Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / THH.hs @ 1c7bda0a

History | View | Annotate | Download (29.3 kB)

1
{-# LANGUAGE TemplateHaskell #-}
2

    
3
{-| TemplateHaskell helper for HTools.
4

    
5
As TemplateHaskell require that splices be defined in a separate
6
module, we combine all the TemplateHaskell functionality that HTools
7
needs in this module (except the one for unittests).
8

    
9
-}
10

    
11
{-
12

    
13
Copyright (C) 2011, 2012 Google Inc.
14

    
15
This program is free software; you can redistribute it and/or modify
16
it under the terms of the GNU General Public License as published by
17
the Free Software Foundation; either version 2 of the License, or
18
(at your option) any later version.
19

    
20
This program is distributed in the hope that it will be useful, but
21
WITHOUT ANY WARRANTY; without even the implied warranty of
22
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23
General Public License for more details.
24

    
25
You should have received a copy of the GNU General Public License
26
along with this program; if not, write to the Free Software
27
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
28
02110-1301, USA.
29

    
30
-}
31

    
32
module Ganeti.THH ( declareSADT
33
                  , declareIADT
34
                  , makeJSONInstance
35
                  , genOpID
36
                  , genOpCode
37
                  , genStrOfOp
38
                  , genStrOfKey
39
                  , genLuxiOp
40
                  , Field
41
                  , simpleField
42
                  , defaultField
43
                  , optionalField
44
                  , renameField
45
                  , containerField
46
                  , customField
47
                  , timeStampFields
48
                  , uuidFields
49
                  , serialFields
50
                  , buildObject
51
                  , buildObjectSerialisation
52
                  , buildParam
53
                  , Container
54
                  ) where
55

    
56
import Control.Arrow
57
import Control.Monad (liftM, liftM2)
58
import Data.Char
59
import Data.List
60
import qualified Data.Map as M
61
import Language.Haskell.TH
62

    
63
import qualified Text.JSON as JSON
64

    
65
import Ganeti.HTools.JSON
66

    
67
-- * Exported types
68

    
69
type Container = M.Map String
70

    
71
-- | Serialised field data type.
72
data Field = Field { fieldName        :: String
73
                   , fieldType        :: Q Type
74
                   , fieldRead        :: Maybe (Q Exp)
75
                   , fieldShow        :: Maybe (Q Exp)
76
                   , fieldDefault     :: Maybe (Q Exp)
77
                   , fieldConstr      :: Maybe String
78
                   , fieldIsContainer :: Bool
79
                   , fieldIsOptional  :: Bool
80
                   }
81

    
82
-- | Generates a simple field.
83
simpleField :: String -> Q Type -> Field
84
simpleField fname ftype =
85
  Field { fieldName        = fname
86
        , fieldType        = ftype
87
        , fieldRead        = Nothing
88
        , fieldShow        = Nothing
89
        , fieldDefault     = Nothing
90
        , fieldConstr      = Nothing
91
        , fieldIsContainer = False
92
        , fieldIsOptional  = False
93
        }
94

    
95
-- | Sets the renamed constructor field.
96
renameField :: String -> Field -> Field
97
renameField constrName field = field { fieldConstr = Just constrName }
98

    
99
-- | Sets the default value on a field (makes it optional with a
100
-- default value).
101
defaultField :: Q Exp -> Field -> Field
102
defaultField defval field = field { fieldDefault = Just defval }
103

    
104
-- | Marks a field optional (turning its base type into a Maybe).
105
optionalField :: Field -> Field
106
optionalField field = field { fieldIsOptional = True }
107

    
108
-- | Marks a field as a container.
109
containerField :: Field -> Field
110
containerField field = field { fieldIsContainer = True }
111

    
112
-- | Sets custom functions on a field.
113
customField :: Name    -- ^ The name of the read function
114
            -> Name    -- ^ The name of the show function
115
            -> Field   -- ^ The original field
116
            -> Field   -- ^ Updated field
117
customField readfn showfn field =
118
  field { fieldRead = Just (varE readfn), fieldShow = Just (varE showfn) }
119

    
120
fieldRecordName :: Field -> String
121
fieldRecordName (Field { fieldName = name, fieldConstr = alias }) =
122
  maybe (camelCase name) id alias
123

    
124
-- | Computes the preferred variable name to use for the value of this
125
-- field. If the field has a specific constructor name, then we use a
126
-- first-letter-lowercased version of that; otherwise, we simply use
127
-- the field name. See also 'fieldRecordName'.
128
fieldVariable :: Field -> String
129
fieldVariable f =
130
  case (fieldConstr f) of
131
    Just name -> ensureLower name
132
    _ -> fieldName f
133

