ram_addr = ~(ram_addr_t)0;
1008
}
1009

    
1010
void memory_region_init_ram(MemoryRegion *mr,
1011
                            Object *owner,
1012
                            const char *name,
1013
                            uint64_t size)
1014
{
1015
    memory_region_init(mr, owner, name, size);
1016
    mr->ram = true;
1017
    mr->terminates = true;
1018
    mr->destructor = memory_region_destructor_ram;
1019
    mr->ram_addr = qemu_ram_alloc(size, mr);
1020
}
1021

    
1022
void memory_region_init_ram_ptr(MemoryRegion *mr,
1023
                                Object *owner,
1024
                                const char *name,
1025
                                uint64_t size,
1026
                                void *ptr)
1027
{
1028
    memory_region_init(mr, owner, name, size);
1029
    mr->ram = true;
1030
    mr->terminates = true;
1031
    mr->destructor = memory_region_destructor_ram_from_ptr;
1032
    mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1033
}
1034

    
1035
void memory_region_init_alias(MemoryRegion *mr,
1036
                              Object *owner,
1037
                              const char *name,
1038
                              MemoryRegion *orig,
1039
                              hwaddr offset,
1040
                              uint64_t size)
1041
{
1042
    memory_region_init(mr, owner, name, size);
1043
    memory_region_ref(orig);
1044
    mr->destructor = memory_region_destructor_alias;
1045
    mr->alias = orig;
1046
    mr->alias_offset = offset;
1047
}
1048

    
1049
void memory_region_init_rom_device(MemoryRegion *mr,
1050
                                   Object *owner,
1051
                                   const MemoryRegionOps *ops,
1052
                                   void *opaque,
1053
                                   const char *name,
1054
                                   uint64_t size)
1055
{
1056
    memory_region_init(mr, owner, name, size);
1057
    mr->ops = ops;
1058
    mr->opaque = opaque;
1059
    mr->terminates = true;
1060
    mr->rom_device = true;
1061
    mr->destructor = memory_region_destructor_rom_device;
1062
    mr->ram_addr = qemu_ram_alloc(size, mr);
1063
}
1064

    
1065
void memory_region_init_iommu(MemoryRegion *mr,
1066
                              Object *owner,
1067
                              const MemoryRegionIOMMUOps *ops,
1068
                              const char *name,
1069
                              uint64_t size)
1070
{
1071
    memory_region_init(mr, owner, name, size);
1072
    mr->iommu_ops = ops,
1073
    mr->terminates = true;  /* then re-forwards */
1074
    notifier_list_init(&mr->iommu_notify);
1075
}
1076

    
1077
void memory_region_init_reservation(MemoryRegion *mr,
1078
                                    Object *owner,
1079
                                    const char *name,
1080
                                    uint64_t size)
1081
{
1082
    memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1083
}
1084

    
1085
void memory_region_destroy(MemoryRegion *mr)
1086
{
1087
    assert(QTAILQ_EMPTY(&mr->subregions));
1088
    assert(memory_region_transaction_depth == 0);
1089
    mr->destructor(mr);
1090
    memory_region_clear_coalescing(mr);
1091
    g_free((char *)mr->name);
1092
    g_free(mr->ioeventfds);
1093
}
1094

    
1095
Object *memory_region_owner(MemoryRegion *mr)
1096
{
1097
    return mr->owner;
1098
}
1099

    
1100
void memory_region_ref(MemoryRegion *mr)
1101
{
1102
    if (mr && mr->owner) {
1103
        object_ref(mr->owner);
1104
    }
1105
}
1106

    
1107
void memory_region_unref(MemoryRegion *mr)
1108
{
1109
    if (mr && mr->owner) {
1110
        object_unref(mr->owner);
1111
    }
1112
}
1113

    
1114
uint64_t memory_region_size(MemoryRegion *mr)
1115
{
1116
    if (int128_eq(mr->size, int128_2_64())) {
1117
        return UINT64_MAX;
1118
    }
1119
    return int128_get64(mr->size);
1120
}
1121

