Statistics
| Branch: | Revision:

root / hw / ne2000.c @ ff753bb9

History | View | Annotate | Download (22.7 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "net.h"
27
#include "ne2000.h"
28
#include "loader.h"
29

    
30
/* debug NE2000 card */
31
//#define DEBUG_NE2000
32

    
33
#define MAX_ETH_FRAME_SIZE 1514
34

    
35
#define E8390_CMD        0x00  /* The command register (for all pages) */
36
/* Page 0 register offsets. */
37
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
38
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
39
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
40
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
41
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
42
#define EN0_TSR                0x04        /* Transmit status reg RD */
43
#define EN0_TPSR        0x04        /* Transmit starting page WR */
44
#define EN0_NCR                0x05        /* Number of collision reg RD */
45
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
46
#define EN0_FIFO        0x06        /* FIFO RD */
47
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
48
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
49
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
50
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
51
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
52
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
53
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
54
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
55
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
56
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
57
#define EN0_RSR                0x0c        /* rx status reg RD */
58
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
59
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
60
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
61
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
62
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
63
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
64
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
65

    
66
#define EN1_PHYS        0x11
67
#define EN1_CURPAG      0x17
68
#define EN1_MULT        0x18
69

    
70
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
71
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
72

    
73
#define EN3_CONFIG0        0x33
74
#define EN3_CONFIG1        0x34
75
#define EN3_CONFIG2        0x35
76
#define EN3_CONFIG3        0x36
77

    
78
/*  Register accessed at EN_CMD, the 8390 base addr.  */
79
#define E8390_STOP        0x01        /* Stop and reset the chip */
80
#define E8390_START        0x02        /* Start the chip, clear reset */
81
#define E8390_TRANS        0x04        /* Transmit a frame */
82
#define E8390_RREAD        0x08        /* Remote read */
83
#define E8390_RWRITE        0x10        /* Remote write  */
84
#define E8390_NODMA        0x20        /* Remote DMA */
85
#define E8390_PAGE0        0x00        /* Select page chip registers */
86
#define E8390_PAGE1        0x40        /* using the two high-order bits */
87
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
88

    
89
/* Bits in EN0_ISR - Interrupt status register */
90
#define ENISR_RX        0x01        /* Receiver, no error */
91
#define ENISR_TX        0x02        /* Transmitter, no error */
92
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
93
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
94
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
95
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
96
#define ENISR_RDC        0x40        /* remote dma complete */
97
#define ENISR_RESET        0x80        /* Reset completed */
98
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
99

    
100
/* Bits in received packet status byte and EN0_RSR*/
101
#define ENRSR_RXOK        0x01        /* Received a good packet */
102
#define ENRSR_CRC        0x02        /* CRC error */
103
#define ENRSR_FAE        0x04        /* frame alignment error */
104
#define ENRSR_FO        0x08        /* FIFO overrun */
105
#define ENRSR_MPA        0x10        /* missed pkt */
106
#define ENRSR_PHY        0x20        /* physical/multicast address */
107
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
108
#define ENRSR_DEF        0x80        /* deferring */
109

    
110
/* Transmitted packet status, EN0_TSR. */
111
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
112
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
113
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
114
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
115
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
116
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
117
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
118
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
119

    
120
typedef struct PCINE2000State {
121
    PCIDevice dev;
122
    NE2000State ne2000;
123
} PCINE2000State;
124

    
125
void ne2000_reset(NE2000State *s)
126
{
127
    int i;
128

    
129
    s->isr = ENISR_RESET;
130
    memcpy(s->mem, &s->c.macaddr, 6);
131
    s->mem[14] = 0x57;
132
    s->mem[15] = 0x57;
133

    
134
    /* duplicate prom data */
135
    for(i = 15;i >= 0; i--) {
136
        s->mem[2 * i] = s->mem[i];
137
        s->mem[2 * i + 1] = s->mem[i];
138
    }
139
}
140