    
134
actualFieldType :: Field -> Q Type
135
actualFieldType f | fieldIsContainer f = [t| Container $t |]
136
                  | fieldIsOptional f  = [t| Maybe $t     |]
137
                  | otherwise = t
138
                  where t = fieldType f
139

    
140
checkNonOptDef :: (Monad m) => Field -> m ()
141
checkNonOptDef (Field { fieldIsOptional = True, fieldName = name }) =
142
  fail $ "Optional field " ++ name ++ " used in parameter declaration"
143
checkNonOptDef (Field { fieldDefault = (Just _), fieldName = name }) =
144
  fail $ "Default field " ++ name ++ " used in parameter declaration"
145
checkNonOptDef _ = return ()
146

    
147
-- | Produces the expression that will de-serialise a given
148
-- field. Since some custom parsing functions might need to use the
149
-- entire object, we do take and pass the object to any custom read
150
-- functions.
151
loadFn :: Field   -- ^ The field definition
152
       -> Q Exp   -- ^ The value of the field as existing in the JSON message
153
       -> Q Exp   -- ^ The entire object in JSON object format
154
       -> Q Exp   -- ^ Resulting expression
155
loadFn (Field { fieldIsContainer = True }) expr _ =
156
  [| $expr >>= readContainer |]
157
loadFn (Field { fieldRead = Just readfn }) expr o = [| $expr >>= $readfn $o |]
158
loadFn _ expr _ = expr
159

    
160
-- * Common field declarations
161

    
162
timeStampFields :: [Field]
163
timeStampFields =
164
    [ defaultField [| 0::Double |] $ simpleField "ctime" [t| Double |]
165
    , defaultField [| 0::Double |] $ simpleField "mtime" [t| Double |]
166
    ]
167

    
168
serialFields :: [Field]
169
serialFields =
170
    [ renameField  "Serial" $ simpleField "serial_no" [t| Int |] ]
171

    
172
uuidFields :: [Field]
173
uuidFields = [ simpleField "uuid" [t| String |] ]
174

    
175
-- * Helper functions
176

    
177
-- | Ensure first letter is lowercase.
178
--
179
-- Used to convert type name to function prefix, e.g. in @data Aa ->
180
-- aaToRaw@.
181
ensureLower :: String -> String
182
ensureLower [] = []
183
ensureLower (x:xs) = toLower x:xs
184

    
185
-- | Ensure first letter is uppercase.
186
--
187
-- Used to convert constructor name to component
188
ensureUpper :: String -> String
189
ensureUpper [] = []
190
ensureUpper (x:xs) = toUpper x:xs
191

    
192
-- | Helper for quoted expressions.
193
varNameE :: String -> Q Exp
194
varNameE = varE . mkName
195

    
196
-- | showJSON as an expression, for reuse.
197
showJSONE :: Q Exp
198
showJSONE = varNameE "showJSON"
199

    
200
-- | ToRaw function name.
201
toRawName :: String -> Name
202
toRawName = mkName . (++ "ToRaw") . ensureLower
203

    
204
-- | FromRaw function name.
205
fromRawName :: String -> Name
206
fromRawName = mkName . (++ "FromRaw") . ensureLower
207

    
208
-- | Converts a name to it's varE/litE representations.
209
--
210
reprE :: Either String Name -> Q Exp
211
reprE = either stringE varE
212

    
213
-- | Smarter function application.
214
--
215
-- This does simply f x, except that if is 'id', it will skip it, in
216
-- order to generate more readable code when using -ddump-splices.
217
appFn :: Exp -> Exp -> Exp
218
appFn f x | f == VarE 'id = x
219
          | otherwise = AppE f x
220

    
221
-- | Container loader
222
readContainer :: (Monad m, JSON.JSON a) =>
223
                 JSON.JSObject JSON.JSValue -> m (Container a)
224
readContainer obj = do
225
  let kjvlist = JSON.fromJSObject obj
226
  kalist <- mapM (\(k, v) -> fromKeyValue k v >>= \a -> return (k, a)) kjvlist
227
  return $ M.fromList kalist
228

    
229
-- | Container dumper
230
showContainer :: (JSON.JSON a) => Container a -> JSON.JSValue
231
showContainer = JSON.makeObj . map (second JSON.showJSON) . M.toList
232