    
1122
const char *memory_region_name(MemoryRegion *mr)
1123
{
1124
    return mr->name;
1125
}
1126

    
1127
bool memory_region_is_ram(MemoryRegion *mr)
1128
{
1129
    return mr->ram;
1130
}
1131

    
1132
bool memory_region_is_logging(MemoryRegion *mr)
1133
{
1134
    return mr->dirty_log_mask;
1135
}
1136

    
1137
bool memory_region_is_rom(MemoryRegion *mr)
1138
{
1139
    return mr->ram && mr->readonly;
1140
}
1141

    
1142
bool memory_region_is_iommu(MemoryRegion *mr)
1143
{
1144
    return mr->iommu_ops;
1145
}
1146

    
1147
void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1148
{
1149
    notifier_list_add(&mr->iommu_notify, n);
1150
}
1151

    
1152
void memory_region_unregister_iommu_notifier(Notifier *n)
1153
{
1154
    notifier_remove(n);
1155
}
1156

    
1157
void memory_region_notify_iommu(MemoryRegion *mr,
1158
                                IOMMUTLBEntry entry)
1159
{
1160
    assert(memory_region_is_iommu(mr));
1161
    notifier_list_notify(&mr->iommu_notify, &entry);
1162
}
1163

    
1164
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1165
{
1166
    uint8_t mask = 1 << client;
1167

    
1168
    memory_region_transaction_begin();
1169
    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1170
    memory_region_update_pending |= mr->enabled;
1171
    memory_region_transaction_commit();
1172
}
1173

    
1174
bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1175
                             hwaddr size, unsigned client)
1176
{
1177
    assert(mr->terminates);
1178
    return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1179
}
1180

    
1181
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1182
                             hwaddr size)
1183
{
1184
    assert(mr->terminates);
1185
    cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1186
}
1187

    
1188
bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1189
                                        hwaddr size, unsigned client)
1190
{
1191
    bool ret;
1192
    assert(mr->terminates);
1193
    ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1194
    if (ret) {
1195
        cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1196
    }
1197
    return ret;
1198
}
1199

    
1200

    
1201
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1202
{
1203
    AddressSpace *as;
1204
    FlatRange *fr;
1205

    
1206
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1207
        FlatView *view = address_space_get_flatview(as);
1208
        FOR_EACH_FLAT_RANGE(fr, view) {
1209
            if (fr->mr == mr) {
1210
                MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1211
            }
1212
        }
1213
        flatview_unref(view);
1214
    }
1215
}
1216

    
1217
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1218
{
1219
    if (mr->readonly != readonly) {
1220
        memory_region_transaction_begin();
1221
        mr->readonly = readonly;
1222
        memory_region_update_pending |= mr->enabled;
1223
        memory_region_transaction_commit();
1224
    }
1225
}
1226

    
1227
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1228
{
1229
    if (mr->romd_mode != romd_mode) {
1230
        memory_region_transaction_begin();
1231
        mr->romd_mode = romd_mode;
1232
        memory_region_update_pending |= mr->enabled;
1233
        memory_region_transaction_commit();
1234
    }
1235
}
1236

    
1237
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1238
                               hwaddr size, unsigned client)
1239
{
1240
    assert(mr->terminates);
1241
    cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1242
}
1243

    
1244
void *memory_region_get_ram_ptr(MemoryRegion *mr)
1245
{
1246
    if (mr->alias) {
1247
        return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1248
    }
1249

    
1250
    assert(mr->terminates);
1251

    
1252
    return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1253
}
1254

    
1255
static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1256
{
1257
    FlatView *view;
1258
    FlatRange *fr;
1259
    CoalescedMemoryRange *cmr;
1260
    AddrRange tmp;
1261
    MemoryRegionSection section;
1262

