Statistics
| Branch: | Tag: | Revision:

root / test / hs / Test / Ganeti / BasicTypes.hs @ a59d5fa1

History | View | Annotate | Download (5.1 kB)

1
{-# LANGUAGE TemplateHaskell, FlexibleInstances, TypeSynonymInstances #-}
2
{-# OPTIONS_GHC -fno-warn-orphans #-}
3

    
4
{-| Unittests for ganeti-htools.
5

    
6
-}
7

    
8
{-
9

    
10
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11

    
12
This program is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 2 of the License, or
15
(at your option) any later version.
16

    
17
This program is distributed in the hope that it will be useful, but
18
WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
General Public License for more details.
21

    
22
You should have received a copy of the GNU General Public License
23
along with this program; if not, write to the Free Software
24
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25
02110-1301, USA.
26

    
27
-}
28

    
29
module Test.Ganeti.BasicTypes (testBasicTypes) where
30

    
31
import Test.QuickCheck hiding (Result)
32
import Test.QuickCheck.Function
33

    
34
import Control.Applicative
35
import Control.Monad
36

    
37
import Test.Ganeti.TestHelper
38
import Test.Ganeti.TestCommon
39

    
40
import Ganeti.BasicTypes
41

    
42
-- Since we actually want to test these, don't tell us not to use them :)
43

    
44
{-# ANN module "HLint: ignore Functor law" #-}
45
{-# ANN module "HLint: ignore Monad law, left identity" #-}
46
{-# ANN module "HLint: ignore Monad law, right identity" #-}
47
{-# ANN module "HLint: ignore Use >=>" #-}
48
{-# ANN module "HLint: ignore Use ." #-}
49

    
50
-- * Arbitrary instances
51

    
52
instance (Arbitrary a) => Arbitrary (Result a) where
53
  arbitrary = oneof [ Bad <$> arbitrary
54
                    , Ok  <$> arbitrary
55
                    ]
56

    
57
-- * Test cases
58

    
59
-- | Tests the functor identity law (fmap id == id).
60
prop_functor_id :: Result Int -> Property
61
prop_functor_id ri =
62
  fmap id ri ==? ri
63

    
64
-- | Tests the functor composition law (fmap (f . g)  ==  fmap f . fmap g).
65
prop_functor_composition :: Result Int
66
                         -> Fun Int Int -> Fun Int Int -> Property
67
prop_functor_composition ri (Fun _ f) (Fun _ g) =
68
  fmap (f . g) ri ==? (fmap f . fmap g) ri
69

    
70
-- | Tests the applicative identity law (pure id <*> v = v).
71
prop_applicative_identity :: Result Int -> Property
72
prop_applicative_identity v =
73
  pure id <*> v ==? v
74

    
75
-- | Tests the applicative composition law (pure (.) <*> u <*> v <*> w
76
-- = u <*> (v <*> w)).
77
prop_applicative_composition :: Result (Fun Int Int)
78
                             -> Result (Fun Int Int)
79
                             -> Result Int
80
                             -> Property
81
prop_applicative_composition u v w =
82
  let u' = fmap apply u
83
      v' = fmap apply v
84
  in pure (.) <*> u' <*> v' <*> w ==? u' <*> (v' <*> w)
85

    
86
-- | Tests the applicative homomorphism law (pure f <*> pure x = pure (f x)).
87
prop_applicative_homomorphism :: Fun Int Int -> Int -> Property
88
prop_applicative_homomorphism (Fun _ f) x =
89
  ((pure f <*> pure x)::Result Int) ==? pure (f x)
90

    
91
-- | Tests the applicative interchange law (u <*> pure y = pure ($ y) <*> u).
92
prop_applicative_interchange :: Result (Fun Int Int)
93
                             -> Int -> Property
94
prop_applicative_interchange f y =
95
  let u = fmap apply f -- need to extract the actual function from Fun
96
  in u <*> pure y ==? pure ($ y) <*> u
97

    
98
-- | Tests the applicative\/functor correspondence (fmap f x = pure f <*> x).
99
prop_applicative_functor :: Fun Int Int -> Result Int -> Property
100
prop_applicative_functor (Fun _ f) x =
101
  fmap f x ==? pure f <*> x
102

    
103
-- | Tests the applicative\/monad correspondence (pure = return and
104
-- (<*>) = ap).
105
prop_applicative_monad :: Int -> Result (Fun Int Int) -> Property
106
prop_applicative_monad v f =
107
  let v' = pure v :: Result Int
108
      f' = fmap apply f -- need to extract the actual function from Fun
109
  in v' ==? return v .&&. (f' <*> v') ==? f' `ap` v'
110

    
111
-- | Tests the monad laws (return a >>= k == k a, m >>= return == m, m
112
-- >>= (\x -> k x >>= h) == (m >>= k) >>= h).
113
prop_monad_laws :: Int -> Result Int
114
                -> Fun Int (Result Int)
115
                -> Fun Int (Result Int)
116
                -> Property
117
prop_monad_laws a m (Fun _ k) (Fun _ h) =
118
  conjoin
119
  [ printTestCase "return a >>= k == k a" ((return a >>= k) ==? k a)
120
  , printTestCase "m >>= return == m" ((m >>= return) ==? m)
121
  , printTestCase "m >>= (\\x -> k x >>= h) == (m >>= k) >>= h)"
122
    ((m >>= (\x -> k x >>= h)) ==? ((m >>= k) >>= h))
123
  ]
124

    
125
-- | Tests the monad plus laws ( mzero >>= f = mzero, v >> mzero = mzero).
126
prop_monadplus_mzero :: Result Int -> Fun Int (Result Int) -> Property
127
prop_monadplus_mzero v (Fun _ f) =
128
  printTestCase "mzero >>= f = mzero" ((mzero >>= f) ==? mzero) .&&.
129
  -- FIXME: since we have "many" mzeros, we can't test for equality,
130
  -- just that we got back a 'Bad' value; I'm not sure if this means
131
  -- our MonadPlus instance is not sound or not...
132
  printTestCase "v >> mzero = mzero" (isBad (v >> mzero))
133

    
134
testSuite "BasicTypes"
135
  [ 'prop_functor_id
136
  , 'prop_functor_composition
137
  , 'prop_applicative_identity
138
  , 'prop_applicative_composition
139
  , 'prop_applicative_homomorphism
140
  , 'prop_applicative_interchange
141
  , 'prop_applicative_functor
142
  , 'prop_applicative_monad
143
  , 'prop_monad_laws
144
  , 'prop_monadplus_mzero
145
  ]