Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / THH.hs @ ab0edd8b

History | View | Annotate | Download (28.7 kB)

1
{-# LANGUAGE TemplateHaskell #-}
2

    
3
{-| TemplateHaskell helper for HTools.
4

    
5
As TemplateHaskell require that splices be defined in a separate
6
module, we combine all the TemplateHaskell functionality that HTools
7
needs in this module (except the one for unittests).
8

    
9
-}
10

    
11
{-
12

    
13
Copyright (C) 2011, 2012 Google Inc.
14

    
15
This program is free software; you can redistribute it and/or modify
16
it under the terms of the GNU General Public License as published by
17
the Free Software Foundation; either version 2 of the License, or
18
(at your option) any later version.
19

    
20
This program is distributed in the hope that it will be useful, but
21
WITHOUT ANY WARRANTY; without even the implied warranty of
22
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23
General Public License for more details.
24

    
25
You should have received a copy of the GNU General Public License
26
along with this program; if not, write to the Free Software
27
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
28
02110-1301, USA.
29

    
30
-}
31

    
32
module Ganeti.THH ( declareSADT
33
                  , declareIADT
34
                  , makeJSONInstance
35
                  , genOpID
36
                  , genOpCode
37
                  , genStrOfOp
38
                  , genStrOfKey
39
                  , genLuxiOp
40
                  , Field
41
                  , simpleField
42
                  , defaultField
43
                  , optionalField
44
                  , renameField
45
                  , containerField
46
                  , customField
47
                  , timeStampFields
48
                  , uuidFields
49
                  , serialFields
50
                  , buildObject
51
                  , buildObjectSerialisation
52
                  , buildParam
53
                  , Container
54
                  ) where
55

    
56
import Control.Arrow
57
import Control.Monad (liftM, liftM2)
58
import Data.Char
59
import Data.List
60
import qualified Data.Map as M
61
import Language.Haskell.TH
62

    
63
import qualified Text.JSON as JSON
64

    
65
import Ganeti.HTools.JSON
66

    
67
-- * Exported types
68

    
69
type Container = M.Map String
70

    
71
-- | Serialised field data type.
72
data Field = Field { fieldName        :: String
73
                   , fieldType        :: Q Type
74
                   , fieldRead        :: Maybe (Q Exp)
75
                   , fieldShow        :: Maybe (Q Exp)
76
                   , fieldDefault     :: Maybe (Q Exp)
77
                   , fieldConstr      :: Maybe String
78
                   , fieldIsContainer :: Bool
79
                   , fieldIsOptional  :: Bool
80
                   }
81

    
82
-- | Generates a simple field.
83
simpleField :: String -> Q Type -> Field
84
simpleField fname ftype =
85
  Field { fieldName        = fname
86
        , fieldType        = ftype
87
        , fieldRead        = Nothing
88
        , fieldShow        = Nothing
89
        , fieldDefault     = Nothing
90
        , fieldConstr      = Nothing
91
        , fieldIsContainer = False
92
        , fieldIsOptional  = False
93
        }
94

    
95
-- | Sets the renamed constructor field.
96
renameField :: String -> Field -> Field
97
renameField constrName field = field { fieldConstr = Just constrName }
98

    
99
-- | Sets the default value on a field (makes it optional with a
100
-- default value).
101
defaultField :: Q Exp -> Field -> Field
102
defaultField defval field = field { fieldDefault = Just defval }
103

    
104
-- | Marks a field optional (turning its base type into a Maybe).
105
optionalField :: Field -> Field
106
optionalField field = field { fieldIsOptional = True }
107

    
108
-- | Marks a field as a container.
109
containerField :: Field -> Field
110
containerField field = field { fieldIsContainer = True }
111

    
112
-- | Sets custom functions on a field.
113
customField :: Q Exp -> Q Exp -> Field -> Field
114
customField readfn showfn field =
115
  field { fieldRead = Just readfn, fieldShow = Just showfn }
116

    
117
fieldRecordName :: Field -> String
118
fieldRecordName (Field { fieldName = name, fieldConstr = alias }) =
119
  maybe (camelCase name) id alias
120