    
141
static void ne2000_update_irq(NE2000State *s)
142
{
143
    int isr;
144
    isr = (s->isr & s->imr) & 0x7f;
145
#if defined(DEBUG_NE2000)
146
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
147
           isr ? 1 : 0, s->isr, s->imr);
148
#endif
149
    qemu_set_irq(s->irq, (isr != 0));
150
}
151

    
152
#define POLYNOMIAL 0x04c11db6
153

    
154
/* From FreeBSD */
155
/* XXX: optimize */
156
static int compute_mcast_idx(const uint8_t *ep)
157
{
158
    uint32_t crc;
159
    int carry, i, j;
160
    uint8_t b;
161

    
162
    crc = 0xffffffff;
163
    for (i = 0; i < 6; i++) {
164
        b = *ep++;
165
        for (j = 0; j < 8; j++) {
166
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
167
            crc <<= 1;
168
            b >>= 1;
169
            if (carry)
170
                crc = ((crc ^ POLYNOMIAL) | carry);
171
        }
172
    }
173
    return (crc >> 26);
174
}
175

    
176
static int ne2000_buffer_full(NE2000State *s)
177
{
178
    int avail, index, boundary;
179

    
180
    index = s->curpag << 8;
181
    boundary = s->boundary << 8;
182
    if (index < boundary)
183
        avail = boundary - index;
184
    else
185
        avail = (s->stop - s->start) - (index - boundary);
186
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
187
        return 1;
188
    return 0;
189
}
190

    
191
int ne2000_can_receive(VLANClientState *nc)
192
{
193
    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
194

    
195
    if (s->cmd & E8390_STOP)
196
        return 1;
197
    return !ne2000_buffer_full(s);
198
}
199

    
200
#define MIN_BUF_SIZE 60
201

    
202
ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
203
{
204
    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
205
    int size = size_;
206
    uint8_t *p;
207
    unsigned int total_len, next, avail, len, index, mcast_idx;
208
    uint8_t buf1[60];
209
    static const uint8_t broadcast_macaddr[6] =
210
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
211

    
212
#if defined(DEBUG_NE2000)
213
    printf("NE2000: received len=%d\n", size);
214
#endif
215

    
216
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
217
        return -1;
218

    
219
    /* XXX: check this */
220
    if (s->rxcr & 0x10) {
221
        /* promiscuous: receive all */
222
    } else {
223
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
224
            /* broadcast address */
225
            if (!(s->rxcr & 0x04))
226
                return size;
227
        } else if (buf[0] & 0x01) {
228
            /* multicast */
229
            if (!(s->rxcr & 0x08))
230
                return size;
231
            mcast_idx = compute_mcast_idx(buf);
232
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
233
                return size;
234
        } else if (s->mem[0] == buf[0] &&
235
                   s->mem[2] == buf[1] &&
236
                   s->mem[4] == buf[2] &&
237
                   s->mem[6] == buf[3] &&
238
                   s->mem[8] == buf[4] &&
239
                   s->mem[10] == buf[5]) {
240
            /* match */
241
        } else {
242
            return size;
243
        }
244
    }
245

    
246

    
247
    /* if too small buffer, then expand it */
248
    if (size < MIN_BUF_SIZE) {
249
        memcpy(buf1, buf, size);
250
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
251
        buf = buf1;
252
        size = MIN_BUF_SIZE;
253
    }
254

    
255
    index = s->curpag << 8;
256
    /* 4 bytes for header */
257
    total_len = size + 4;
258
    /* address for next packet (4 bytes for CRC) */
259
    next = index + ((total_len + 4 + 255) & ~0xff);
260
    if (next >= s->stop)
261
        next -= (s->stop - s->start);
262
    /* prepare packet header */
263
    p = s->mem + index;
264
    s->rsr = ENRSR_RXOK; /* receive status */
265
    /* XXX: check this */
266
    if (buf[0] & 0x01)
267
        s->rsr |= ENRSR_PHY;
268
    p[0] = s->rsr;
269
    p[1] = next >> 8;
270
    p[2] = total_len;
271
    p[3] = total_len >> 8;
272
    index += 4;
273

