Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ 6ab3ce90

History | View | Annotate | Download (63.7 kB)

1
{-| Implementation of cluster-wide logic.
2

    
3
This module holds all pure cluster-logic; I\/O related functionality
4
goes into the /Main/ module for the individual binaries.
5

    
6
-}
7

    
8
{-
9

    
10
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11

    
12
This program is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 2 of the License, or
15
(at your option) any later version.
16

    
17
This program is distributed in the hope that it will be useful, but
18
WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
General Public License for more details.
21

    
22
You should have received a copy of the GNU General Public License
23
along with this program; if not, write to the Free Software
24
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25
02110-1301, USA.
26

    
27
-}
28

    
29
module Ganeti.HTools.Cluster
30
  (
31
    -- * Types
32
    AllocSolution(..)
33
  , EvacSolution(..)
34
  , Table(..)
35
  , CStats(..)
36
  , AllocResult
37
  , AllocMethod
38
  -- * Generic functions
39
  , totalResources
40
  , computeAllocationDelta
41
  -- * First phase functions
42
  , computeBadItems
43
  -- * Second phase functions
44
  , printSolutionLine
45
  , formatCmds
46
  , involvedNodes
47
  , splitJobs
48
  -- * Display functions
49
  , printNodes
50
  , printInsts
51
  -- * Balacing functions
52
  , checkMove
53
  , doNextBalance
54
  , tryBalance
55
  , compCV
56
  , compCVNodes
57
  , compDetailedCV
58
  , printStats
59
  , iMoveToJob
60
  -- * IAllocator functions
61
  , genAllocNodes
62
  , tryAlloc
63
  , tryMGAlloc
64
  , tryNodeEvac
65
  , tryChangeGroup
66
  , collapseFailures
67
  -- * Allocation functions
68
  , iterateAlloc
69
  , tieredAlloc
70
  -- * Node group functions
71
  , instanceGroup
72
  , findSplitInstances
73
  , splitCluster
74
  ) where
75

    
76
import qualified Data.IntSet as IntSet
77
import Data.List
78
import Data.Maybe (fromJust, isNothing)
79
import Data.Ord (comparing)
80
import Text.Printf (printf)
81

    
82
import qualified Ganeti.HTools.Container as Container
83
import qualified Ganeti.HTools.Instance as Instance
84
import qualified Ganeti.HTools.Node as Node
85
import qualified Ganeti.HTools.Group as Group
86
import Ganeti.HTools.Types
87
import Ganeti.HTools.Utils
88
import Ganeti.HTools.Compat
89
import qualified Ganeti.OpCodes as OpCodes
90

    
91
-- * Types
92

    
93
-- | Allocation\/relocation solution.
94
data AllocSolution = AllocSolution
95
  { asFailures :: [FailMode]              -- ^ Failure counts
96
  , asAllocs   :: Int                     -- ^ Good allocation count
97
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
98
  , asLog      :: [String]                -- ^ Informational messages
99
  }
100

    
101
-- | Node evacuation/group change iallocator result type. This result
102
-- type consists of actual opcodes (a restricted subset) that are
103
-- transmitted back to Ganeti.
104
data EvacSolution = EvacSolution
105
  { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
106
  , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
107
                                      -- relocated
108
  , esOpCodes :: [[OpCodes.OpCode]]   -- ^ List of jobs
109
  } deriving (Show)
110

    
111
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
112
type AllocResult = (FailStats, Node.List, Instance.List,
113
                    [Instance.Instance], [CStats])
114

    
115
-- | A type denoting the valid allocation mode/pairs.
116
--
117
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
118
-- for a two-node allocation, this will be a @Right [('Ndx',
119
-- ['Ndx'])]@. In the latter case, the list is basically an
120
-- association list, grouped by primary node and holding the potential
121
-- secondary nodes in the sub-list.
122
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
123

    
124
-- | The empty solution we start with when computing allocations.
125
emptyAllocSolution :: AllocSolution
126
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
127
                                   , asSolution = Nothing, asLog = [] }
128

    
129
-- | The empty evac solution.
130
emptyEvacSolution :: EvacSolution
131
emptyEvacSolution = EvacSolution { esMoved = []
132
                                 , esFailed = []
133
                                 , esOpCodes = []
134
                                 }
135

    
136
-- | The complete state for the balancing solution.
137
data Table = Table Node.List Instance.List Score [Placement]
138
             deriving (Show, Read)
139

    
140
-- | Cluster statistics data type.
141
data CStats = CStats
142
  { csFmem :: Integer -- ^ Cluster free mem
143
  , csFdsk :: Integer -- ^ Cluster free disk
144
  , csAmem :: Integer -- ^ Cluster allocatable mem
145
  , csAdsk :: Integer -- ^ Cluster allocatable disk
146
  , csAcpu :: Integer -- ^ Cluster allocatable cpus
147
  , csMmem :: Integer -- ^ Max node allocatable mem
148
  , csMdsk :: Integer -- ^ Max node allocatable disk
149
  , csMcpu :: Integer -- ^ Max node allocatable cpu
150
  , csImem :: Integer -- ^ Instance used mem
151
  , csIdsk :: Integer -- ^ Instance used disk
152
  , csIcpu :: Integer -- ^ Instance used cpu
153
  , csTmem :: Double  -- ^ Cluster total mem
154
  , csTdsk :: Double  -- ^ Cluster total disk
155
  , csTcpu :: Double  -- ^ Cluster total cpus
156
  , csVcpu :: Integer -- ^ Cluster total virtual cpus
157
  , csNcpu :: Double  -- ^ Equivalent to 'csIcpu' but in terms of
158
                      -- physical CPUs, i.e. normalised used phys CPUs
159
  , csXmem :: Integer -- ^ Unnacounted for mem
160
  , csNmem :: Integer -- ^ Node own memory
161
  , csScore :: Score  -- ^ The cluster score
162
  , csNinst :: Int    -- ^ The total number of instances
163
  } deriving (Show, Read)
164

    
165
-- | A simple type for allocation functions.
166
type AllocMethod =  Node.List           -- ^ Node list
167
                 -> Instance.List       -- ^ Instance list
168
                 -> Maybe Int           -- ^ Optional allocation limit
169
                 -> Instance.Instance   -- ^ Instance spec for allocation
170
                 -> AllocNodes          -- ^ Which nodes we should allocate on
171
                 -> [Instance.Instance] -- ^ Allocated instances
172
                 -> [CStats]            -- ^ Running cluster stats
173
                 -> Result AllocResult  -- ^ Allocation result
174

    
175
-- | A simple type for the running solution of evacuations.
176
type EvacInnerState =
177
  Either String (Node.List, Instance.Instance, Score, Ndx)
178

    
179
-- * Utility functions
180

    
181
-- | Verifies the N+1 status and return the affected nodes.
182
verifyN1 :: [Node.Node] -> [Node.Node]
183
verifyN1 = filter Node.failN1
184

    
185
{-| Computes the pair of bad nodes and instances.
186

    
187
The bad node list is computed via a simple 'verifyN1' check, and the
188
bad instance list is the list of primary and secondary instances of
189
those nodes.
190

    
191
-}
192
computeBadItems :: Node.List -> Instance.List ->
193
                   ([Node.Node], [Instance.Instance])
194
computeBadItems nl il =
195
  let bad_nodes = verifyN1 $ getOnline nl
196
      bad_instances = map (`Container.find` il) .
197
                      sort . nub $
198
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
199
  in
200
    (bad_nodes, bad_instances)
201

    
202
-- | Extracts the node pairs for an instance. This can fail if the
203
-- instance is single-homed. FIXME: this needs to be improved,
204
-- together with the general enhancement for handling non-DRBD moves.
205
instanceNodes :: Node.List -> Instance.Instance ->
206
                 (Ndx, Ndx, Node.Node, Node.Node)
207
instanceNodes nl inst =
208
  let old_pdx = Instance.pNode inst
209
      old_sdx = Instance.sNode inst
210
      old_p = Container.find old_pdx nl
211
      old_s = Container.find old_sdx nl
212
  in (old_pdx, old_sdx, old_p, old_s)
213