    
1263
    view = address_space_get_flatview(as);
1264
    FOR_EACH_FLAT_RANGE(fr, view) {
1265
        if (fr->mr == mr) {
1266
            section = (MemoryRegionSection) {
1267
                .address_space = as,
1268
                .offset_within_address_space = int128_get64(fr->addr.start),
1269
                .size = fr->addr.size,
1270
            };
1271

    
1272
            MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1273
                                 int128_get64(fr->addr.start),
1274
                                 int128_get64(fr->addr.size));
1275
            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1276
                tmp = addrrange_shift(cmr->addr,
1277
                                      int128_sub(fr->addr.start,
1278
                                                 int128_make64(fr->offset_in_region)));
1279
                if (!addrrange_intersects(tmp, fr->addr)) {
1280
                    continue;
1281
                }
1282
                tmp = addrrange_intersection(tmp, fr->addr);
1283
                MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1284
                                     int128_get64(tmp.start),
1285
                                     int128_get64(tmp.size));
1286
            }
1287
        }
1288
    }
1289
    flatview_unref(view);
1290
}
1291

    
1292
static void memory_region_update_coalesced_range(MemoryRegion *mr)
1293
{
1294
    AddressSpace *as;
1295

    
1296
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1297
        memory_region_update_coalesced_range_as(mr, as);
1298
    }
1299
}
1300

    
1301
void memory_region_set_coalescing(MemoryRegion *mr)
1302
{
1303
    memory_region_clear_coalescing(mr);
1304
    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1305
}
1306

    
1307
void memory_region_add_coalescing(MemoryRegion *mr,
1308
                                  hwaddr offset,
1309
                                  uint64_t size)
1310
{
1311
    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1312

    
1313
    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1314
    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1315
    memory_region_update_coalesced_range(mr);
1316
    memory_region_set_flush_coalesced(mr);
1317
}
1318

    
1319
void memory_region_clear_coalescing(MemoryRegion *mr)
1320
{
1321
    CoalescedMemoryRange *cmr;
1322

    
1323
    qemu_flush_coalesced_mmio_buffer();
1324
    mr->flush_coalesced_mmio = false;
1325

    
1326
    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1327
        cmr = QTAILQ_FIRST(&mr->coalesced);
1328
        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1329
        g_free(cmr);
1330
    }
1331
    memory_region_update_coalesced_range(mr);
1332
}
1333

    
1334
void memory_region_set_flush_coalesced(MemoryRegion *mr)
1335
{
1336
    mr->flush_coalesced_mmio = true;
1337
}
1338

    
1339
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1340
{
1341
    qemu_flush_coalesced_mmio_buffer();
1342
    if (QTAILQ_EMPTY(&mr->coalesced)) {
1343
        mr->flush_coalesced_mmio = false;
1344
    }
1345
}
1346

    
1347
void memory_region_add_eventfd(MemoryRegion *mr,
1348
                               hwaddr addr,
1349
                               unsigned size,
1350
                               bool match_data,
1351
                               uint64_t data,
1352
                               EventNotifier *e)
1353
{
1354
    MemoryRegionIoeventfd mrfd = {
1355
        .addr.start = int128_make64(addr),
1356
        .addr.size = int128_make64(size),
1357
        .match_data = match_data,
1358
        .data = data,
1359
        .e = e,
1360
    };
1361
    unsigned i;
1362

    
1363
    adjust_endianness(mr, &mrfd.data, size);
1364
    memory_region_transaction_begin();
1365
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1366
        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1367
            break;
1368
        }
1369
    }
1370
    ++mr->ioeventfd_nb;
1371
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1372
                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1373
    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1374
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1375
    mr->ioeventfds[i] = mrfd;
1376
    memory_region_update_pending |= mr->enabled;
1377
    memory_region_transaction_commit();
1378
}
1379

    
1380
void memory_region_del_eventfd(MemoryRegion *mr,
1381
                               hwaddr addr,
1382
                               unsigned size,
1383
                               bool match_data,
1384
                               uint64_t data,
1385
                               EventNotifier *e)
1386
{
1387
    MemoryRegionIoeventfd mrfd = {
1388
        .addr.start = int128_make64(addr),
1389
        .addr.size = int128_make64(size),
1390
        .match_data = match_data,
1391
        .data = data,
1392
        .e = e,
1393
    };
1394
    unsigned i;
1395