    
121
-- | Computes the preferred variable name to use for the value of this
122
-- field. If the field has a specific constructor name, then we use a
123
-- first-letter-lowercased version of that; otherwise, we simply use
124
-- the field name. See also 'fieldRecordName'.
125
fieldVariable :: Field -> String
126
fieldVariable f =
127
  case (fieldConstr f) of
128
    Just name -> ensureLower name
129
    _ -> fieldName f
130

    
131
actualFieldType :: Field -> Q Type
132
actualFieldType f | fieldIsContainer f = [t| Container $t |]
133
                  | fieldIsOptional f  = [t| Maybe $t     |]
134
                  | otherwise = t
135
                  where t = fieldType f
136

    
137
checkNonOptDef :: (Monad m) => Field -> m ()
138
checkNonOptDef (Field { fieldIsOptional = True, fieldName = name }) =
139
  fail $ "Optional field " ++ name ++ " used in parameter declaration"
140
checkNonOptDef (Field { fieldDefault = (Just _), fieldName = name }) =
141
  fail $ "Default field " ++ name ++ " used in parameter declaration"
142
checkNonOptDef _ = return ()
143

    
144
loadFn :: Field -> Q Exp -> Q Exp
145
loadFn (Field { fieldIsContainer = True }) expr = [| $expr >>= readContainer |]
146
loadFn (Field { fieldRead = Just readfn }) expr = [| $expr >>= $readfn |]
147
loadFn _ expr = expr
148

    
149

    
150
-- * Common field declarations
151

    
152
timeStampFields :: [Field]
153
timeStampFields =
154
    [ defaultField [| 0::Double |] $ simpleField "ctime" [t| Double |]
155
    , defaultField [| 0::Double |] $ simpleField "mtime" [t| Double |]
156
    ]
157

    
158
serialFields :: [Field]
159
serialFields =
160
    [ renameField  "Serial" $ simpleField "serial_no" [t| Int |] ]
161

    
162
uuidFields :: [Field]
163
uuidFields = [ simpleField "uuid" [t| String |] ]
164

    
165
-- * Helper functions
166

    
167
-- | Ensure first letter is lowercase.
168
--
169
-- Used to convert type name to function prefix, e.g. in @data Aa ->
170
-- aaToRaw@.
171
ensureLower :: String -> String
172
ensureLower [] = []
173
ensureLower (x:xs) = toLower x:xs
174

    
175
-- | Ensure first letter is uppercase.
176
--
177
-- Used to convert constructor name to component
178
ensureUpper :: String -> String
179
ensureUpper [] = []
180
ensureUpper (x:xs) = toUpper x:xs
181

    
182
-- | Helper for quoted expressions.
183
varNameE :: String -> Q Exp
184
varNameE = varE . mkName
185

    
186
-- | showJSON as an expression, for reuse.
187
showJSONE :: Q Exp
188
showJSONE = varNameE "showJSON"
189

    
190
-- | ToRaw function name.
191
toRawName :: String -> Name
192
toRawName = mkName . (++ "ToRaw") . ensureLower
193

    
194
-- | FromRaw function name.
195
fromRawName :: String -> Name
196
fromRawName = mkName . (++ "FromRaw") . ensureLower
197

    
198
-- | Converts a name to it's varE/litE representations.
199
--
200
reprE :: Either String Name -> Q Exp
201
reprE = either stringE varE
202

    
203
-- | Smarter function application.
204
--
205
-- This does simply f x, except that if is 'id', it will skip it, in
206
-- order to generate more readable code when using -ddump-splices.
207
appFn :: Exp -> Exp -> Exp
208
appFn f x | f == VarE 'id = x
209
          | otherwise = AppE f x
210

    
211
-- | Container loader
212
readContainer :: (Monad m, JSON.JSON a) =>
213
                 JSON.JSObject JSON.JSValue -> m (Container a)
214
readContainer obj = do
215
  let kjvlist = JSON.fromJSObject obj
216
  kalist <- mapM (\(k, v) -> fromKeyValue k v >>= \a -> return (k, a)) kjvlist
217
  return $ M.fromList kalist
218