    
214
-- | Zero-initializer for the CStats type.
215
emptyCStats :: CStats
216
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
217

    
218
-- | Update stats with data from a new node.
219
updateCStats :: CStats -> Node.Node -> CStats
220
updateCStats cs node =
221
  let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
222
               csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
223
               csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
224
               csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
225
               csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
226
               csVcpu = x_vcpu, csNcpu = x_ncpu,
227
               csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
228
             }
229
        = cs
230
      inc_amem = Node.fMem node - Node.rMem node
231
      inc_amem' = if inc_amem > 0 then inc_amem else 0
232
      inc_adsk = Node.availDisk node
233
      inc_imem = truncate (Node.tMem node) - Node.nMem node
234
                 - Node.xMem node - Node.fMem node
235
      inc_icpu = Node.uCpu node
236
      inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
237
      inc_vcpu = Node.hiCpu node
238
      inc_acpu = Node.availCpu node
239
      inc_ncpu = fromIntegral (Node.uCpu node) /
240
                 iPolicyVcpuRatio (Node.iPolicy node)
241
  in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
242
        , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
243
        , csAmem = x_amem + fromIntegral inc_amem'
244
        , csAdsk = x_adsk + fromIntegral inc_adsk
245
        , csAcpu = x_acpu + fromIntegral inc_acpu
246
        , csMmem = max x_mmem (fromIntegral inc_amem')
247
        , csMdsk = max x_mdsk (fromIntegral inc_adsk)
248
        , csMcpu = max x_mcpu (fromIntegral inc_acpu)
249
        , csImem = x_imem + fromIntegral inc_imem
250
        , csIdsk = x_idsk + fromIntegral inc_idsk
251
        , csIcpu = x_icpu + fromIntegral inc_icpu
252
        , csTmem = x_tmem + Node.tMem node
253
        , csTdsk = x_tdsk + Node.tDsk node
254
        , csTcpu = x_tcpu + Node.tCpu node
255
        , csVcpu = x_vcpu + fromIntegral inc_vcpu
256
        , csNcpu = x_ncpu + inc_ncpu
257
        , csXmem = x_xmem + fromIntegral (Node.xMem node)
258
        , csNmem = x_nmem + fromIntegral (Node.nMem node)
259
        , csNinst = x_ninst + length (Node.pList node)
260
        }
261

    
262
-- | Compute the total free disk and memory in the cluster.
263
totalResources :: Node.List -> CStats
264
totalResources nl =
265
  let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
266
  in cs { csScore = compCV nl }
267

    
268
-- | Compute the delta between two cluster state.
269
--
270
-- This is used when doing allocations, to understand better the
271
-- available cluster resources. The return value is a triple of the
272
-- current used values, the delta that was still allocated, and what
273
-- was left unallocated.
274
computeAllocationDelta :: CStats -> CStats -> AllocStats
275
computeAllocationDelta cini cfin =
276
  let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu,
277
              csNcpu = i_ncpu } = cini
278
      CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
279
              csTmem = t_mem, csTdsk = t_dsk, csVcpu = f_vcpu,
280
              csNcpu = f_ncpu, csTcpu = f_tcpu } = cfin
281
      rini = AllocInfo { allocInfoVCpus = fromIntegral i_icpu
282
                       , allocInfoNCpus = i_ncpu
283
                       , allocInfoMem   = fromIntegral i_imem
284
                       , allocInfoDisk  = fromIntegral i_idsk
285
                       }
286
      rfin = AllocInfo { allocInfoVCpus = fromIntegral (f_icpu - i_icpu)
287
                       , allocInfoNCpus = f_ncpu - i_ncpu
288
                       , allocInfoMem   = fromIntegral (f_imem - i_imem)
289
                       , allocInfoDisk  = fromIntegral (f_idsk - i_idsk)
290
                       }
291
      runa = AllocInfo { allocInfoVCpus = fromIntegral (f_vcpu - f_icpu)
292
                       , allocInfoNCpus = f_tcpu - f_ncpu
293
                       , allocInfoMem   = truncate t_mem - fromIntegral f_imem
294
                       , allocInfoDisk  = truncate t_dsk - fromIntegral f_idsk
295
                       }
296
  in (rini, rfin, runa)
297

    
298
-- | The names and weights of the individual elements in the CV list.
299
detailedCVInfo :: [(Double, String)]
300
detailedCVInfo = [ (1,  "free_mem_cv")
301
                 , (1,  "free_disk_cv")
302
                 , (1,  "n1_cnt")
303
                 , (1,  "reserved_mem_cv")
304
                 , (4,  "offline_all_cnt")
305
                 , (16, "offline_pri_cnt")
306
                 , (1,  "vcpu_ratio_cv")
307
                 , (1,  "cpu_load_cv")
308
                 , (1,  "mem_load_cv")
309
                 , (1,  "disk_load_cv")
310
                 , (1,  "net_load_cv")
311
                 , (2,  "pri_tags_score")
312
                 , (1,  "spindles_cv")
313
                 ]
314

    
315
-- | Holds the weights used by 'compCVNodes' for each metric.
316
detailedCVWeights :: [Double]
317
detailedCVWeights = map fst detailedCVInfo
318

    
319
-- | Compute the mem and disk covariance.
320
compDetailedCV :: [Node.Node] -> [Double]
321
compDetailedCV all_nodes =
322
  let (offline, nodes) = partition Node.offline all_nodes
323
      mem_l = map Node.pMem nodes
324
      dsk_l = map Node.pDsk nodes
325
      -- metric: memory covariance
326
      mem_cv = stdDev mem_l
327
      -- metric: disk covariance
328
      dsk_cv = stdDev dsk_l
329
      -- metric: count of instances living on N1 failing nodes
330
      n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
331
                                                 length (Node.pList n)) .
332
                 filter Node.failN1 $ nodes :: Double
333
      res_l = map Node.pRem nodes
334
      -- metric: reserved memory covariance
335
      res_cv = stdDev res_l
336
      -- offline instances metrics
337
      offline_ipri = sum . map (length . Node.pList) $ offline
338
      offline_isec = sum . map (length . Node.sList) $ offline
339
      -- metric: count of instances on offline nodes
340
      off_score = fromIntegral (offline_ipri + offline_isec)::Double
341
      -- metric: count of primary instances on offline nodes (this
342
      -- helps with evacuation/failover of primary instances on
343
      -- 2-node clusters with one node offline)
344
      off_pri_score = fromIntegral offline_ipri::Double
345
      cpu_l = map Node.pCpu nodes
346
      -- metric: covariance of vcpu/pcpu ratio
347
      cpu_cv = stdDev cpu_l
348
      -- metrics: covariance of cpu, memory, disk and network load
349
      (c_load, m_load, d_load, n_load) =
350
        unzip4 $ map (\n ->
351
                      let DynUtil c1 m1 d1 n1 = Node.utilLoad n
352
                          DynUtil c2 m2 d2 n2 = Node.utilPool n
353
                      in (c1/c2, m1/m2, d1/d2, n1/n2)) nodes
354
      -- metric: conflicting instance count
355
      pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
356
      pri_tags_score = fromIntegral pri_tags_inst::Double
357
      -- metric: spindles %
358
      spindles_cv = map (\n -> Node.instSpindles n / Node.hiSpindles n) nodes
359
  in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
360
     , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
361
     , pri_tags_score, stdDev spindles_cv ]
362

    
363
-- | Compute the /total/ variance.
364
compCVNodes :: [Node.Node] -> Double
365
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
366

    
367
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
368
compCV :: Node.List -> Double
369
compCV = compCVNodes . Container.elems
370

    
371
-- | Compute online nodes from a 'Node.List'.
372
getOnline :: Node.List -> [Node.Node]
373
getOnline = filter (not . Node.offline) . Container.elems
374

    
375
-- * Balancing functions
376

    
377
-- | Compute best table. Note that the ordering of the arguments is important.
378
compareTables :: Table -> Table -> Table
379
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
380
  if a_cv > b_cv then b else a
381