    
1396
    adjust_endianness(mr, &mrfd.data, size);
1397
    memory_region_transaction_begin();
1398
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1399
        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1400
            break;
1401
        }
1402
    }
1403
    assert(i != mr->ioeventfd_nb);
1404
    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1405
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1406
    --mr->ioeventfd_nb;
1407
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1408
                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1409
    memory_region_update_pending |= mr->enabled;
1410
    memory_region_transaction_commit();
1411
}
1412

    
1413
static void memory_region_add_subregion_common(MemoryRegion *mr,
1414
                                               hwaddr offset,
1415
                                               MemoryRegion *subregion)
1416
{
1417
    MemoryRegion *other;
1418

    
1419
    memory_region_transaction_begin();
1420

    
1421
    assert(!subregion->parent);
1422
    memory_region_ref(subregion);
1423
    subregion->parent = mr;
1424
    subregion->addr = offset;
1425
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1426
        if (subregion->may_overlap || other->may_overlap) {
1427
            continue;
1428
        }
1429
        if (int128_ge(int128_make64(offset),
1430
                      int128_add(int128_make64(other->addr), other->size))
1431
            || int128_le(int128_add(int128_make64(offset), subregion->size),
1432
                         int128_make64(other->addr))) {
1433
            continue;
1434
        }
1435
#if 0
1436
        printf("warning: subregion collision %llx/%llx (%s) "
1437
               "vs %llx/%llx (%s)\n",
1438
               (unsigned long long)offset,
1439
               (unsigned long long)int128_get64(subregion->size),
1440
               subregion->name,
1441
               (unsigned long long)other->addr,
1442
               (unsigned long long)int128_get64(other->size),
1443
               other->name);
1444
#endif
1445
    }
1446
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1447
        if (subregion->priority >= other->priority) {
1448
            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1449
            goto done;
1450
        }
1451
    }
1452
    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1453
done:
1454
    memory_region_update_pending |= mr->enabled && subregion->enabled;
1455
    memory_region_transaction_commit();
1456
}
1457

    
1458

    
1459
void memory_region_add_subregion(MemoryRegion *mr,
1460
                                 hwaddr offset,
1461
                                 MemoryRegion *subregion)
1462
{
1463
    subregion->may_overlap = false;
1464
    subregion->priority = 0;
1465
    memory_region_add_subregion_common(mr, offset, subregion);
1466
}
1467

    
1468
void memory_region_add_subregion_overlap(MemoryRegion *mr,
1469
                                         hwaddr offset,
1470
                                         MemoryRegion *subregion,
1471
                                         int priority)
1472
{
1473
    subregion->may_overlap = true;
1474
    subregion->priority = priority;
1475
    memory_region_add_subregion_common(mr, offset, subregion);
1476
}
1477

    
1478
void memory_region_del_subregion(MemoryRegion *mr,
1479
                                 MemoryRegion *subregion)
1480
{
1481
    memory_region_transaction_begin();
1482
    assert(subregion->parent == mr);
1483
    subregion->parent = NULL;
1484
    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1485
    memory_region_unref(subregion);
1486
    memory_region_update_pending |= mr->enabled && subregion->enabled;
1487
    memory_region_transaction_commit();
1488
}
1489

    
1490
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1491
{
1492
    if (enabled == mr->enabled) {
1493
        return;
1494
    }
1495
    memory_region_transaction_begin();
1496
    mr->enabled = enabled;
1497
    memory_region_update_pending = true;
1498
    memory_region_transaction_commit();
1499
}
1500

    
1501
void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1502
{
1503
    MemoryRegion *parent = mr->parent;
1504
    int priority = mr->priority;
1505
    bool may_overlap = mr->may_overlap;
1506