    
233
-- * Template code for simple raw type-equivalent ADTs
234

    
235
-- | Generates a data type declaration.
236
--
237
-- The type will have a fixed list of instances.
238
strADTDecl :: Name -> [String] -> Dec
239
strADTDecl name constructors =
240
  DataD [] name []
241
          (map (flip NormalC [] . mkName) constructors)
242
          [''Show, ''Read, ''Eq, ''Enum, ''Bounded, ''Ord]
243

    
244
-- | Generates a toRaw function.
245
--
246
-- This generates a simple function of the form:
247
--
248
-- @
249
-- nameToRaw :: Name -> /traw/
250
-- nameToRaw Cons1 = var1
251
-- nameToRaw Cons2 = \"value2\"
252
-- @
253
genToRaw :: Name -> Name -> Name -> [(String, Either String Name)] -> Q [Dec]
254
genToRaw traw fname tname constructors = do
255
  let sigt = AppT (AppT ArrowT (ConT tname)) (ConT traw)
256
  -- the body clauses, matching on the constructor and returning the
257
  -- raw value
258
  clauses <- mapM  (\(c, v) -> clause [recP (mkName c) []]
259
                             (normalB (reprE v)) []) constructors
260
  return [SigD fname sigt, FunD fname clauses]
261

    
262
-- | Generates a fromRaw function.
263
--
264
-- The function generated is monadic and can fail parsing the
265
-- raw value. It is of the form:
266
--
267
-- @
268
-- nameFromRaw :: (Monad m) => /traw/ -> m Name
269
-- nameFromRaw s | s == var1       = Cons1
270
--               | s == \"value2\" = Cons2
271
--               | otherwise = fail /.../
272
-- @
273
genFromRaw :: Name -> Name -> Name -> [(String, Name)] -> Q [Dec]
274
genFromRaw traw fname tname constructors = do
275
  -- signature of form (Monad m) => String -> m $name
276
  sigt <- [t| (Monad m) => $(conT traw) -> m $(conT tname) |]
277
  -- clauses for a guarded pattern
278
  let varp = mkName "s"
279
      varpe = varE varp
280
  clauses <- mapM (\(c, v) -> do
281
                     -- the clause match condition
282
                     g <- normalG [| $varpe == $(varE v) |]
283
                     -- the clause result
284
                     r <- [| return $(conE (mkName c)) |]
285
                     return (g, r)) constructors
286
  -- the otherwise clause (fallback)
287
  oth_clause <- do
288
    g <- normalG [| otherwise |]
289
    r <- [|fail ("Invalid string value for type " ++
290
                 $(litE (stringL (nameBase tname))) ++ ": " ++ show $varpe) |]
291
    return (g, r)
292
  let fun = FunD fname [Clause [VarP varp]
293
                        (GuardedB (clauses++[oth_clause])) []]
294
  return [SigD fname sigt, fun]
295

    
296
-- | Generates a data type from a given raw format.
297
--
298
-- The format is expected to multiline. The first line contains the
299
-- type name, and the rest of the lines must contain two words: the
300
-- constructor name and then the string representation of the
301
-- respective constructor.
302
--
303
-- The function will generate the data type declaration, and then two
304
-- functions:
305
--
306
-- * /name/ToRaw, which converts the type to a raw type
307
--
308
-- * /name/FromRaw, which (monadically) converts from a raw type to the type
309
--
310
-- Note that this is basically just a custom show/read instance,
311
-- nothing else.
312
declareADT :: Name -> String -> [(String, Name)] -> Q [Dec]
313
declareADT traw sname cons = do
314
  let name = mkName sname
315
      ddecl = strADTDecl name (map fst cons)
316
      -- process cons in the format expected by genToRaw
317
      cons' = map (\(a, b) -> (a, Right b)) cons
318
  toraw <- genToRaw traw (toRawName sname) name cons'
319
  fromraw <- genFromRaw traw (fromRawName sname) name cons
320
  return $ ddecl:toraw ++ fromraw
321

    
322
declareIADT :: String -> [(String, Name)] -> Q [Dec]
323
declareIADT = declareADT ''Int
324

    
325
declareSADT :: String -> [(String, Name)] -> Q [Dec]
326
declareSADT = declareADT ''String
327

    
328
-- | Creates the showJSON member of a JSON instance declaration.
329
--
330
-- This will create what is the equivalent of:
331
--
332
-- @
333
-- showJSON = showJSON . /name/ToRaw
334
-- @
335
--
336
-- in an instance JSON /name/ declaration
337
genShowJSON :: String -> Q Dec
338
genShowJSON name = do
339
  body <- [| JSON.showJSON . $(varE (toRawName name)) |]
340
  return $ FunD (mkName "showJSON") [Clause [] (NormalB body) []]
341