    
382
-- | Applies an instance move to a given node list and instance.
383
applyMove :: Node.List -> Instance.Instance
384
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
385
-- Failover (f)
386
applyMove nl inst Failover =
387
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
388
      int_p = Node.removePri old_p inst
389
      int_s = Node.removeSec old_s inst
390
      new_nl = do -- Maybe monad
391
        new_p <- Node.addPriEx (Node.offline old_p) int_s inst
392
        new_s <- Node.addSec int_p inst old_sdx
393
        let new_inst = Instance.setBoth inst old_sdx old_pdx
394
        return (Container.addTwo old_pdx new_s old_sdx new_p nl,
395
                new_inst, old_sdx, old_pdx)
396
  in new_nl
397

    
398
-- Failover to any (fa)
399
applyMove nl inst (FailoverToAny new_pdx) = do
400
  let (old_pdx, old_sdx, old_pnode, _) = instanceNodes nl inst
401
      new_pnode = Container.find new_pdx nl
402
      force_failover = Node.offline old_pnode
403
  new_pnode' <- Node.addPriEx force_failover new_pnode inst
404
  let old_pnode' = Node.removePri old_pnode inst
405
      inst' = Instance.setPri inst new_pdx
406
      nl' = Container.addTwo old_pdx old_pnode' new_pdx new_pnode' nl
407
  return (nl', inst', new_pdx, old_sdx)
408

    
409
-- Replace the primary (f:, r:np, f)
410
applyMove nl inst (ReplacePrimary new_pdx) =
411
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
412
      tgt_n = Container.find new_pdx nl
413
      int_p = Node.removePri old_p inst
414
      int_s = Node.removeSec old_s inst
415
      force_p = Node.offline old_p
416
      new_nl = do -- Maybe monad
417
                  -- check that the current secondary can host the instance
418
                  -- during the migration
419
        tmp_s <- Node.addPriEx force_p int_s inst
420
        let tmp_s' = Node.removePri tmp_s inst
421
        new_p <- Node.addPriEx force_p tgt_n inst
422
        new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
423
        let new_inst = Instance.setPri inst new_pdx
424
        return (Container.add new_pdx new_p $
425
                Container.addTwo old_pdx int_p old_sdx new_s nl,
426
                new_inst, new_pdx, old_sdx)
427
  in new_nl
428

    
429
-- Replace the secondary (r:ns)
430
applyMove nl inst (ReplaceSecondary new_sdx) =
431
  let old_pdx = Instance.pNode inst
432
      old_sdx = Instance.sNode inst
433
      old_s = Container.find old_sdx nl
434
      tgt_n = Container.find new_sdx nl
435
      int_s = Node.removeSec old_s inst
436
      force_s = Node.offline old_s
437
      new_inst = Instance.setSec inst new_sdx
438
      new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
439
               \new_s -> return (Container.addTwo new_sdx
440
                                 new_s old_sdx int_s nl,
441
                                 new_inst, old_pdx, new_sdx)
442
  in new_nl
443

    
444
-- Replace the secondary and failover (r:np, f)
445
applyMove nl inst (ReplaceAndFailover new_pdx) =
446
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
447
      tgt_n = Container.find new_pdx nl
448
      int_p = Node.removePri old_p inst
449
      int_s = Node.removeSec old_s inst
450
      force_s = Node.offline old_s
451
      new_nl = do -- Maybe monad
452
        new_p <- Node.addPri tgt_n inst
453
        new_s <- Node.addSecEx force_s int_p inst new_pdx
454
        let new_inst = Instance.setBoth inst new_pdx old_pdx
455
        return (Container.add new_pdx new_p $
456
                Container.addTwo old_pdx new_s old_sdx int_s nl,
457
                new_inst, new_pdx, old_pdx)
458
  in new_nl
459

    
460
-- Failver and replace the secondary (f, r:ns)
461
applyMove nl inst (FailoverAndReplace new_sdx) =
462
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
463
      tgt_n = Container.find new_sdx nl
464
      int_p = Node.removePri old_p inst
465
      int_s = Node.removeSec old_s inst
466
      force_p = Node.offline old_p
467
      new_nl = do -- Maybe monad
468
        new_p <- Node.addPriEx force_p int_s inst
469
        new_s <- Node.addSecEx force_p tgt_n inst old_sdx
470
        let new_inst = Instance.setBoth inst old_sdx new_sdx
471
        return (Container.add new_sdx new_s $
472
                Container.addTwo old_sdx new_p old_pdx int_p nl,
473
                new_inst, old_sdx, new_sdx)
474
  in new_nl
475

    
476
-- | Tries to allocate an instance on one given node.
477
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
478
                 -> OpResult Node.AllocElement
479
allocateOnSingle nl inst new_pdx =
480
  let p = Container.find new_pdx nl
481
      new_inst = Instance.setBoth inst new_pdx Node.noSecondary
482
  in do
483
    Instance.instMatchesPolicy inst (Node.iPolicy p)
484
    new_p <- Node.addPri p inst
485
    let new_nl = Container.add new_pdx new_p nl
486
        new_score = compCV nl
487
    return (new_nl, new_inst, [new_p], new_score)
488

    
489
-- | Tries to allocate an instance on a given pair of nodes.
490
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
491
               -> OpResult Node.AllocElement
492
allocateOnPair nl inst new_pdx new_sdx =
493
  let tgt_p = Container.find new_pdx nl
494
      tgt_s = Container.find new_sdx nl
495
  in do
496
    Instance.instMatchesPolicy inst (Node.iPolicy tgt_p)
497
    new_p <- Node.addPri tgt_p inst
498
    new_s <- Node.addSec tgt_s inst new_pdx
499
    let new_inst = Instance.setBoth inst new_pdx new_sdx
500
        new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
501
    return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
502

    
503
-- | Tries to perform an instance move and returns the best table
504
-- between the original one and the new one.
505
checkSingleStep :: Table -- ^ The original table
506
                -> Instance.Instance -- ^ The instance to move
507
                -> Table -- ^ The current best table
508
                -> IMove -- ^ The move to apply
509
                -> Table -- ^ The final best table
510
checkSingleStep ini_tbl target cur_tbl move =
511
  let Table ini_nl ini_il _ ini_plc = ini_tbl
512
      tmp_resu = applyMove ini_nl target move
513
  in case tmp_resu of
514
       OpFail _ -> cur_tbl
515
       OpGood (upd_nl, new_inst, pri_idx, sec_idx) ->
516
         let tgt_idx = Instance.idx target
517
             upd_cvar = compCV upd_nl
518
             upd_il = Container.add tgt_idx new_inst ini_il
519
             upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
520
             upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
521
         in compareTables cur_tbl upd_tbl
522

    
523
-- | Given the status of the current secondary as a valid new node and
524
-- the current candidate target node, generate the possible moves for
525
-- a instance.
526
possibleMoves :: MirrorType -- ^ The mirroring type of the instance
527
              -> Bool       -- ^ Whether the secondary node is a valid new node
528
              -> Bool       -- ^ Whether we can change the primary node
529
              -> Ndx        -- ^ Target node candidate
530
              -> [IMove]    -- ^ List of valid result moves
531

    
532
possibleMoves MirrorNone _ _ _ = []
533

    
534
possibleMoves MirrorExternal _ False _ = []
535

    
536
possibleMoves MirrorExternal _ True tdx =
537
  [ FailoverToAny tdx ]
538

    
539
possibleMoves MirrorInternal _ False tdx =
540
  [ ReplaceSecondary tdx ]
541

    
542
possibleMoves MirrorInternal True True tdx =
543
  [ ReplaceSecondary tdx
544
  , ReplaceAndFailover tdx
545
  , ReplacePrimary tdx
546
  , FailoverAndReplace tdx
547
  ]
548

    
549
possibleMoves MirrorInternal False True tdx =
550
  [ ReplaceSecondary tdx
551
  , ReplaceAndFailover tdx
552
  ]
553