    
219
-- | Container dumper
220
showContainer :: (JSON.JSON a) => Container a -> JSON.JSValue
221
showContainer = JSON.makeObj . map (second JSON.showJSON) . M.toList
222

    
223
-- * Template code for simple raw type-equivalent ADTs
224

    
225
-- | Generates a data type declaration.
226
--
227
-- The type will have a fixed list of instances.
228
strADTDecl :: Name -> [String] -> Dec
229
strADTDecl name constructors =
230
  DataD [] name []
231
          (map (flip NormalC [] . mkName) constructors)
232
          [''Show, ''Read, ''Eq, ''Enum, ''Bounded, ''Ord]
233

    
234
-- | Generates a toRaw function.
235
--
236
-- This generates a simple function of the form:
237
--
238
-- @
239
-- nameToRaw :: Name -> /traw/
240
-- nameToRaw Cons1 = var1
241
-- nameToRaw Cons2 = \"value2\"
242
-- @
243
genToRaw :: Name -> Name -> Name -> [(String, Either String Name)] -> Q [Dec]
244
genToRaw traw fname tname constructors = do
245
  let sigt = AppT (AppT ArrowT (ConT tname)) (ConT traw)
246
  -- the body clauses, matching on the constructor and returning the
247
  -- raw value
248
  clauses <- mapM  (\(c, v) -> clause [recP (mkName c) []]
249
                             (normalB (reprE v)) []) constructors
250
  return [SigD fname sigt, FunD fname clauses]
251

    
252
-- | Generates a fromRaw function.
253
--
254
-- The function generated is monadic and can fail parsing the
255
-- raw value. It is of the form:
256
--
257
-- @
258
-- nameFromRaw :: (Monad m) => /traw/ -> m Name
259
-- nameFromRaw s | s == var1       = Cons1
260
--               | s == \"value2\" = Cons2
261
--               | otherwise = fail /.../
262
-- @
263
genFromRaw :: Name -> Name -> Name -> [(String, Name)] -> Q [Dec]
264
genFromRaw traw fname tname constructors = do
265
  -- signature of form (Monad m) => String -> m $name
266
  sigt <- [t| (Monad m) => $(conT traw) -> m $(conT tname) |]
267
  -- clauses for a guarded pattern
268
  let varp = mkName "s"
269
      varpe = varE varp
270
  clauses <- mapM (\(c, v) -> do
271
                     -- the clause match condition
272
                     g <- normalG [| $varpe == $(varE v) |]
273
                     -- the clause result
274
                     r <- [| return $(conE (mkName c)) |]
275
                     return (g, r)) constructors
276
  -- the otherwise clause (fallback)
277
  oth_clause <- do
278
    g <- normalG [| otherwise |]
279
    r <- [|fail ("Invalid string value for type " ++
280
                 $(litE (stringL (nameBase tname))) ++ ": " ++ show $varpe) |]
281
    return (g, r)
282
  let fun = FunD fname [Clause [VarP varp]
283
                        (GuardedB (clauses++[oth_clause])) []]
284
  return [SigD fname sigt, fun]
285

    
286
-- | Generates a data type from a given raw format.
287
--
288
-- The format is expected to multiline. The first line contains the
289
-- type name, and the rest of the lines must contain two words: the
290
-- constructor name and then the string representation of the
291
-- respective constructor.
292
--
293
-- The function will generate the data type declaration, and then two
294
-- functions:
295
--
296
-- * /name/ToRaw, which converts the type to a raw type
297
--
298
-- * /name/FromRaw, which (monadically) converts from a raw type to the type
299
--
300
-- Note that this is basically just a custom show/read instance,
301
-- nothing else.
302
declareADT :: Name -> String -> [(String, Name)] -> Q [Dec]
303
declareADT traw sname cons = do
304
  let name = mkName sname
305
      ddecl = strADTDecl name (map fst cons)
306
      -- process cons in the format expected by genToRaw
307
      cons' = map (\(a, b) -> (a, Right b)) cons
308
  toraw <- genToRaw traw (toRawName sname) name cons'
309
  fromraw <- genFromRaw traw (fromRawName sname) name cons
310
  return $ ddecl:toraw ++ fromraw
311