    
342
-- | Creates the readJSON member of a JSON instance declaration.
343
--
344
-- This will create what is the equivalent of:
345
--
346
-- @
347
-- readJSON s = case readJSON s of
348
--                Ok s' -> /name/FromRaw s'
349
--                Error e -> Error /description/
350
-- @
351
--
352
-- in an instance JSON /name/ declaration
353
genReadJSON :: String -> Q Dec
354
genReadJSON name = do
355
  let s = mkName "s"
356
  body <- [| case JSON.readJSON $(varE s) of
357
               JSON.Ok s' -> $(varE (fromRawName name)) s'
358
               JSON.Error e ->
359
                   JSON.Error $ "Can't parse raw value for type " ++
360
                           $(stringE name) ++ ": " ++ e ++ " from " ++
361
                           show $(varE s)
362
           |]
363
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
364

    
365
-- | Generates a JSON instance for a given type.
366
--
367
-- This assumes that the /name/ToRaw and /name/FromRaw functions
368
-- have been defined as by the 'declareSADT' function.
369
makeJSONInstance :: Name -> Q [Dec]
370
makeJSONInstance name = do
371
  let base = nameBase name
372
  showJ <- genShowJSON base
373
  readJ <- genReadJSON base
374
  return [InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name)) [readJ,showJ]]
375

    
376
-- * Template code for opcodes
377

    
378
-- | Transforms a CamelCase string into an_underscore_based_one.
379
deCamelCase :: String -> String
380
deCamelCase =
381
    intercalate "_" . map (map toUpper) . groupBy (\_ b -> not $ isUpper b)
382

    
383
-- | Transform an underscore_name into a CamelCase one.
384
camelCase :: String -> String
385
camelCase = concatMap (ensureUpper . drop 1) .
386
            groupBy (\_ b -> b /= '_') . ('_':)
387

    
388
-- | Computes the name of a given constructor.
389
constructorName :: Con -> Q Name
390
constructorName (NormalC name _) = return name
391
constructorName (RecC name _)    = return name
392
constructorName x                = fail $ "Unhandled constructor " ++ show x
393

    
394
-- | Builds the generic constructor-to-string function.
395
--
396
-- This generates a simple function of the following form:
397
--
398
-- @
399
-- fname (ConStructorOne {}) = trans_fun("ConStructorOne")
400
-- fname (ConStructorTwo {}) = trans_fun("ConStructorTwo")
401
-- @
402
--
403
-- This builds a custom list of name/string pairs and then uses
404
-- 'genToRaw' to actually generate the function
405
genConstrToStr :: (String -> String) -> Name -> String -> Q [Dec]
406
genConstrToStr trans_fun name fname = do
407
  TyConI (DataD _ _ _ cons _) <- reify name
408
  cnames <- mapM (liftM nameBase . constructorName) cons
409
  let svalues = map (Left . trans_fun) cnames
410
  genToRaw ''String (mkName fname) name $ zip cnames svalues
411

    
412
-- | Constructor-to-string for OpCode.
413
genOpID :: Name -> String -> Q [Dec]
414
genOpID = genConstrToStr deCamelCase
415

    
416
-- | OpCode parameter (field) type.
417
type OpParam = (String, Q Type, Q Exp)
418

    
419
-- | Generates the OpCode data type.
420
--
421
-- This takes an opcode logical definition, and builds both the
422
-- datatype and the JSON serialisation out of it. We can't use a
423
-- generic serialisation since we need to be compatible with Ganeti's
424
-- own, so we have a few quirks to work around.
425
genOpCode :: String                -- ^ Type name to use
426
          -> [(String, [Field])]   -- ^ Constructor name and parameters
427
          -> Q [Dec]
428
genOpCode name cons = do
429
  decl_d <- mapM (\(cname, fields) -> do
430
                    -- we only need the type of the field, without Q
431
                    fields' <- mapM actualFieldType fields
432
                    let fields'' = zip (repeat NotStrict) fields'
433
                    return $ NormalC (mkName cname) fields'')
434
            cons
435
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read, ''Eq]
436

    
437
  (savesig, savefn) <- genSaveOpCode cons
438
  (loadsig, loadfn) <- genLoadOpCode cons
439
  return [declD, loadsig, loadfn, savesig, savefn]
440