    
554
-- | Compute the best move for a given instance.
555
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
556
                  -> Bool              -- ^ Whether disk moves are allowed
557
                  -> Bool              -- ^ Whether instance moves are allowed
558
                  -> Table             -- ^ Original table
559
                  -> Instance.Instance -- ^ Instance to move
560
                  -> Table             -- ^ Best new table for this instance
561
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
562
  let opdx = Instance.pNode target
563
      osdx = Instance.sNode target
564
      bad_nodes = [opdx, osdx]
565
      nodes = filter (`notElem` bad_nodes) nodes_idx
566
      mir_type = templateMirrorType $ Instance.diskTemplate target
567
      use_secondary = elem osdx nodes_idx && inst_moves
568
      aft_failover = if mir_type == MirrorInternal && use_secondary
569
                       -- if drbd and allowed to failover
570
                       then checkSingleStep ini_tbl target ini_tbl Failover
571
                       else ini_tbl
572
      all_moves =
573
        if disk_moves
574
          then concatMap (possibleMoves mir_type use_secondary inst_moves)
575
               nodes
576
          else []
577
    in
578
      -- iterate over the possible nodes for this instance
579
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
580

    
581
-- | Compute the best next move.
582
checkMove :: [Ndx]               -- ^ Allowed target node indices
583
          -> Bool                -- ^ Whether disk moves are allowed
584
          -> Bool                -- ^ Whether instance moves are allowed
585
          -> Table               -- ^ The current solution
586
          -> [Instance.Instance] -- ^ List of instances still to move
587
          -> Table               -- ^ The new solution
588
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
589
  let Table _ _ _ ini_plc = ini_tbl
590
      -- we're using rwhnf from the Control.Parallel.Strategies
591
      -- package; we don't need to use rnf as that would force too
592
      -- much evaluation in single-threaded cases, and in
593
      -- multi-threaded case the weak head normal form is enough to
594
      -- spark the evaluation
595
      tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
596
                             inst_moves ini_tbl)
597
               victims
598
      -- iterate over all instances, computing the best move
599
      best_tbl = foldl' compareTables ini_tbl tables
600
      Table _ _ _ best_plc = best_tbl
601
  in if length best_plc == length ini_plc
602
       then ini_tbl -- no advancement
603
       else best_tbl
604

    
605
-- | Check if we are allowed to go deeper in the balancing.
606
doNextBalance :: Table     -- ^ The starting table
607
              -> Int       -- ^ Remaining length
608
              -> Score     -- ^ Score at which to stop
609
              -> Bool      -- ^ The resulting table and commands
610
doNextBalance ini_tbl max_rounds min_score =
611
  let Table _ _ ini_cv ini_plc = ini_tbl
612
      ini_plc_len = length ini_plc
613
  in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
614

    
615
-- | Run a balance move.
616
tryBalance :: Table       -- ^ The starting table
617
           -> Bool        -- ^ Allow disk moves
618
           -> Bool        -- ^ Allow instance moves
619
           -> Bool        -- ^ Only evacuate moves
620
           -> Score       -- ^ Min gain threshold
621
           -> Score       -- ^ Min gain
622
           -> Maybe Table -- ^ The resulting table and commands
623
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
624
    let Table ini_nl ini_il ini_cv _ = ini_tbl
625
        all_inst = Container.elems ini_il
626
        all_nodes = Container.elems ini_nl
627
        (offline_nodes, online_nodes) = partition Node.offline all_nodes
628
        all_inst' = if evac_mode
629
                      then let bad_nodes = map Node.idx offline_nodes
630
                           in filter (any (`elem` bad_nodes) .
631
                                          Instance.allNodes) all_inst
632
                      else all_inst
633
        reloc_inst = filter Instance.movable all_inst'
634
        node_idx = map Node.idx online_nodes
635
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
636
        (Table _ _ fin_cv _) = fin_tbl
637
    in
638
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
639
      then Just fin_tbl -- this round made success, return the new table
640
      else Nothing
641

    
642
-- * Allocation functions
643

    
644
-- | Build failure stats out of a list of failures.
645
collapseFailures :: [FailMode] -> FailStats
646
collapseFailures flst =
647
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
648
            [minBound..maxBound]
649

    
650
-- | Compares two Maybe AllocElement and chooses the besst score.
651
bestAllocElement :: Maybe Node.AllocElement
652
                 -> Maybe Node.AllocElement
653
                 -> Maybe Node.AllocElement
654
bestAllocElement a Nothing = a
655
bestAllocElement Nothing b = b
656
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
657
  if ascore < bscore then a else b
658

    
659
-- | Update current Allocation solution and failure stats with new
660
-- elements.
661
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
662
concatAllocs as (OpFail reason) = as { asFailures = reason : asFailures as }
663

    
664
concatAllocs as (OpGood ns) =
665
  let -- Choose the old or new solution, based on the cluster score
666
    cntok = asAllocs as
667
    osols = asSolution as
668
    nsols = bestAllocElement osols (Just ns)
669
    nsuc = cntok + 1
670
    -- Note: we force evaluation of nsols here in order to keep the
671
    -- memory profile low - we know that we will need nsols for sure
672
    -- in the next cycle, so we force evaluation of nsols, since the
673
    -- foldl' in the caller will only evaluate the tuple, but not the
674
    -- elements of the tuple
675
  in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
676

    
677
-- | Sums two 'AllocSolution' structures.
678
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
679
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
680
          (AllocSolution bFails bAllocs bSols bLog) =
681
  -- note: we add b first, since usually it will be smaller; when
682
  -- fold'ing, a will grow and grow whereas b is the per-group
683
  -- result, hence smaller
684
  let nFails  = bFails ++ aFails
685
      nAllocs = aAllocs + bAllocs
686
      nSols   = bestAllocElement aSols bSols
687
      nLog    = bLog ++ aLog
688
  in AllocSolution nFails nAllocs nSols nLog
689

    
690
-- | Given a solution, generates a reasonable description for it.
691
describeSolution :: AllocSolution -> String
692
describeSolution as =
693
  let fcnt = asFailures as
694
      sols = asSolution as
695
      freasons =
696
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
697
        filter ((> 0) . snd) . collapseFailures $ fcnt
698
  in case sols of
699
     Nothing -> "No valid allocation solutions, failure reasons: " ++
700
                (if null fcnt then "unknown reasons" else freasons)
701
     Just (_, _, nodes, cv) ->
702
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
703
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
704
               (intercalate "/" . map Node.name $ nodes)
705

    
706
-- | Annotates a solution with the appropriate string.
707
annotateSolution :: AllocSolution -> AllocSolution
708
annotateSolution as = as { asLog = describeSolution as : asLog as }
709

    
710
-- | Reverses an evacuation solution.
711
--
712
-- Rationale: we always concat the results to the top of the lists, so
713
-- for proper jobset execution, we should reverse all lists.
714
reverseEvacSolution :: EvacSolution -> EvacSolution
715
reverseEvacSolution (EvacSolution f m o) =
716
  EvacSolution (reverse f) (reverse m) (reverse o)
717

    
718
-- | Generate the valid node allocation singles or pairs for a new instance.
719
genAllocNodes :: Group.List        -- ^ Group list
720
              -> Node.List         -- ^ The node map
721
              -> Int               -- ^ The number of nodes required
722
              -> Bool              -- ^ Whether to drop or not
723
                                   -- unallocable nodes
724
              -> Result AllocNodes -- ^ The (monadic) result
725
genAllocNodes gl nl count drop_unalloc =
726
  let filter_fn = if drop_unalloc
727
                    then filter (Group.isAllocable .
728
                                 flip Container.find gl . Node.group)
729
                    else id
730
      all_nodes = filter_fn $ getOnline nl
731
      all_pairs = [(Node.idx p,
732
                    [Node.idx s | s <- all_nodes,
733
                                       Node.idx p /= Node.idx s,
734
                                       Node.group p == Node.group s]) |
735
                   p <- all_nodes]
736
  in case count of
737
       1 -> Ok (Left (map Node.idx all_nodes))
738
       2 -> Ok (Right (filter (not . null . snd) all_pairs))
739
       _ -> Bad "Unsupported number of nodes, only one or two  supported"
740