    
312
declareIADT :: String -> [(String, Name)] -> Q [Dec]
313
declareIADT = declareADT ''Int
314

    
315
declareSADT :: String -> [(String, Name)] -> Q [Dec]
316
declareSADT = declareADT ''String
317

    
318
-- | Creates the showJSON member of a JSON instance declaration.
319
--
320
-- This will create what is the equivalent of:
321
--
322
-- @
323
-- showJSON = showJSON . /name/ToRaw
324
-- @
325
--
326
-- in an instance JSON /name/ declaration
327
genShowJSON :: String -> Q Dec
328
genShowJSON name = do
329
  body <- [| JSON.showJSON . $(varE (toRawName name)) |]
330
  return $ FunD (mkName "showJSON") [Clause [] (NormalB body) []]
331

    
332
-- | Creates the readJSON member of a JSON instance declaration.
333
--
334
-- This will create what is the equivalent of:
335
--
336
-- @
337
-- readJSON s = case readJSON s of
338
--                Ok s' -> /name/FromRaw s'
339
--                Error e -> Error /description/
340
-- @
341
--
342
-- in an instance JSON /name/ declaration
343
genReadJSON :: String -> Q Dec
344
genReadJSON name = do
345
  let s = mkName "s"
346
  body <- [| case JSON.readJSON $(varE s) of
347
               JSON.Ok s' -> $(varE (fromRawName name)) s'
348
               JSON.Error e ->
349
                   JSON.Error $ "Can't parse raw value for type " ++
350
                           $(stringE name) ++ ": " ++ e ++ " from " ++
351
                           show $(varE s)
352
           |]
353
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
354

    
355
-- | Generates a JSON instance for a given type.
356
--
357
-- This assumes that the /name/ToRaw and /name/FromRaw functions
358
-- have been defined as by the 'declareSADT' function.
359
makeJSONInstance :: Name -> Q [Dec]
360
makeJSONInstance name = do
361
  let base = nameBase name
362
  showJ <- genShowJSON base
363
  readJ <- genReadJSON base
364
  return [InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name)) [readJ,showJ]]
365

    
366
-- * Template code for opcodes
367

    
368
-- | Transforms a CamelCase string into an_underscore_based_one.
369
deCamelCase :: String -> String
370
deCamelCase =
371
    intercalate "_" . map (map toUpper) . groupBy (\_ b -> not $ isUpper b)
372

    
373
-- | Transform an underscore_name into a CamelCase one.
374
camelCase :: String -> String
375
camelCase = concatMap (ensureUpper . drop 1) .
376
            groupBy (\_ b -> b /= '_') . ('_':)
377

    
378
-- | Computes the name of a given constructor.
379
constructorName :: Con -> Q Name
380
constructorName (NormalC name _) = return name
381
constructorName (RecC name _)    = return name
382
constructorName x                = fail $ "Unhandled constructor " ++ show x
383

    
384
-- | Builds the generic constructor-to-string function.
385
--
386
-- This generates a simple function of the following form:
387
--
388
-- @
389
-- fname (ConStructorOne {}) = trans_fun("ConStructorOne")
390
-- fname (ConStructorTwo {}) = trans_fun("ConStructorTwo")
391
-- @
392
--
393
-- This builds a custom list of name/string pairs and then uses
394
-- 'genToRaw' to actually generate the function
395
genConstrToStr :: (String -> String) -> Name -> String -> Q [Dec]
396
genConstrToStr trans_fun name fname = do
397
  TyConI (DataD _ _ _ cons _) <- reify name
398
  cnames <- mapM (liftM nameBase . constructorName) cons
399
  let svalues = map (Left . trans_fun) cnames
400
  genToRaw ''String (mkName fname) name $ zip cnames svalues
401