    
441
-- | Checks whether a given parameter is options.
442
--
443
-- This requires that it's a 'Maybe'.
444
isOptional :: Type -> Bool
445
isOptional (AppT (ConT dt) _) | dt == ''Maybe = True
446
isOptional _ = False
447

    
448
-- | Generates the \"save\" clause for an entire opcode constructor.
449
--
450
-- This matches the opcode with variables named the same as the
451
-- constructor fields (just so that the spliced in code looks nicer),
452
-- and passes those name plus the parameter definition to 'saveObjectField'.
453
saveConstructor :: String    -- ^ The constructor name
454
                -> [Field]   -- ^ The parameter definitions for this
455
                             -- constructor
456
                -> Q Clause  -- ^ Resulting clause
457
saveConstructor sname fields = do
458
  let cname = mkName sname
459
  let fnames = map (mkName . fieldVariable) fields
460
  let pat = conP cname (map varP fnames)
461
  let felems = map (uncurry saveObjectField) (zip fnames fields)
462
      -- now build the OP_ID serialisation
463
      opid = [| [( $(stringE "OP_ID"),
464
                   JSON.showJSON $(stringE . deCamelCase $ sname) )] |]
465
      flist = listE (opid:felems)
466
      -- and finally convert all this to a json object
467
      flist' = [| $(varNameE "makeObj") (concat $flist) |]
468
  clause [pat] (normalB flist') []
469

    
470
-- | Generates the main save opcode function.
471
--
472
-- This builds a per-constructor match clause that contains the
473
-- respective constructor-serialisation code.
474
genSaveOpCode :: [(String, [Field])] -> Q (Dec, Dec)
475
genSaveOpCode opdefs = do
476
  cclauses <- mapM (uncurry saveConstructor) opdefs
477
  let fname = mkName "saveOpCode"
478
  sigt <- [t| $(conT (mkName "OpCode")) -> JSON.JSValue |]
479
  return $ (SigD fname sigt, FunD fname cclauses)
480

    
481
loadConstructor :: String -> [Field] -> Q Exp
482
loadConstructor sname fields = do
483
  let name = mkName sname
484
  fbinds <- mapM loadObjectField fields
485
  let (fnames, fstmts) = unzip fbinds
486
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
487
      fstmts' = fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
488
  return $ DoE fstmts'
489

    
490
genLoadOpCode :: [(String, [Field])] -> Q (Dec, Dec)
491
genLoadOpCode opdefs = do
492
  let fname = mkName "loadOpCode"
493
      arg1 = mkName "v"
494
      objname = mkName "o"
495
      opid = mkName "op_id"
496
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
497
                                 (JSON.readJSON $(varE arg1)) |]
498
  st2 <- bindS (varP opid) [| $(varNameE "fromObj")
499
                              $(varE objname) $(stringE "OP_ID") |]
500
  -- the match results (per-constructor blocks)
501
  mexps <- mapM (uncurry loadConstructor) opdefs
502
  fails <- [| fail $ "Unknown opcode " ++ $(varE opid) |]
503
  let mpats = map (\(me, c) ->
504
                       let mp = LitP . StringL . deCamelCase . fst $ c
505
                       in Match mp (NormalB me) []
506
                  ) $ zip mexps opdefs
507
      defmatch = Match WildP (NormalB fails) []
508
      cst = NoBindS $ CaseE (VarE opid) $ mpats++[defmatch]
509
      body = DoE [st1, st2, cst]
510
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT (mkName "OpCode")) |]
511
  return $ (SigD fname sigt, FunD fname [Clause [VarP arg1] (NormalB body) []])
512

    
513
-- * Template code for luxi
514

    
515
-- | Constructor-to-string for LuxiOp.
516
genStrOfOp :: Name -> String -> Q [Dec]
517
genStrOfOp = genConstrToStr id
518

    
519
-- | Constructor-to-string for MsgKeys.
520
genStrOfKey :: Name -> String -> Q [Dec]
521
genStrOfKey = genConstrToStr ensureLower
522