    
274
    /* write packet data */
275
    while (size > 0) {
276
        if (index <= s->stop)
277
            avail = s->stop - index;
278
        else
279
            avail = 0;
280
        len = size;
281
        if (len > avail)
282
            len = avail;
283
        memcpy(s->mem + index, buf, len);
284
        buf += len;
285
        index += len;
286
        if (index == s->stop)
287
            index = s->start;
288
        size -= len;
289
    }
290
    s->curpag = next >> 8;
291

    
292
    /* now we can signal we have received something */
293
    s->isr |= ENISR_RX;
294
    ne2000_update_irq(s);
295

    
296
    return size_;
297
}
298

    
299
void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
300
{
301
    NE2000State *s = opaque;
302
    int offset, page, index;
303

    
304
    addr &= 0xf;
305
#ifdef DEBUG_NE2000
306
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
307
#endif
308
    if (addr == E8390_CMD) {
309
        /* control register */
310
        s->cmd = val;
311
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
312
            s->isr &= ~ENISR_RESET;
313
            /* test specific case: zero length transfer */
314
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
315
                s->rcnt == 0) {
316
                s->isr |= ENISR_RDC;
317
                ne2000_update_irq(s);
318
            }
319
            if (val & E8390_TRANS) {
320
                index = (s->tpsr << 8);
321
                /* XXX: next 2 lines are a hack to make netware 3.11 work */
322
                if (index >= NE2000_PMEM_END)
323
                    index -= NE2000_PMEM_SIZE;
324
                /* fail safe: check range on the transmitted length  */
325
                if (index + s->tcnt <= NE2000_PMEM_END) {
326
                    qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
327
                }
328
                /* signal end of transfer */
329
                s->tsr = ENTSR_PTX;
330
                s->isr |= ENISR_TX;
331
                s->cmd &= ~E8390_TRANS;
332
                ne2000_update_irq(s);
333
            }
334
        }
335
    } else {
336
        page = s->cmd >> 6;
337
        offset = addr | (page << 4);
338
        switch(offset) {
339
        case EN0_STARTPG:
340
            s->start = val << 8;
341
            break;
342
        case EN0_STOPPG:
343
            s->stop = val << 8;
344
            break;
345
        case EN0_BOUNDARY:
346
            s->boundary = val;
347
            break;
348
        case EN0_IMR:
349
            s->imr = val;
350
            ne2000_update_irq(s);
351
            break;
352
        case EN0_TPSR:
353
            s->tpsr = val;
354
            break;
355
        case EN0_TCNTLO:
356
            s->tcnt = (s->tcnt & 0xff00) | val;
357
            break;
358
        case EN0_TCNTHI:
359
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
360
            break;
361
        case EN0_RSARLO:
362
            s->rsar = (s->rsar & 0xff00) | val;
363
            break;
364
        case EN0_RSARHI:
365
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
366
            break;
367
        case EN0_RCNTLO:
368
            s->rcnt = (s->rcnt & 0xff00) | val;
369
            break;
370
        case EN0_RCNTHI:
371
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
372
            break;
373
        case EN0_RXCR:
374
            s->rxcr = val;
375
            break;
376
        case EN0_DCFG:
377
            s->dcfg = val;
378
            break;
379
        case EN0_ISR:
380
            s->isr &= ~(val & 0x7f);
381
            ne2000_update_irq(s);
382
            break;
383
        case EN1_PHYS ... EN1_PHYS + 5:
384
            s->phys[offset - EN1_PHYS] = val;
385
            break;
386
        case EN1_CURPAG:
387
            s->curpag = val;
388
            break;
389
        case EN1_MULT ... EN1_MULT + 7:
390
            s->mult[offset - EN1_MULT] = val;
391
            break;
392
        }
393
    }
394
}
395