    
1507
    if (addr == mr->addr || !parent) {
1508
        mr->addr = addr;
1509
        return;
1510
    }
1511

    
1512
    memory_region_transaction_begin();
1513
    memory_region_ref(mr);
1514
    memory_region_del_subregion(parent, mr);
1515
    if (may_overlap) {
1516
        memory_region_add_subregion_overlap(parent, addr, mr, priority);
1517
    } else {
1518
        memory_region_add_subregion(parent, addr, mr);
1519
    }
1520
    memory_region_unref(mr);
1521
    memory_region_transaction_commit();
1522
}
1523

    
1524
void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1525
{
1526
    assert(mr->alias);
1527

    
1528
    if (offset == mr->alias_offset) {
1529
        return;
1530
    }
1531

    
1532
    memory_region_transaction_begin();
1533
    mr->alias_offset = offset;
1534
    memory_region_update_pending |= mr->enabled;
1535
    memory_region_transaction_commit();
1536
}
1537

    
1538
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1539
{
1540
    return mr->ram_addr;
1541
}
1542

    
1543
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1544
{
1545
    const AddrRange *addr = addr_;
1546
    const FlatRange *fr = fr_;
1547

    
1548
    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1549
        return -1;
1550
    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1551
        return 1;
1552
    }
1553
    return 0;
1554
}
1555

    
1556
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1557
{
1558
    return bsearch(&addr, view->ranges, view->nr,
1559
                   sizeof(FlatRange), cmp_flatrange_addr);
1560
}
1561

    
1562
bool memory_region_present(MemoryRegion *parent, hwaddr addr)
1563
{
1564
    MemoryRegion *mr = memory_region_find(parent, addr, 1).mr;
1565
    if (!mr) {
1566
        return false;
1567
    }
1568
    memory_region_unref(mr);
1569
    return true;
1570
}
1571

    
1572
MemoryRegionSection memory_region_find(MemoryRegion *mr,
1573
                                       hwaddr addr, uint64_t size)
1574
{
1575
    MemoryRegionSection ret = { .mr = NULL };
1576
    MemoryRegion *root;
1577
    AddressSpace *as;
1578
    AddrRange range;
1579
    FlatView *view;
1580
    FlatRange *fr;
1581

    
1582
    addr += mr->addr;
1583
    for (root = mr; root->parent; ) {
1584
        root = root->parent;
1585
        addr += root->addr;
1586
    }
1587

    
1588
    as = memory_region_to_address_space(root);
1589
    range = addrrange_make(int128_make64(addr), int128_make64(size));
1590

    
1591
    view = address_space_get_flatview(as);
1592
    fr = flatview_lookup(view, range);
1593
    if (!fr) {
1594
        flatview_unref(view);
1595
        return ret;
1596
    }
1597

    
1598
    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1599
        --fr;
1600
    }
1601

    
1602
    ret.mr = fr->mr;
1603
    ret.address_space = as;
1604
    range = addrrange_intersection(range, fr->addr);
1605
    ret.offset_within_region = fr->offset_in_region;
1606
    ret.offset_within_region += int128_get64(int128_sub(range.start,
1607
                                                        fr->addr.start));
1608
    ret.size = range.size;
1609
    ret.offset_within_address_space = int128_get64(range.start);
1610
    ret.readonly = fr->readonly;
1611
    memory_region_ref(ret.mr);
1612

    
1613
    flatview_unref(view);
1614
    return ret;
1615
}
1616

    
1617
void address_space_sync_dirty_bitmap(AddressSpace *as)
1618
{
1619
    FlatView *view;
1620
    FlatRange *fr;
1621

    
1622
    view = address_space_get_flatview(as);
1623
    FOR_EACH_FLAT_RANGE(fr, view) {
1624
        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1625
    }
1626
    flatview_unref(view);
1627
}
1628

    
1629
void memory_global_dirty_log_start(void)
1630
{
1631
    global_dirty_log = true;
1632
    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1633
}
1634