    
523
-- | LuxiOp parameter type.
524
type LuxiParam = (String, Q Type, Q Exp)
525

    
526
-- | Generates the LuxiOp data type.
527
--
528
-- This takes a Luxi operation definition and builds both the
529
-- datatype and the function trnasforming the arguments to JSON.
530
-- We can't use anything less generic, because the way different
531
-- operations are serialized differs on both parameter- and top-level.
532
--
533
-- There are three things to be defined for each parameter:
534
--
535
-- * name
536
--
537
-- * type
538
--
539
-- * operation; this is the operation performed on the parameter before
540
--   serialization
541
--
542
genLuxiOp :: String -> [(String, [LuxiParam])] -> Q [Dec]
543
genLuxiOp name cons = do
544
  decl_d <- mapM (\(cname, fields) -> do
545
                    fields' <- mapM (\(_, qt, _) ->
546
                                         qt >>= \t -> return (NotStrict, t))
547
                               fields
548
                    return $ NormalC (mkName cname) fields')
549
            cons
550
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read, ''Eq]
551
  (savesig, savefn) <- genSaveLuxiOp cons
552
  req_defs <- declareSADT "LuxiReq" .
553
              map (\(str, _) -> ("Req" ++ str, mkName ("luxiReq" ++ str))) $
554
                  cons
555
  return $ [declD, savesig, savefn] ++ req_defs
556

    
557
-- | Generates the \"save\" expression for a single luxi parameter.
558
saveLuxiField :: Name -> LuxiParam -> Q Exp
559
saveLuxiField fvar (_, qt, fn) =
560
    [| JSON.showJSON ( $(liftM2 appFn fn $ varE fvar) ) |]
561

    
562
-- | Generates the \"save\" clause for entire LuxiOp constructor.
563
saveLuxiConstructor :: (String, [LuxiParam]) -> Q Clause
564
saveLuxiConstructor (sname, fields) = do
565
  let cname = mkName sname
566
      fnames = map (\(nm, _, _) -> mkName nm) fields
567
      pat = conP cname (map varP fnames)
568
      flist = map (uncurry saveLuxiField) (zip fnames fields)
569
      finval = if null flist
570
               then [| JSON.showJSON ()    |]
571
               else [| JSON.showJSON $(listE flist) |]
572
  clause [pat] (normalB finval) []
573

    
574
-- | Generates the main save LuxiOp function.
575
genSaveLuxiOp :: [(String, [LuxiParam])]-> Q (Dec, Dec)
576
genSaveLuxiOp opdefs = do
577
  sigt <- [t| $(conT (mkName "LuxiOp")) -> JSON.JSValue |]
578
  let fname = mkName "opToArgs"
579
  cclauses <- mapM saveLuxiConstructor opdefs
580
  return $ (SigD fname sigt, FunD fname cclauses)
581

    
582
-- * "Objects" functionality
583

    
584
-- | Extract the field's declaration from a Field structure.
585
fieldTypeInfo :: String -> Field -> Q (Name, Strict, Type)
586
fieldTypeInfo field_pfx fd = do
587
  t <- actualFieldType fd
588
  let n = mkName . (field_pfx ++) . fieldRecordName $ fd
589
  return (n, NotStrict, t)
590

    
591
-- | Build an object declaration.
592
buildObject :: String -> String -> [Field] -> Q [Dec]
593
buildObject sname field_pfx fields = do
594
  let name = mkName sname
595
  fields_d <- mapM (fieldTypeInfo field_pfx) fields
596
  let decl_d = RecC name fields_d
597
  let declD = DataD [] name [] [decl_d] [''Show, ''Read, ''Eq]
598
  ser_decls <- buildObjectSerialisation sname fields
599
  return $ declD:ser_decls
600

    
601
buildObjectSerialisation :: String -> [Field] -> Q [Dec]
602
buildObjectSerialisation sname fields = do
603
  let name = mkName sname
604
  savedecls <- genSaveObject saveObjectField sname fields
605
  (loadsig, loadfn) <- genLoadObject loadObjectField sname fields
606
  shjson <- objectShowJSON sname
607
  rdjson <- objectReadJSON sname
608
  let instdecl = InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name))
609
                 [rdjson, shjson]
610
  return $ savedecls ++ [loadsig, loadfn, instdecl]
611

    
612
genSaveObject :: (Name -> Field -> Q Exp)
613
              -> String -> [Field] -> Q [Dec]
614
genSaveObject save_fn sname fields = do
615
  let name = mkName sname
616
  let fnames = map (mkName . fieldVariable) fields
617
  let pat = conP name (map varP fnames)
618
  let tdname = mkName ("toDict" ++ sname)
619
  tdsigt <- [t| $(conT name) -> [(String, JSON.JSValue)] |]
620

    
621
  let felems = map (uncurry save_fn) (zip fnames fields)
622
      flist = listE felems
623
      -- and finally convert all this to a json object
624
      tdlist = [| concat $flist |]
625
      iname = mkName "i"
626
  tclause <- clause [pat] (normalB tdlist) []
627
  cclause <- [| $(varNameE "makeObj") . $(varE tdname) |]
628
  let fname = mkName ("save" ++ sname)
629
  sigt <- [t| $(conT name) -> JSON.JSValue |]
630
  return [SigD tdname tdsigt, FunD tdname [tclause],
631
          SigD fname sigt, ValD (VarP fname) (NormalB cclause) []]
632