    
396
uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
397
{
398
    NE2000State *s = opaque;
399
    int offset, page, ret;
400

    
401
    addr &= 0xf;
402
    if (addr == E8390_CMD) {
403
        ret = s->cmd;
404
    } else {
405
        page = s->cmd >> 6;
406
        offset = addr | (page << 4);
407
        switch(offset) {
408
        case EN0_TSR:
409
            ret = s->tsr;
410
            break;
411
        case EN0_BOUNDARY:
412
            ret = s->boundary;
413
            break;
414
        case EN0_ISR:
415
            ret = s->isr;
416
            break;
417
        case EN0_RSARLO:
418
            ret = s->rsar & 0x00ff;
419
            break;
420
        case EN0_RSARHI:
421
            ret = s->rsar >> 8;
422
            break;
423
        case EN1_PHYS ... EN1_PHYS + 5:
424
            ret = s->phys[offset - EN1_PHYS];
425
            break;
426
        case EN1_CURPAG:
427
            ret = s->curpag;
428
            break;
429
        case EN1_MULT ... EN1_MULT + 7:
430
            ret = s->mult[offset - EN1_MULT];
431
            break;
432
        case EN0_RSR:
433
            ret = s->rsr;
434
            break;
435
        case EN2_STARTPG:
436
            ret = s->start >> 8;
437
            break;
438
        case EN2_STOPPG:
439
            ret = s->stop >> 8;
440
            break;
441
        case EN0_RTL8029ID0:
442
            ret = 0x50;
443
            break;
444
        case EN0_RTL8029ID1:
445
            ret = 0x43;
446
            break;
447
        case EN3_CONFIG0:
448
            ret = 0;                /* 10baseT media */
449
            break;
450
        case EN3_CONFIG2:
451
            ret = 0x40;                /* 10baseT active */
452
            break;
453
        case EN3_CONFIG3:
454
            ret = 0x40;                /* Full duplex */
455
            break;
456
        default:
457
            ret = 0x00;
458
            break;
459
        }
460
    }
461
#ifdef DEBUG_NE2000
462
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
463
#endif
464
    return ret;
465
}
466

    
467
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
468
                                     uint32_t val)
469
{
470
    if (addr < 32 ||
471
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
472
        s->mem[addr] = val;
473
    }
474
}
475

    
476
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
477
                                     uint32_t val)
478
{
479
    addr &= ~1; /* XXX: check exact behaviour if not even */
480
    if (addr < 32 ||
481
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
482
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
483
    }
484
}
485

    
486
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
487
                                     uint32_t val)
488
{
489
    addr &= ~1; /* XXX: check exact behaviour if not even */
490
    if (addr < 32 ||
491
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
492
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
493
    }
494
}
495

    
496
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
497
{
498
    if (addr < 32 ||
499
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
500
        return s->mem[addr];
501
    } else {
502
        return 0xff;
503
    }
504
}
505

    
506
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
507
{
508
    addr &= ~1; /* XXX: check exact behaviour if not even */
509
    if (addr < 32 ||
510
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
511
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
512
    } else {
513
        return 0xffff;
514
    }
515
}
516

    
517
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
518
{
519
    addr &= ~1; /* XXX: check exact behaviour if not even */
520
    if (addr < 32 ||
521
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
522
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
523
    } else {
524
        return 0xffffffff;
525
    }
526
}
527

    
528
static inline void ne2000_dma_update(NE2000State *s, int len)
529
{
530
    s->rsar += len;
531
    /* wrap */
532
    /* XXX: check what to do if rsar > stop */
533
    if (s->rsar == s->stop)
534
        s->rsar = s->start;
535