    
741
-- | Try to allocate an instance on the cluster.
742
tryAlloc :: (Monad m) =>
743
            Node.List         -- ^ The node list
744
         -> Instance.List     -- ^ The instance list
745
         -> Instance.Instance -- ^ The instance to allocate
746
         -> AllocNodes        -- ^ The allocation targets
747
         -> m AllocSolution   -- ^ Possible solution list
748
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
749
tryAlloc nl _ inst (Right ok_pairs) =
750
  let psols = parMap rwhnf (\(p, ss) ->
751
                              foldl' (\cstate ->
752
                                        concatAllocs cstate .
753
                                        allocateOnPair nl inst p)
754
                              emptyAllocSolution ss) ok_pairs
755
      sols = foldl' sumAllocs emptyAllocSolution psols
756
  in return $ annotateSolution sols
757

    
758
tryAlloc _  _ _    (Left []) = fail "No online nodes"
759
tryAlloc nl _ inst (Left all_nodes) =
760
  let sols = foldl' (\cstate ->
761
                       concatAllocs cstate . allocateOnSingle nl inst
762
                    ) emptyAllocSolution all_nodes
763
  in return $ annotateSolution sols
764

    
765
-- | Given a group/result, describe it as a nice (list of) messages.
766
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
767
solutionDescription gl (groupId, result) =
768
  case result of
769
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
770
    Bad message -> [printf "Group %s: error %s" gname message]
771
  where grp = Container.find groupId gl
772
        gname = Group.name grp
773
        pol = allocPolicyToRaw (Group.allocPolicy grp)
774

    
775
-- | From a list of possibly bad and possibly empty solutions, filter
776
-- only the groups with a valid result. Note that the result will be
777
-- reversed compared to the original list.
778
filterMGResults :: Group.List
779
                -> [(Gdx, Result AllocSolution)]
780
                -> [(Gdx, AllocSolution)]
781
filterMGResults gl = foldl' fn []
782
  where unallocable = not . Group.isAllocable . flip Container.find gl
783
        fn accu (gdx, rasol) =
784
          case rasol of
785
            Bad _ -> accu
786
            Ok sol | isNothing (asSolution sol) -> accu
787
                   | unallocable gdx -> accu
788
                   | otherwise -> (gdx, sol):accu
789

    
790
-- | Sort multigroup results based on policy and score.
791
sortMGResults :: Group.List
792
             -> [(Gdx, AllocSolution)]
793
             -> [(Gdx, AllocSolution)]
794
sortMGResults gl sols =
795
  let extractScore (_, _, _, x) = x
796
      solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
797
                             (extractScore . fromJust . asSolution) sol)
798
  in sortBy (comparing solScore) sols
799

    
800
-- | Finds the best group for an instance on a multi-group cluster.
801
--
802
-- Only solutions in @preferred@ and @last_resort@ groups will be
803
-- accepted as valid, and additionally if the allowed groups parameter
804
-- is not null then allocation will only be run for those group
805
-- indices.
806
findBestAllocGroup :: Group.List           -- ^ The group list
807
                   -> Node.List            -- ^ The node list
808
                   -> Instance.List        -- ^ The instance list
809
                   -> Maybe [Gdx]          -- ^ The allowed groups
810
                   -> Instance.Instance    -- ^ The instance to allocate
811
                   -> Int                  -- ^ Required number of nodes
812
                   -> Result (Gdx, AllocSolution, [String])
813
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
814
  let groups = splitCluster mgnl mgil
815
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
816
                allowed_gdxs
817
      sols = map (\(gid, (nl, il)) ->
818
                   (gid, genAllocNodes mggl nl cnt False >>=
819
                       tryAlloc nl il inst))
820
             groups'::[(Gdx, Result AllocSolution)]
821
      all_msgs = concatMap (solutionDescription mggl) sols
822
      goodSols = filterMGResults mggl sols
823
      sortedSols = sortMGResults mggl goodSols
824
  in if null sortedSols
825
       then if null groups'
826
              then Bad $ "no groups for evacuation: allowed groups was" ++
827
                     show allowed_gdxs ++ ", all groups: " ++
828
                     show (map fst groups)
829
              else Bad $ intercalate ", " all_msgs
830
       else let (final_group, final_sol) = head sortedSols
831
            in return (final_group, final_sol, all_msgs)
832

    
833
-- | Try to allocate an instance on a multi-group cluster.
834
tryMGAlloc :: Group.List           -- ^ The group list
835
           -> Node.List            -- ^ The node list
836
           -> Instance.List        -- ^ The instance list
837
           -> Instance.Instance    -- ^ The instance to allocate
838
           -> Int                  -- ^ Required number of nodes
839
           -> Result AllocSolution -- ^ Possible solution list
840
tryMGAlloc mggl mgnl mgil inst cnt = do
841
  (best_group, solution, all_msgs) <-
842
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
843
  let group_name = Group.name $ Container.find best_group mggl
844
      selmsg = "Selected group: " ++ group_name
845
  return $ solution { asLog = selmsg:all_msgs }
846

    
847
-- | Function which fails if the requested mode is change secondary.
848
--
849
-- This is useful since except DRBD, no other disk template can
850
-- execute change secondary; thus, we can just call this function
851
-- instead of always checking for secondary mode. After the call to
852
-- this function, whatever mode we have is just a primary change.
853
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
854
failOnSecondaryChange ChangeSecondary dt =
855
  fail $ "Instances with disk template '" ++ diskTemplateToRaw dt ++
856
         "' can't execute change secondary"
857
failOnSecondaryChange _ _ = return ()
858

    
859
-- | Run evacuation for a single instance.
860
--
861
-- /Note:/ this function should correctly execute both intra-group
862
-- evacuations (in all modes) and inter-group evacuations (in the
863
-- 'ChangeAll' mode). Of course, this requires that the correct list
864
-- of target nodes is passed.
865
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
866
                 -> Instance.List     -- ^ Instance list (cluster-wide)
867
                 -> EvacMode          -- ^ The evacuation mode
868
                 -> Instance.Instance -- ^ The instance to be evacuated
869
                 -> Gdx               -- ^ The group we're targetting
870
                 -> [Ndx]             -- ^ The list of available nodes
871
                                      -- for allocation
872
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
873
nodeEvacInstance _ _ mode (Instance.Instance
874
                           {Instance.diskTemplate = dt@DTDiskless}) _ _ =
875
                  failOnSecondaryChange mode dt >>
876
                  fail "Diskless relocations not implemented yet"
877

    
878
nodeEvacInstance _ _ _ (Instance.Instance
879
                        {Instance.diskTemplate = DTPlain}) _ _ =
880
                  fail "Instances of type plain cannot be relocated"
881

    
882
nodeEvacInstance _ _ _ (Instance.Instance
883
                        {Instance.diskTemplate = DTFile}) _ _ =
884
                  fail "Instances of type file cannot be relocated"
885

    
886
nodeEvacInstance _ _ mode  (Instance.Instance
887
                            {Instance.diskTemplate = dt@DTSharedFile}) _ _ =
888
                  failOnSecondaryChange mode dt >>
889
                  fail "Shared file relocations not implemented yet"
890

    
891
nodeEvacInstance _ _ mode (Instance.Instance
892
                           {Instance.diskTemplate = dt@DTBlock}) _ _ =
893
                  failOnSecondaryChange mode dt >>
894
                  fail "Block device relocations not implemented yet"
895

    
896
nodeEvacInstance _ _ mode  (Instance.Instance
897
                            {Instance.diskTemplate = dt@DTRbd}) _ _ =
898
                  failOnSecondaryChange mode dt >>
899
                  fail "Rbd relocations not implemented yet"
900

    
901
nodeEvacInstance nl il ChangePrimary
902
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
903
                 _ _ =
904
  do
905
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
906
    let idx = Instance.idx inst
907
        il' = Container.add idx inst' il
908
        ops = iMoveToJob nl' il' idx Failover
909
    return (nl', il', ops)
910

    
911
nodeEvacInstance nl il ChangeSecondary
912
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
913
                 gdx avail_nodes =
914
  evacOneNodeOnly nl il inst gdx avail_nodes
915