    
633
saveObjectField :: Name -> Field -> Q Exp
634
saveObjectField fvar field
635
  | isContainer = [| [( $nameE , JSON.showJSON . showContainer $ $fvarE)] |]
636
  | fisOptional = [| case $(varE fvar) of
637
                      Nothing -> []
638
                      Just v -> [( $nameE, JSON.showJSON v)]
639
                  |]
640
  | otherwise = case fieldShow field of
641
      Nothing -> [| [( $nameE, JSON.showJSON $fvarE)] |]
642
      Just fn -> [| let (actual, extra) = $fn $fvarE
643
                    in extra ++ [( $nameE, JSON.showJSON actual)]
644
                  |]
645
  where isContainer = fieldIsContainer field
646
        fisOptional  = fieldIsOptional field
647
        nameE = stringE (fieldName field)
648
        fvarE = varE fvar
649

    
650
objectShowJSON :: String -> Q Dec
651
objectShowJSON name = do
652
  body <- [| JSON.showJSON . $(varE . mkName $ "save" ++ name) |]
653
  return $ FunD (mkName "showJSON") [Clause [] (NormalB body) []]
654

    
655
genLoadObject :: (Field -> Q (Name, Stmt))
656
              -> String -> [Field] -> Q (Dec, Dec)
657
genLoadObject load_fn sname fields = do
658
  let name = mkName sname
659
      funname = mkName $ "load" ++ sname
660
      arg1 = mkName "v"
661
      objname = mkName "o"
662
      opid = mkName "op_id"
663
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
664
                                 (JSON.readJSON $(varE arg1)) |]
665
  fbinds <- mapM load_fn fields
666
  let (fnames, fstmts) = unzip fbinds
667
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
668
      fstmts' = st1:fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
669
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT name) |]
670
  return $ (SigD funname sigt,
671
            FunD funname [Clause [VarP arg1] (NormalB (DoE fstmts')) []])
672

    
673
loadObjectField :: Field -> Q (Name, Stmt)
674
loadObjectField field = do
675
  let name = fieldVariable field
676
      fvar = mkName name
677
  -- these are used in all patterns below
678
  let objvar = varNameE "o"
679
      objfield = stringE (fieldName field)
680
      loadexp =
681
        if fieldIsOptional field
682
          then [| $(varNameE "maybeFromObj") $objvar $objfield |]
683
          else case fieldDefault field of
684
                 Just defv ->
685
                   [| $(varNameE "fromObjWithDefault") $objvar
686
                      $objfield $defv |]
687
                 Nothing -> [| $(varNameE "fromObj") $objvar $objfield |]
688
  bexp <- loadFn field loadexp objvar
689

    
690
  return (fvar, BindS (VarP fvar) bexp)
691

    
692
objectReadJSON :: String -> Q Dec
693
objectReadJSON name = do
694
  let s = mkName "s"
695
  body <- [| case JSON.readJSON $(varE s) of
696
               JSON.Ok s' -> $(varE .mkName $ "load" ++ name) s'
697
               JSON.Error e ->
698
                 JSON.Error $ "Can't parse value for type " ++
699
                       $(stringE name) ++ ": " ++ e
700
           |]
701
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
702

    
703
-- * Inheritable parameter tables implementation
704

    
705
-- | Compute parameter type names.
706
paramTypeNames :: String -> (String, String)
707
paramTypeNames root = ("Filled"  ++ root ++ "Params",
708
                       "Partial" ++ root ++ "Params")
709

    
710
-- | Compute information about the type of a parameter field.
711
paramFieldTypeInfo :: String -> Field -> Q (Name, Strict, Type)
712
paramFieldTypeInfo field_pfx fd = do
713
  t <- actualFieldType fd
714
  let n = mkName . (++ "P") . (field_pfx ++) .
715
          fieldRecordName $ fd
716
  return (n, NotStrict, AppT (ConT ''Maybe) t)
717