    
536
    if (s->rcnt <= len) {
537
        s->rcnt = 0;
538
        /* signal end of transfer */
539
        s->isr |= ENISR_RDC;
540
        ne2000_update_irq(s);
541
    } else {
542
        s->rcnt -= len;
543
    }
544
}
545

    
546
void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
547
{
548
    NE2000State *s = opaque;
549

    
550
#ifdef DEBUG_NE2000
551
    printf("NE2000: asic write val=0x%04x\n", val);
552
#endif
553
    if (s->rcnt == 0)
554
        return;
555
    if (s->dcfg & 0x01) {
556
        /* 16 bit access */
557
        ne2000_mem_writew(s, s->rsar, val);
558
        ne2000_dma_update(s, 2);
559
    } else {
560
        /* 8 bit access */
561
        ne2000_mem_writeb(s, s->rsar, val);
562
        ne2000_dma_update(s, 1);
563
    }
564
}
565

    
566
uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
567
{
568
    NE2000State *s = opaque;
569
    int ret;
570

    
571
    if (s->dcfg & 0x01) {
572
        /* 16 bit access */
573
        ret = ne2000_mem_readw(s, s->rsar);
574
        ne2000_dma_update(s, 2);
575
    } else {
576
        /* 8 bit access */
577
        ret = ne2000_mem_readb(s, s->rsar);
578
        ne2000_dma_update(s, 1);
579
    }
580
#ifdef DEBUG_NE2000
581
    printf("NE2000: asic read val=0x%04x\n", ret);
582
#endif
583
    return ret;
584
}
585

    
586
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
587
{
588
    NE2000State *s = opaque;
589

    
590
#ifdef DEBUG_NE2000
591
    printf("NE2000: asic writel val=0x%04x\n", val);
592
#endif
593
    if (s->rcnt == 0)
594
        return;
595
    /* 32 bit access */
596
    ne2000_mem_writel(s, s->rsar, val);
597
    ne2000_dma_update(s, 4);
598
}
599

    
600
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
601
{
602
    NE2000State *s = opaque;
603
    int ret;
604

    
605
    /* 32 bit access */
606
    ret = ne2000_mem_readl(s, s->rsar);
607
    ne2000_dma_update(s, 4);
608
#ifdef DEBUG_NE2000
609
    printf("NE2000: asic readl val=0x%04x\n", ret);
610
#endif
611
    return ret;
612
}
613

    
614
void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
615
{
616
    /* nothing to do (end of reset pulse) */
617
}
618

    
619
uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
620
{
621
    NE2000State *s = opaque;
622
    ne2000_reset(s);
623
    return 0;
624
}
625

    
626
static int ne2000_post_load(void* opaque, int version_id)
627
{
628
    NE2000State* s = opaque;
629

    
630
    if (version_id < 2) {
631
        s->rxcr = 0x0c;
632
    }
633
    return 0;
634
}
635

    
636
const VMStateDescription vmstate_ne2000 = {
637
    .name = "ne2000",
638
    .version_id = 2,
639
    .minimum_version_id = 0,
640
    .minimum_version_id_old = 0,
641
    .post_load = ne2000_post_load,
642
    .fields      = (VMStateField []) {
643
        VMSTATE_UINT8_V(rxcr, NE2000State, 2),
644
        VMSTATE_UINT8(cmd, NE2000State),
645
        VMSTATE_UINT32(start, NE2000State),
646
        VMSTATE_UINT32(stop, NE2000State),
647
        VMSTATE_UINT8(boundary, NE2000State),
648
        VMSTATE_UINT8(tsr, NE2000State),
649
        VMSTATE_UINT8(tpsr, NE2000State),
650
        VMSTATE_UINT16(tcnt, NE2000State),
651
        VMSTATE_UINT16(rcnt, NE2000State),
652
        VMSTATE_UINT32(rsar, NE2000State),
653
        VMSTATE_UINT8(rsr, NE2000State),
654
        VMSTATE_UINT8(isr, NE2000State),
655
        VMSTATE_UINT8(dcfg, NE2000State),
656
        VMSTATE_UINT8(imr, NE2000State),
657
        VMSTATE_BUFFER(phys, NE2000State),
658
        VMSTATE_UINT8(curpag, NE2000State),
659
        VMSTATE_BUFFER(mult, NE2000State),
660
        VMSTATE_UNUSED(4), /* was irq */
661
        VMSTATE_BUFFER(mem, NE2000State),
662
        VMSTATE_END_OF_LIST()
663
    }
664
};
665