    
916
-- The algorithm for ChangeAll is as follows:
917
--
918
-- * generate all (primary, secondary) node pairs for the target groups
919
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
920
--   the final node list state and group score
921
-- * select the best choice via a foldl that uses the same Either
922
--   String solution as the ChangeSecondary mode
923
nodeEvacInstance nl il ChangeAll
924
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
925
                 gdx avail_nodes =
926
  do
927
    let no_nodes = Left "no nodes available"
928
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
929
    (nl', il', ops, _) <-
930
        annotateResult "Can't find any good nodes for relocation" $
931
        eitherToResult $
932
        foldl'
933
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
934
                          Bad msg ->
935
                              case accu of
936
                                Right _ -> accu
937
                                -- we don't need more details (which
938
                                -- nodes, etc.) as we only selected
939
                                -- this group if we can allocate on
940
                                -- it, hence failures will not
941
                                -- propagate out of this fold loop
942
                                Left _ -> Left $ "Allocation failed: " ++ msg
943
                          Ok result@(_, _, _, new_cv) ->
944
                              let new_accu = Right result in
945
                              case accu of
946
                                Left _ -> new_accu
947
                                Right (_, _, _, old_cv) ->
948
                                    if old_cv < new_cv
949
                                    then accu
950
                                    else new_accu
951
        ) no_nodes node_pairs
952

    
953
    return (nl', il', ops)
954

    
955
-- | Generic function for changing one node of an instance.
956
--
957
-- This is similar to 'nodeEvacInstance' but will be used in a few of
958
-- its sub-patterns.
959
evacOneNodeOnly :: Node.List         -- ^ The node list (cluster-wide)
960
                -> Instance.List     -- ^ Instance list (cluster-wide)
961
                -> Instance.Instance -- ^ The instance to be evacuated
962
                -> Gdx               -- ^ The group we're targetting
963
                -> [Ndx]             -- ^ The list of available nodes
964
                                      -- for allocation
965
                -> Result (Node.List, Instance.List, [OpCodes.OpCode])
966
evacOneNodeOnly nl il inst gdx avail_nodes = do
967
  op_fn <- case templateMirrorType (Instance.diskTemplate inst) of
968
             MirrorNone -> Bad "Can't relocate/evacuate non-mirrored instances"
969
             MirrorInternal -> Ok ReplaceSecondary
970
             MirrorExternal -> Ok FailoverToAny
971
  (nl', inst', _, ndx) <- annotateResult "Can't find any good node" $
972
                          eitherToResult $
973
                          foldl' (evacDrbdSecondaryInner nl inst gdx op_fn)
974
                          (Left "no nodes available") avail_nodes
975
  let idx = Instance.idx inst
976
      il' = Container.add idx inst' il
977
      ops = iMoveToJob nl' il' idx (op_fn ndx)
978
  return (nl', il', ops)
979

    
980
-- | Inner fold function for changing secondary of a DRBD instance.
981
--
982
-- The running solution is either a @Left String@, which means we
983
-- don't have yet a working solution, or a @Right (...)@, which
984
-- represents a valid solution; it holds the modified node list, the
985
-- modified instance (after evacuation), the score of that solution,
986
-- and the new secondary node index.
987
evacDrbdSecondaryInner :: Node.List -- ^ Cluster node list
988
                       -> Instance.Instance -- ^ Instance being evacuated
989
                       -> Gdx -- ^ The group index of the instance
990
                       -> (Ndx -> IMove) -- ^ Operation constructor
991
                       -> EvacInnerState  -- ^ Current best solution
992
                       -> Ndx  -- ^ Node we're evaluating as new secondary
993
                       -> EvacInnerState -- ^ New best solution
994
evacDrbdSecondaryInner nl inst gdx op_fn accu ndx =
995
  case applyMove nl inst (op_fn ndx) of
996
    OpFail fm ->
997
      case accu of
998
        Right _ -> accu
999
        Left _ -> Left $ "Node " ++ Container.nameOf nl ndx ++
1000
                  " failed: " ++ show fm
1001
    OpGood (nl', inst', _, _) ->
1002
      let nodes = Container.elems nl'
1003
          -- The fromJust below is ugly (it can fail nastily), but
1004
          -- at this point we should have any internal mismatches,
1005
          -- and adding a monad here would be quite involved
1006
          grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1007
          new_cv = compCVNodes grpnodes
1008
          new_accu = Right (nl', inst', new_cv, ndx)
1009
      in case accu of
1010
           Left _ -> new_accu
1011
           Right (_, _, old_cv, _) ->
1012
             if old_cv < new_cv
1013
               then accu
1014
               else new_accu
1015

    
1016
-- | Compute result of changing all nodes of a DRBD instance.
1017
--
1018
-- Given the target primary and secondary node (which might be in a
1019
-- different group or not), this function will 'execute' all the
1020
-- required steps and assuming all operations succceed, will return
1021
-- the modified node and instance lists, the opcodes needed for this
1022
-- and the new group score.
1023
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
1024
                 -> Instance.List     -- ^ Cluster instance list
1025
                 -> Instance.Instance -- ^ The instance to be moved
1026
                 -> Gdx               -- ^ The target group index
1027
                                      -- (which can differ from the
1028
                                      -- current group of the
1029
                                      -- instance)
1030
                 -> (Ndx, Ndx)        -- ^ Tuple of new
1031
                                      -- primary\/secondary nodes
1032
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
1033
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) = do
1034
  let primary = Container.find (Instance.pNode inst) nl
1035
      idx = Instance.idx inst
1036
  -- if the primary is offline, then we first failover
1037
  (nl1, inst1, ops1) <-
1038
    if Node.offline primary
1039
      then do
1040
        (nl', inst', _, _) <-
1041
          annotateResult "Failing over to the secondary" $
1042
          opToResult $ applyMove nl inst Failover
1043
        return (nl', inst', [Failover])
1044
      else return (nl, inst, [])
1045
  let (o1, o2, o3) = (ReplaceSecondary t_pdx,
1046
                      Failover,
1047
                      ReplaceSecondary t_sdx)
1048
  -- we now need to execute a replace secondary to the future
1049
  -- primary node
1050
  (nl2, inst2, _, _) <-
1051
    annotateResult "Changing secondary to new primary" $
1052
    opToResult $
1053
    applyMove nl1 inst1 o1
1054
  let ops2 = o1:ops1
1055
  -- we now execute another failover, the primary stays fixed now
1056
  (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" $
1057
                        opToResult $ applyMove nl2 inst2 o2
1058
  let ops3 = o2:ops2
1059
  -- and finally another replace secondary, to the final secondary
1060
  (nl4, inst4, _, _) <-
1061
    annotateResult "Changing secondary to final secondary" $
1062
    opToResult $
1063
    applyMove nl3 inst3 o3
1064
  let ops4 = o3:ops3
1065
      il' = Container.add idx inst4 il
1066
      ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1067
  let nodes = Container.elems nl4
1068
      -- The fromJust below is ugly (it can fail nastily), but
1069
      -- at this point we should have any internal mismatches,
1070
      -- and adding a monad here would be quite involved
1071
      grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1072
      new_cv = compCVNodes grpnodes
1073
  return (nl4, il', ops, new_cv)
1074

    
1075
-- | Computes the nodes in a given group which are available for
1076
-- allocation.
1077
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1078
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1079
                    -> Gdx            -- ^ The group for which we
1080
                                      -- query the nodes
1081
                    -> Result [Ndx]   -- ^ List of available node indices
1082
availableGroupNodes group_nodes excl_ndx gdx = do
1083
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1084
                 Ok (lookup gdx group_nodes)
1085
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1086
  return avail_nodes
1087

    
1088
-- | Updates the evac solution with the results of an instance
1089
-- evacuation.
1090
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1091
                   -> Idx
1092
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1093
                   -> (Node.List, Instance.List, EvacSolution)
1094
updateEvacSolution (nl, il, es) idx (Bad msg) =
1095
  (nl, il, es { esFailed = (idx, msg):esFailed es})
1096
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1097
  (nl, il, es { esMoved = new_elem:esMoved es
1098
              , esOpCodes = opcodes:esOpCodes es })
1099
    where inst = Container.find idx il
1100
          new_elem = (idx,
1101
                      instancePriGroup nl inst,
1102
                      Instance.allNodes inst)
1103