    
718
-- | Build a parameter declaration.
719
--
720
-- This function builds two different data structures: a /filled/ one,
721
-- in which all fields are required, and a /partial/ one, in which all
722
-- fields are optional. Due to the current record syntax issues, the
723
-- fields need to be named differrently for the two structures, so the
724
-- partial ones get a /P/ suffix.
725
buildParam :: String -> String -> [Field] -> Q [Dec]
726
buildParam sname field_pfx fields = do
727
  let (sname_f, sname_p) = paramTypeNames sname
728
      name_f = mkName sname_f
729
      name_p = mkName sname_p
730
  fields_f <- mapM (fieldTypeInfo field_pfx) fields
731
  fields_p <- mapM (paramFieldTypeInfo field_pfx) fields
732
  let decl_f = RecC name_f fields_f
733
      decl_p = RecC name_p fields_p
734
  let declF = DataD [] name_f [] [decl_f] [''Show, ''Read, ''Eq]
735
      declP = DataD [] name_p [] [decl_p] [''Show, ''Read, ''Eq]
736
  ser_decls_f <- buildObjectSerialisation sname_f fields
737
  ser_decls_p <- buildPParamSerialisation sname_p fields
738
  fill_decls <- fillParam sname field_pfx fields
739
  return $ [declF, declP] ++ ser_decls_f ++ ser_decls_p ++ fill_decls
740

    
741
buildPParamSerialisation :: String -> [Field] -> Q [Dec]
742
buildPParamSerialisation sname fields = do
743
  let name = mkName sname
744
  savedecls <- genSaveObject savePParamField sname fields
745
  (loadsig, loadfn) <- genLoadObject loadPParamField sname fields
746
  shjson <- objectShowJSON sname
747
  rdjson <- objectReadJSON sname
748
  let instdecl = InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name))
749
                 [rdjson, shjson]
750
  return $ savedecls ++ [loadsig, loadfn, instdecl]
751

    
752
savePParamField :: Name -> Field -> Q Exp
753
savePParamField fvar field = do
754
  checkNonOptDef field
755
  let actualVal = mkName "v"
756
  normalexpr <- saveObjectField actualVal field
757
  -- we have to construct the block here manually, because we can't
758
  -- splice-in-splice
759
  return $ CaseE (VarE fvar) [ Match (ConP 'Nothing [])
760
                                       (NormalB (ConE '[])) []
761
                             , Match (ConP 'Just [VarP actualVal])
762
                                       (NormalB normalexpr) []
763
                             ]
764
loadPParamField :: Field -> Q (Name, Stmt)
765
loadPParamField field = do
766
  checkNonOptDef field
767
  let name = fieldName field
768
      fvar = mkName name
769
  -- these are used in all patterns below
770
  let objvar = varNameE "o"
771
      objfield = stringE name
772
      loadexp = [| $(varNameE "maybeFromObj") $objvar $objfield |]
773
  bexp <- loadFn field loadexp objvar
774
  return (fvar, BindS (VarP fvar) bexp)
775

    
776
-- | Builds a simple declaration of type @n_x = fromMaybe f_x p_x@.
777
buildFromMaybe :: String -> Q Dec
778
buildFromMaybe fname =
779
  valD (varP (mkName $ "n_" ++ fname))
780
         (normalB [| $(varNameE "fromMaybe")
781
                        $(varNameE $ "f_" ++ fname)
782
                        $(varNameE $ "p_" ++ fname) |]) []
783

    
784
fillParam :: String -> String -> [Field] -> Q [Dec]
785
fillParam sname field_pfx fields = do
786
  let fnames = map (\fd -> field_pfx ++ fieldRecordName fd) fields
787
      (sname_f, sname_p) = paramTypeNames sname
788
      oname_f = "fobj"
789
      oname_p = "pobj"
790
      name_f = mkName sname_f
791
      name_p = mkName sname_p
792
      fun_name = mkName $ "fill" ++ sname ++ "Params"
793
      le_full = ValD (ConP name_f (map (VarP . mkName . ("f_" ++)) fnames))
794
                (NormalB . VarE . mkName $ oname_f) []
795
      le_part = ValD (ConP name_p (map (VarP . mkName . ("p_" ++)) fnames))
796
                (NormalB . VarE . mkName $ oname_p) []
797
      obj_new = foldl (\accu vname -> AppE accu (VarE vname)) (ConE name_f)
798
                $ map (mkName . ("n_" ++)) fnames
799
  le_new <- mapM buildFromMaybe fnames
800
  funt <- [t| $(conT name_f) -> $(conT name_p) -> $(conT name_f) |]
801
  let sig = SigD fun_name funt
802
      fclause = Clause [VarP (mkName oname_f), VarP (mkName oname_p)]
803
                (NormalB $ LetE (le_full:le_part:le_new) obj_new) []
804
      fun = FunD fun_name [fclause]
805
  return [sig, fun]