    
666
static const VMStateDescription vmstate_pci_ne2000 = {
667
    .name = "ne2000",
668
    .version_id = 3,
669
    .minimum_version_id = 3,
670
    .minimum_version_id_old = 3,
671
    .fields      = (VMStateField []) {
672
        VMSTATE_PCI_DEVICE(dev, PCINE2000State),
673
        VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
674
        VMSTATE_END_OF_LIST()
675
    }
676
};
677

    
678
/***********************************************************/
679
/* PCI NE2000 definitions */
680

    
681
static void ne2000_map(PCIDevice *pci_dev, int region_num,
682
                       pcibus_t addr, pcibus_t size, int type)
683
{
684
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
685
    NE2000State *s = &d->ne2000;
686

    
687
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
688
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
689

    
690
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
691
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
692
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
693
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
694
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
695
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
696

    
697
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
698
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
699
}
700

    
701
static void ne2000_cleanup(VLANClientState *nc)
702
{
703
    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
704

    
705
    s->nic = NULL;
706
}
707

    
708
static NetClientInfo net_ne2000_info = {
709
    .type = NET_CLIENT_TYPE_NIC,
710
    .size = sizeof(NICState),
711
    .can_receive = ne2000_can_receive,
712
    .receive = ne2000_receive,
713
    .cleanup = ne2000_cleanup,
714
};
715

    
716
static int pci_ne2000_init(PCIDevice *pci_dev)
717
{
718
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
719
    NE2000State *s;
720
    uint8_t *pci_conf;
721

    
722
    pci_conf = d->dev.config;
723
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
724
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
725
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
726
    /* TODO: RST# value should be 0. PCI spec 6.2.4 */
727
    pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
728

    
729
    pci_register_bar(&d->dev, 0, 0x100,
730
                           PCI_BASE_ADDRESS_SPACE_IO, ne2000_map);
731
    s = &d->ne2000;
732
    s->irq = d->dev.irq[0];
733

    
734
    qemu_macaddr_default_if_unset(&s->c.macaddr);
735
    ne2000_reset(s);
736

    
737
    s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
738
                          pci_dev->qdev.info->name, pci_dev->qdev.id, s);
739
    qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
740

    
741
    if (!pci_dev->qdev.hotplugged) {
742
        static int loaded = 0;
743
        if (!loaded) {
744
            rom_add_option("pxe-ne2k_pci.bin");
745
            loaded = 1;
746
        }
747
    }
748

    
749
    return 0;
750
}
751

    
752
static int pci_ne2000_exit(PCIDevice *pci_dev)
753
{
754
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
755
    NE2000State *s = &d->ne2000;
756

    
757
    qemu_del_vlan_client(&s->nic->nc);
758
    return 0;
759
}
760

    
761
static PCIDeviceInfo ne2000_info = {
762
    .qdev.name  = "ne2k_pci",
763
    .qdev.size  = sizeof(PCINE2000State),
764
    .qdev.vmsd  = &vmstate_pci_ne2000,
765
    .init       = pci_ne2000_init,
766
    .exit       = pci_ne2000_exit,
767
    .qdev.props = (Property[]) {
768
        DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
769
        DEFINE_PROP_END_OF_LIST(),
770
    }
771
};
772

    
773
static void ne2000_register_devices(void)
774
{
775
    pci_qdev_register(&ne2000_info);
776
}
777

    
778
device_init(ne2000_register_devices)