    
1104
-- | Node-evacuation IAllocator mode main function.
1105
tryNodeEvac :: Group.List    -- ^ The cluster groups
1106
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1107
            -> Instance.List -- ^ Instance list (cluster-wide)
1108
            -> EvacMode      -- ^ The evacuation mode
1109
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1110
            -> Result (Node.List, Instance.List, EvacSolution)
1111
tryNodeEvac _ ini_nl ini_il mode idxs =
1112
  let evac_ndx = nodesToEvacuate ini_il mode idxs
1113
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1114
      excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1115
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1116
                                           (Container.elems nl))) $
1117
                  splitCluster ini_nl ini_il
1118
      (fin_nl, fin_il, esol) =
1119
        foldl' (\state@(nl, il, _) inst ->
1120
                  let gdx = instancePriGroup nl inst
1121
                      pdx = Instance.pNode inst in
1122
                  updateEvacSolution state (Instance.idx inst) $
1123
                  availableGroupNodes group_ndx
1124
                    (IntSet.insert pdx excl_ndx) gdx >>=
1125
                      nodeEvacInstance nl il mode inst gdx
1126
               )
1127
        (ini_nl, ini_il, emptyEvacSolution)
1128
        (map (`Container.find` ini_il) idxs)
1129
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1130

    
1131
-- | Change-group IAllocator mode main function.
1132
--
1133
-- This is very similar to 'tryNodeEvac', the only difference is that
1134
-- we don't choose as target group the current instance group, but
1135
-- instead:
1136
--
1137
--   1. at the start of the function, we compute which are the target
1138
--   groups; either no groups were passed in, in which case we choose
1139
--   all groups out of which we don't evacuate instance, or there were
1140
--   some groups passed, in which case we use those
1141
--
1142
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1143
--   best group to hold the instance, and then we do what
1144
--   'tryNodeEvac' does, except for this group instead of the current
1145
--   instance group.
1146
--
1147
-- Note that the correct behaviour of this function relies on the
1148
-- function 'nodeEvacInstance' to be able to do correctly both
1149
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1150
tryChangeGroup :: Group.List    -- ^ The cluster groups
1151
               -> Node.List     -- ^ The node list (cluster-wide)
1152
               -> Instance.List -- ^ Instance list (cluster-wide)
1153
               -> [Gdx]         -- ^ Target groups; if empty, any
1154
                                -- groups not being evacuated
1155
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1156
               -> Result (Node.List, Instance.List, EvacSolution)
1157
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1158
  let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1159
                             flip Container.find ini_il) idxs
1160
      target_gdxs = (if null gdxs
1161
                       then Container.keys gl
1162
                       else gdxs) \\ evac_gdxs
1163
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1164
      excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1165
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1166
                                           (Container.elems nl))) $
1167
                  splitCluster ini_nl ini_il
1168
      (fin_nl, fin_il, esol) =
1169
        foldl' (\state@(nl, il, _) inst ->
1170
                  let solution = do
1171
                        let ncnt = Instance.requiredNodes $
1172
                                   Instance.diskTemplate inst
1173
                        (gdx, _, _) <- findBestAllocGroup gl nl il
1174
                                       (Just target_gdxs) inst ncnt
1175
                        av_nodes <- availableGroupNodes group_ndx
1176
                                    excl_ndx gdx
1177
                        nodeEvacInstance nl il ChangeAll inst gdx av_nodes
1178
                  in updateEvacSolution state (Instance.idx inst) solution
1179
               )
1180
        (ini_nl, ini_il, emptyEvacSolution)
1181
        (map (`Container.find` ini_il) idxs)
1182
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1183

    
1184
-- | Standard-sized allocation method.
1185
--
1186
-- This places instances of the same size on the cluster until we're
1187
-- out of space. The result will be a list of identically-sized
1188
-- instances.
1189
iterateAlloc :: AllocMethod
1190
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1191
  let depth = length ixes
1192
      newname = printf "new-%d" depth::String
1193
      newidx = Container.size il
1194
      newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1195
      newlimit = fmap (flip (-) 1) limit
1196
  in case tryAlloc nl il newi2 allocnodes of
1197
       Bad s -> Bad s
1198
       Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1199
         let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1200
         case sols3 of
1201
           Nothing -> newsol
1202
           Just (xnl, xi, _, _) ->
1203
             if limit == Just 0
1204
               then newsol
1205
               else iterateAlloc xnl (Container.add newidx xi il)
1206
                      newlimit newinst allocnodes (xi:ixes)
1207
                      (totalResources xnl:cstats)
1208

    
1209
-- | Tiered allocation method.
1210
--
1211
-- This places instances on the cluster, and decreases the spec until
1212
-- we can allocate again. The result will be a list of decreasing
1213
-- instance specs.
1214
tieredAlloc :: AllocMethod
1215
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1216
  case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1217
    Bad s -> Bad s
1218
    Ok (errs, nl', il', ixes', cstats') ->
1219
      let newsol = Ok (errs, nl', il', ixes', cstats')
1220
          ixes_cnt = length ixes'
1221
          (stop, newlimit) = case limit of
1222
                               Nothing -> (False, Nothing)
1223
                               Just n -> (n <= ixes_cnt,
1224
                                            Just (n - ixes_cnt)) in
1225
      if stop then newsol else
1226
          case Instance.shrinkByType newinst . fst . last $
1227
               sortBy (comparing snd) errs of
1228
            Bad _ -> newsol
1229
            Ok newinst' -> tieredAlloc nl' il' newlimit
1230
                           newinst' allocnodes ixes' cstats'
1231

    
1232
-- * Formatting functions
1233

    
1234
-- | Given the original and final nodes, computes the relocation description.
1235
computeMoves :: Instance.Instance -- ^ The instance to be moved
1236
             -> String -- ^ The instance name
1237
             -> IMove  -- ^ The move being performed
1238
             -> String -- ^ New primary
1239
             -> String -- ^ New secondary
1240
             -> (String, [String])
1241
                -- ^ Tuple of moves and commands list; moves is containing
1242
                -- either @/f/@ for failover or @/r:name/@ for replace
1243
                -- secondary, while the command list holds gnt-instance
1244
                -- commands (without that prefix), e.g \"@failover instance1@\"
1245
computeMoves i inam mv c d =
1246
  case mv of
1247
    Failover -> ("f", [mig])
1248
    FailoverToAny _ -> (printf "fa:%s" c, [mig_any])
1249
    FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1250
    ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1251
    ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1252
    ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1253
  where morf = if Instance.isRunning i then "migrate" else "failover"
1254
        mig = printf "%s -f %s" morf inam::String
1255
        mig_any = printf "%s -f -n %s %s" morf c inam
1256
        rep n = printf "replace-disks -n %s %s" n inam
1257

    
1258
-- | Converts a placement to string format.
1259
printSolutionLine :: Node.List     -- ^ The node list
1260
                  -> Instance.List -- ^ The instance list
1261
                  -> Int           -- ^ Maximum node name length
1262
                  -> Int           -- ^ Maximum instance name length
1263
                  -> Placement     -- ^ The current placement
1264
                  -> Int           -- ^ The index of the placement in
1265
                                   -- the solution
1266
                  -> (String, [String])
1267
printSolutionLine nl il nmlen imlen plc pos =
1268
  let pmlen = (2*nmlen + 1)
1269
      (i, p, s, mv, c) = plc
1270
      old_sec = Instance.sNode inst
1271
      inst = Container.find i il
1272
      inam = Instance.alias inst
1273
      npri = Node.alias $ Container.find p nl
1274
      nsec = Node.alias $ Container.find s nl
1275
      opri = Node.alias $ Container.find (Instance.pNode inst) nl
1276
      osec = Node.alias $ Container.find old_sec nl
1277
      (moves, cmds) =  computeMoves inst inam mv npri nsec
1278
      -- FIXME: this should check instead/also the disk template
1279
      ostr = if old_sec == Node.noSecondary
1280
               then printf "%s" opri
1281
               else printf "%s:%s" opri osec
1282
      nstr = if s == Node.noSecondary
1283
               then printf "%s" npri
1284
               else printf "%s:%s" npri nsec
1285
  in (printf "  %3d. %-*s %-*s => %-*s %12.8f a=%s"
1286
      pos imlen inam pmlen (ostr::String)
1287
      pmlen (nstr::String) c moves,
1288
      cmds)
1289