    
402
-- | Constructor-to-string for OpCode.
403
genOpID :: Name -> String -> Q [Dec]
404
genOpID = genConstrToStr deCamelCase
405

    
406
-- | OpCode parameter (field) type.
407
type OpParam = (String, Q Type, Q Exp)
408

    
409
-- | Generates the OpCode data type.
410
--
411
-- This takes an opcode logical definition, and builds both the
412
-- datatype and the JSON serialisation out of it. We can't use a
413
-- generic serialisation since we need to be compatible with Ganeti's
414
-- own, so we have a few quirks to work around.
415
genOpCode :: String                -- ^ Type name to use
416
          -> [(String, [Field])]   -- ^ Constructor name and parameters
417
          -> Q [Dec]
418
genOpCode name cons = do
419
  decl_d <- mapM (\(cname, fields) -> do
420
                    -- we only need the type of the field, without Q
421
                    fields' <- mapM actualFieldType fields
422
                    let fields'' = zip (repeat NotStrict) fields'
423
                    return $ NormalC (mkName cname) fields'')
424
            cons
425
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read, ''Eq]
426

    
427
  (savesig, savefn) <- genSaveOpCode cons
428
  (loadsig, loadfn) <- genLoadOpCode cons
429
  return [declD, loadsig, loadfn, savesig, savefn]
430

    
431
-- | Checks whether a given parameter is options.
432
--
433
-- This requires that it's a 'Maybe'.
434
isOptional :: Type -> Bool
435
isOptional (AppT (ConT dt) _) | dt == ''Maybe = True
436
isOptional _ = False
437

    
438
-- | Generates the \"save\" clause for an entire opcode constructor.
439
--
440
-- This matches the opcode with variables named the same as the
441
-- constructor fields (just so that the spliced in code looks nicer),
442
-- and passes those name plus the parameter definition to 'saveObjectField'.
443
saveConstructor :: String    -- ^ The constructor name
444
                -> [Field]   -- ^ The parameter definitions for this
445
                             -- constructor
446
                -> Q Clause  -- ^ Resulting clause
447
saveConstructor sname fields = do
448
  let cname = mkName sname
449
  let fnames = map (mkName . fieldVariable) fields
450
  let pat = conP cname (map varP fnames)
451
  let felems = map (uncurry saveObjectField) (zip fnames fields)
452
      -- now build the OP_ID serialisation
453
      opid = [| [( $(stringE "OP_ID"),
454
                   JSON.showJSON $(stringE . deCamelCase $ sname) )] |]
455
      flist = listE (opid:felems)
456
      -- and finally convert all this to a json object
457
      flist' = [| $(varNameE "makeObj") (concat $flist) |]
458
  clause [pat] (normalB flist') []
459

    
460
-- | Generates the main save opcode function.
461
--
462
-- This builds a per-constructor match clause that contains the
463
-- respective constructor-serialisation code.
464
genSaveOpCode :: [(String, [Field])] -> Q (Dec, Dec)
465
genSaveOpCode opdefs = do
466
  cclauses <- mapM (uncurry saveConstructor) opdefs
467
  let fname = mkName "saveOpCode"
468
  sigt <- [t| $(conT (mkName "OpCode")) -> JSON.JSValue |]
469
  return $ (SigD fname sigt, FunD fname cclauses)
470

    
471
loadConstructor :: String -> [Field] -> Q Exp
472
loadConstructor sname fields = do
473
  let name = mkName sname
474
  fbinds <- mapM loadObjectField fields
475
  let (fnames, fstmts) = unzip fbinds
476
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
477
      fstmts' = fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
478
  return $ DoE fstmts'
479