    
1635
void memory_global_dirty_log_stop(void)
1636
{
1637
    global_dirty_log = false;
1638
    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1639
}
1640

    
1641
static void listener_add_address_space(MemoryListener *listener,
1642
                                       AddressSpace *as)
1643
{
1644
    FlatView *view;
1645
    FlatRange *fr;
1646

    
1647
    if (listener->address_space_filter
1648
        && listener->address_space_filter != as) {
1649
        return;
1650
    }
1651

    
1652
    if (global_dirty_log) {
1653
        if (listener->log_global_start) {
1654
            listener->log_global_start(listener);
1655
        }
1656
    }
1657

    
1658
    view = address_space_get_flatview(as);
1659
    FOR_EACH_FLAT_RANGE(fr, view) {
1660
        MemoryRegionSection section = {
1661
            .mr = fr->mr,
1662
            .address_space = as,
1663
            .offset_within_region = fr->offset_in_region,
1664
            .size = fr->addr.size,
1665
            .offset_within_address_space = int128_get64(fr->addr.start),
1666
            .readonly = fr->readonly,
1667
        };
1668
        if (listener->region_add) {
1669
            listener->region_add(listener, &section);
1670
        }
1671
    }
1672
    flatview_unref(view);
1673
}
1674

    
1675
void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1676
{
1677
    MemoryListener *other = NULL;
1678
    AddressSpace *as;
1679

    
1680
    listener->address_space_filter = filter;
1681
    if (QTAILQ_EMPTY(&memory_listeners)
1682
        || listener->priority >= QTAILQ_LAST(&memory_listeners,
1683
                                             memory_listeners)->priority) {
1684
        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1685
    } else {
1686
        QTAILQ_FOREACH(other, &memory_listeners, link) {
1687
            if (listener->priority < other->priority) {
1688
                break;
1689
            }
1690
        }
1691
        QTAILQ_INSERT_BEFORE(other, listener, link);
1692
    }
1693

    
1694
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1695
        listener_add_address_space(listener, as);
1696
    }
1697
}
1698

    
1699
void memory_listener_unregister(MemoryListener *listener)
1700
{
1701
    QTAILQ_REMOVE(&memory_listeners, listener, link);
1702
}
1703

    
1704
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1705
{
1706
    if (QTAILQ_EMPTY(&address_spaces)) {
1707
        memory_init();
1708
    }
1709

    
1710
    memory_region_transaction_begin();
1711
    as->root = root;
1712
    as->current_map = g_new(FlatView, 1);
1713
    flatview_init(as->current_map);
1714
    as->ioeventfd_nb = 0;
1715
    as->ioeventfds = NULL;
1716
    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1717
    as->name = g_strdup(name ? name : "anonymous");
1718
    address_space_init_dispatch(as);
1719
    memory_region_update_pending |= root->enabled;
1720
    memory_region_transaction_commit();
1721
}
1722

    
1723
void address_space_destroy(AddressSpace *as)
1724
{
1725
    /* Flush out anything from MemoryListeners listening in on this */
1726
    memory_region_transaction_begin();
1727
    as->root = NULL;
1728
    memory_region_transaction_commit();
1729
    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1730
    address_space_destroy_dispatch(as);
1731
    flatview_unref(as->current_map);
1732
    g_free(as->name);
1733
    g_free(as->ioeventfds);
1734
}
1735

    
1736
bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1737
{
1738
    return memory_region_dispatch_read(mr, addr, pval, size);
1739
}
1740

    
1741
bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1742
                  uint64_t val, unsigned size)
1743
{
1744
    return memory_region_dispatch_write(mr, addr, val, size);
1745
}
1746

    
1747
typedef struct MemoryRegionList MemoryRegionList;
1748

    
1749
struct MemoryRegionList {
1750
    const MemoryRegion *mr;
1751
    bool printed;
1752
    QTAILQ_ENTRY(MemoryRegionList) queue;
1753
};
1754