    
1290
-- | Return the instance and involved nodes in an instance move.
1291
--
1292
-- Note that the output list length can vary, and is not required nor
1293
-- guaranteed to be of any specific length.
1294
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1295
                               -- the instance from its index; note
1296
                               -- that this /must/ be the original
1297
                               -- instance list, so that we can
1298
                               -- retrieve the old nodes
1299
              -> Placement     -- ^ The placement we're investigating,
1300
                               -- containing the new nodes and
1301
                               -- instance index
1302
              -> [Ndx]         -- ^ Resulting list of node indices
1303
involvedNodes il plc =
1304
  let (i, np, ns, _, _) = plc
1305
      inst = Container.find i il
1306
  in nub $ [np, ns] ++ Instance.allNodes inst
1307

    
1308
-- | Inner function for splitJobs, that either appends the next job to
1309
-- the current jobset, or starts a new jobset.
1310
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1311
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1312
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1313
  | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1314
  | otherwise = ([n]:cjs, ndx)
1315

    
1316
-- | Break a list of moves into independent groups. Note that this
1317
-- will reverse the order of jobs.
1318
splitJobs :: [MoveJob] -> [JobSet]
1319
splitJobs = fst . foldl mergeJobs ([], [])
1320

    
1321
-- | Given a list of commands, prefix them with @gnt-instance@ and
1322
-- also beautify the display a little.
1323
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1324
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1325
  let out =
1326
        printf "  echo job %d/%d" jsn sn:
1327
        printf "  check":
1328
        map ("  gnt-instance " ++) cmds
1329
  in if sn == 1
1330
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1331
       else out
1332

    
1333
-- | Given a list of commands, prefix them with @gnt-instance@ and
1334
-- also beautify the display a little.
1335
formatCmds :: [JobSet] -> String
1336
formatCmds =
1337
  unlines .
1338
  concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1339
                           (zip [1..] js)) .
1340
  zip [1..]
1341

    
1342
-- | Print the node list.
1343
printNodes :: Node.List -> [String] -> String
1344
printNodes nl fs =
1345
  let fields = case fs of
1346
                 [] -> Node.defaultFields
1347
                 "+":rest -> Node.defaultFields ++ rest
1348
                 _ -> fs
1349
      snl = sortBy (comparing Node.idx) (Container.elems nl)
1350
      (header, isnum) = unzip $ map Node.showHeader fields
1351
  in printTable "" header (map (Node.list fields) snl) isnum
1352

    
1353
-- | Print the instance list.
1354
printInsts :: Node.List -> Instance.List -> String
1355
printInsts nl il =
1356
  let sil = sortBy (comparing Instance.idx) (Container.elems il)
1357
      helper inst = [ if Instance.isRunning inst then "R" else " "
1358
                    , Instance.name inst
1359
                    , Container.nameOf nl (Instance.pNode inst)
1360
                    , let sdx = Instance.sNode inst
1361
                      in if sdx == Node.noSecondary
1362
                           then  ""
1363
                           else Container.nameOf nl sdx
1364
                    , if Instance.autoBalance inst then "Y" else "N"
1365
                    , printf "%3d" $ Instance.vcpus inst
1366
                    , printf "%5d" $ Instance.mem inst
1367
                    , printf "%5d" $ Instance.dsk inst `div` 1024
1368
                    , printf "%5.3f" lC
1369
                    , printf "%5.3f" lM
1370
                    , printf "%5.3f" lD
1371
                    , printf "%5.3f" lN
1372
                    ]
1373
          where DynUtil lC lM lD lN = Instance.util inst
1374
      header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1375
               , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1376
      isnum = False:False:False:False:False:repeat True
1377
  in printTable "" header (map helper sil) isnum
1378

    
1379
-- | Shows statistics for a given node list.
1380
printStats :: String -> Node.List -> String
1381
printStats lp nl =
1382
  let dcvs = compDetailedCV $ Container.elems nl
1383
      (weights, names) = unzip detailedCVInfo
1384
      hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1385
      header = [ "Field", "Value", "Weight" ]
1386
      formatted = map (\(w, h, val) ->
1387
                         [ h
1388
                         , printf "%.8f" val
1389
                         , printf "x%.2f" w
1390
                         ]) hd
1391
  in printTable lp header formatted $ False:repeat True
1392

    
1393
-- | Convert a placement into a list of OpCodes (basically a job).
1394
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1395
                               -- names, so any version is good
1396
                               -- (before or after the operation)
1397
           -> Instance.List    -- ^ The instance list; also used for
1398
                               -- names only
1399
           -> Idx              -- ^ The index of the instance being
1400
                               -- moved
1401
           -> IMove            -- ^ The actual move to be described
1402
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1403
                               -- the given move
1404
iMoveToJob nl il idx move =
1405
  let inst = Container.find idx il
1406
      iname = Instance.name inst
1407
      lookNode  = Just . Container.nameOf nl
1408
      opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1409
      opFA n = OpCodes.OpInstanceMigrate iname True False True (lookNode n)
1410
      opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1411
              OpCodes.ReplaceNewSecondary [] Nothing
1412
  in case move of
1413
       Failover -> [ opF ]
1414
       FailoverToAny np -> [ opFA np ]
1415
       ReplacePrimary np -> [ opF, opR np, opF ]
1416
       ReplaceSecondary ns -> [ opR ns ]
1417
       ReplaceAndFailover np -> [ opR np, opF ]
1418
       FailoverAndReplace ns -> [ opF, opR ns ]
1419

    
1420
-- * Node group functions
1421

    
1422
-- | Computes the group of an instance.
1423
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1424
instanceGroup nl i =
1425
  let sidx = Instance.sNode i
1426
      pnode = Container.find (Instance.pNode i) nl
1427
      snode = if sidx == Node.noSecondary
1428
              then pnode
1429
              else Container.find sidx nl
1430
      pgroup = Node.group pnode
1431
      sgroup = Node.group snode
1432
  in if pgroup /= sgroup
1433
       then fail ("Instance placed accross two node groups, primary " ++
1434
                  show pgroup ++ ", secondary " ++ show sgroup)
1435
       else return pgroup
1436

    
1437
-- | Computes the group of an instance per the primary node.
1438
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1439
instancePriGroup nl i =
1440
  let pnode = Container.find (Instance.pNode i) nl
1441
  in  Node.group pnode
1442

    
1443
-- | Compute the list of badly allocated instances (split across node
1444
-- groups).
1445
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1446
findSplitInstances nl =
1447
  filter (not . isOk . instanceGroup nl) . Container.elems
1448

    
1449
-- | Splits a cluster into the component node groups.
1450
splitCluster :: Node.List -> Instance.List ->
1451
                [(Gdx, (Node.List, Instance.List))]
1452
splitCluster nl il =
1453
  let ngroups = Node.computeGroups (Container.elems nl)
1454
  in map (\(guuid, nodes) ->
1455
           let nidxs = map Node.idx nodes
1456
               nodes' = zip nidxs nodes
1457
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1458
           in (guuid, (Container.fromList nodes', instances))) ngroups
1459

    
1460
-- | Compute the list of nodes that are to be evacuated, given a list
1461
-- of instances and an evacuation mode.
1462
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1463
                -> EvacMode      -- ^ The evacuation mode we're using
1464
                -> [Idx]         -- ^ List of instance indices being evacuated
1465
                -> IntSet.IntSet -- ^ Set of node indices
1466
nodesToEvacuate il mode =
1467
  IntSet.delete Node.noSecondary .
1468
  foldl' (\ns idx ->
1469
            let i = Container.find idx il
1470
                pdx = Instance.pNode i
1471
                sdx = Instance.sNode i
1472
                dt = Instance.diskTemplate i
1473
                withSecondary = case dt of
1474
                                  DTDrbd8 -> IntSet.insert sdx ns
1475
                                  _ -> ns
1476
            in case mode of
1477
                 ChangePrimary   -> IntSet.insert pdx ns
1478
                 ChangeSecondary -> withSecondary
1479
                 ChangeAll       -> IntSet.insert pdx withSecondary
1480
         ) IntSet.empty