    
480
genLoadOpCode :: [(String, [Field])] -> Q (Dec, Dec)
481
genLoadOpCode opdefs = do
482
  let fname = mkName "loadOpCode"
483
      arg1 = mkName "v"
484
      objname = mkName "o"
485
      opid = mkName "op_id"
486
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
487
                                 (JSON.readJSON $(varE arg1)) |]
488
  st2 <- bindS (varP opid) [| $(varNameE "fromObj")
489
                              $(varE objname) $(stringE "OP_ID") |]
490
  -- the match results (per-constructor blocks)
491
  mexps <- mapM (uncurry loadConstructor) opdefs
492
  fails <- [| fail $ "Unknown opcode " ++ $(varE opid) |]
493
  let mpats = map (\(me, c) ->
494
                       let mp = LitP . StringL . deCamelCase . fst $ c
495
                       in Match mp (NormalB me) []
496
                  ) $ zip mexps opdefs
497
      defmatch = Match WildP (NormalB fails) []
498
      cst = NoBindS $ CaseE (VarE opid) $ mpats++[defmatch]
499
      body = DoE [st1, st2, cst]
500
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT (mkName "OpCode")) |]
501
  return $ (SigD fname sigt, FunD fname [Clause [VarP arg1] (NormalB body) []])
502

    
503
-- * Template code for luxi
504

    
505
-- | Constructor-to-string for LuxiOp.
506
genStrOfOp :: Name -> String -> Q [Dec]
507
genStrOfOp = genConstrToStr id
508

    
509
-- | Constructor-to-string for MsgKeys.
510
genStrOfKey :: Name -> String -> Q [Dec]
511
genStrOfKey = genConstrToStr ensureLower
512

    
513
-- | LuxiOp parameter type.
514
type LuxiParam = (String, Q Type, Q Exp)
515

    
516
-- | Generates the LuxiOp data type.
517
--
518
-- This takes a Luxi operation definition and builds both the
519
-- datatype and the function trnasforming the arguments to JSON.
520
-- We can't use anything less generic, because the way different
521
-- operations are serialized differs on both parameter- and top-level.
522
--
523
-- There are three things to be defined for each parameter:
524
--
525
-- * name
526
--
527
-- * type
528
--
529
-- * operation; this is the operation performed on the parameter before
530
--   serialization
531
--
532
genLuxiOp :: String -> [(String, [LuxiParam])] -> Q [Dec]
533
genLuxiOp name cons = do
534
  decl_d <- mapM (\(cname, fields) -> do
535
                    fields' <- mapM (\(_, qt, _) ->
536
                                         qt >>= \t -> return (NotStrict, t))
537
                               fields
538
                    return $ NormalC (mkName cname) fields')
539
            cons
540
  let declD = DataD [] (mkName name) [] decl_d [''Show, ''Read, ''Eq]
541
  (savesig, savefn) <- genSaveLuxiOp cons
542
  req_defs <- declareSADT "LuxiReq" .
543
              map (\(str, _) -> ("Req" ++ str, mkName ("luxiReq" ++ str))) $
544
                  cons
545
  return $ [declD, savesig, savefn] ++ req_defs
546

    
547
-- | Generates the \"save\" expression for a single luxi parameter.
548
saveLuxiField :: Name -> LuxiParam -> Q Exp
549
saveLuxiField fvar (_, qt, fn) =
550
    [| JSON.showJSON ( $(liftM2 appFn fn $ varE fvar) ) |]
551

    
552
-- | Generates the \"save\" clause for entire LuxiOp constructor.
553
saveLuxiConstructor :: (String, [LuxiParam]) -> Q Clause
554
saveLuxiConstructor (sname, fields) = do
555
  let cname = mkName sname
556
      fnames = map (\(nm, _, _) -> mkName nm) fields
557
      pat = conP cname (map varP fnames)
558
      flist = map (uncurry saveLuxiField) (zip fnames fields)
559
      finval = if null flist
560
               then [| JSON.showJSON ()    |]
561
               else [| JSON.showJSON $(listE flist) |]
562
  clause [pat] (normalB finval) []
563

    
564
-- | Generates the main save LuxiOp function.
565
genSaveLuxiOp :: [(String, [LuxiParam])]-> Q (Dec, Dec)
566
genSaveLuxiOp opdefs = do
567
  sigt <- [t| $(conT (mkName "LuxiOp")) -> JSON.JSValue |]
568
  let fname = mkName "opToArgs"
569
  cclauses <- mapM saveLuxiConstructor opdefs
570
  return $ (SigD fname sigt, FunD fname cclauses)
571