    
1755
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1756

    
1757
static void mtree_print_mr(fprintf_function mon_printf, void *f,
1758
                           const MemoryRegion *mr, unsigned int level,
1759
                           hwaddr base,
1760
                           MemoryRegionListHead *alias_print_queue)
1761
{
1762
    MemoryRegionList *new_ml, *ml, *next_ml;
1763
    MemoryRegionListHead submr_print_queue;
1764
    const MemoryRegion *submr;
1765
    unsigned int i;
1766

    
1767
    if (!mr || !mr->enabled) {
1768
        return;
1769
    }
1770

    
1771
    for (i = 0; i < level; i++) {
1772
        mon_printf(f, "  ");
1773
    }
1774

    
1775
    if (mr->alias) {
1776
        MemoryRegionList *ml;
1777
        bool found = false;
1778

    
1779
        /* check if the alias is already in the queue */
1780
        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1781
            if (ml->mr == mr->alias && !ml->printed) {
1782
                found = true;
1783
            }
1784
        }
1785

    
1786
        if (!found) {
1787
            ml = g_new(MemoryRegionList, 1);
1788
            ml->mr = mr->alias;
1789
            ml->printed = false;
1790
            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1791
        }
1792
        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1793
                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1794
                   "-" TARGET_FMT_plx "\n",
1795
                   base + mr->addr,
1796
                   base + mr->addr
1797
                   + (int128_nz(mr->size) ?
1798
                      (hwaddr)int128_get64(int128_sub(mr->size,
1799
                                                      int128_one())) : 0),
1800
                   mr->priority,
1801
                   mr->romd_mode ? 'R' : '-',
1802
                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1803
                                                                       : '-',
1804
                   mr->name,
1805
                   mr->alias->name,
1806
                   mr->alias_offset,
1807
                   mr->alias_offset
1808
                   + (int128_nz(mr->size) ?
1809
                      (hwaddr)int128_get64(int128_sub(mr->size,
1810
                                                      int128_one())) : 0));
1811
    } else {
1812
        mon_printf(f,
1813
                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1814
                   base + mr->addr,
1815
                   base + mr->addr
1816
                   + (int128_nz(mr->size) ?
1817
                      (hwaddr)int128_get64(int128_sub(mr->size,
1818
                                                      int128_one())) : 0),
1819
                   mr->priority,
1820
                   mr->romd_mode ? 'R' : '-',
1821
                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1822
                                                                       : '-',
1823
                   mr->name);
1824
    }
1825

    
1826
    QTAILQ_INIT(&submr_print_queue);
1827

    
1828
    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1829
        new_ml = g_new(MemoryRegionList, 1);
1830
        new_ml->mr = submr;
1831
        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1832
            if (new_ml->mr->addr < ml->mr->addr ||
1833
                (new_ml->mr->addr == ml->mr->addr &&
1834
                 new_ml->mr->priority > ml->mr->priority)) {
1835
                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1836
                new_ml = NULL;
1837
                break;
1838
            }
1839
        }
1840
        if (new_ml) {
1841
            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1842
        }
1843
    }
1844

    
1845
    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1846
        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1847
                       alias_print_queue);
1848
    }
1849

    
1850
    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1851
        g_free(ml);
1852
    }
1853
}
1854

    
1855
void mtree_info(fprintf_function mon_printf, void *f)
1856
{
1857
    MemoryRegionListHead ml_head;
1858
    MemoryRegionList *ml, *ml2;
1859
    AddressSpace *as;
1860

    
1861
    QTAILQ_INIT(&ml_head);
1862

    
1863
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1864
        mon_printf(f, "%s\n", as->name);
1865
        mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1866
    }
1867

    
1868
    mon_printf(f, "aliases\n");
1869
    /* print aliased regions */
1870
    QTAILQ_FOREACH(ml, &ml_head, queue) {
1871
        if (!ml->printed) {
1872
            mon_printf(f, "%s\n", ml->mr->name);
1873
            mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1874
        }
1875
    }
1876

    
1877
    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1878
        g_free(ml);
1879
    }
1880
}