    
572
-- * "Objects" functionality
573

    
574
-- | Extract the field's declaration from a Field structure.
575
fieldTypeInfo :: String -> Field -> Q (Name, Strict, Type)
576
fieldTypeInfo field_pfx fd = do
577
  t <- actualFieldType fd
578
  let n = mkName . (field_pfx ++) . fieldRecordName $ fd
579
  return (n, NotStrict, t)
580

    
581
-- | Build an object declaration.
582
buildObject :: String -> String -> [Field] -> Q [Dec]
583
buildObject sname field_pfx fields = do
584
  let name = mkName sname
585
  fields_d <- mapM (fieldTypeInfo field_pfx) fields
586
  let decl_d = RecC name fields_d
587
  let declD = DataD [] name [] [decl_d] [''Show, ''Read, ''Eq]
588
  ser_decls <- buildObjectSerialisation sname fields
589
  return $ declD:ser_decls
590

    
591
buildObjectSerialisation :: String -> [Field] -> Q [Dec]
592
buildObjectSerialisation sname fields = do
593
  let name = mkName sname
594
  savedecls <- genSaveObject saveObjectField sname fields
595
  (loadsig, loadfn) <- genLoadObject loadObjectField sname fields
596
  shjson <- objectShowJSON sname
597
  rdjson <- objectReadJSON sname
598
  let instdecl = InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name))
599
                 [rdjson, shjson]
600
  return $ savedecls ++ [loadsig, loadfn, instdecl]
601

    
602
genSaveObject :: (Name -> Field -> Q Exp)
603
              -> String -> [Field] -> Q [Dec]
604
genSaveObject save_fn sname fields = do
605
  let name = mkName sname
606
  let fnames = map (mkName . fieldVariable) fields
607
  let pat = conP name (map varP fnames)
608
  let tdname = mkName ("toDict" ++ sname)
609
  tdsigt <- [t| $(conT name) -> [(String, JSON.JSValue)] |]
610

    
611
  let felems = map (uncurry save_fn) (zip fnames fields)
612
      flist = listE felems
613
      -- and finally convert all this to a json object
614
      tdlist = [| concat $flist |]
615
      iname = mkName "i"
616
  tclause <- clause [pat] (normalB tdlist) []
617
  cclause <- [| $(varNameE "makeObj") . $(varE tdname) |]
618
  let fname = mkName ("save" ++ sname)
619
  sigt <- [t| $(conT name) -> JSON.JSValue |]
620
  return [SigD tdname tdsigt, FunD tdname [tclause],
621
          SigD fname sigt, ValD (VarP fname) (NormalB cclause) []]
622

    
623
saveObjectField :: Name -> Field -> Q Exp
624
saveObjectField fvar field
625
  | isContainer = [| [( $nameE , JSON.showJSON . showContainer $ $fvarE)] |]
626
  | fisOptional = [| case $(varE fvar) of
627
                      Nothing -> []
628
                      Just v -> [( $nameE, JSON.showJSON v)]
629
                  |]
630
  | otherwise = case fieldShow field of
631
      Nothing -> [| [( $nameE, JSON.showJSON $fvarE)] |]
632
      Just fn -> [| [( $nameE, JSON.showJSON . $fn $ $fvarE)] |]
633
  where isContainer = fieldIsContainer field
634
        fisOptional  = fieldIsOptional field
635
        nameE = stringE (fieldName field)
636
        fvarE = varE fvar
637

    
638
objectShowJSON :: String -> Q Dec
639
objectShowJSON name = do
640
  body <- [| JSON.showJSON . $(varE . mkName $ "save" ++ name) |]
641
  return $ FunD (mkName "showJSON") [Clause [] (NormalB body) []]
642

    
643
genLoadObject :: (Field -> Q (Name, Stmt))
644
              -> String -> [Field] -> Q (Dec, Dec)
645
genLoadObject load_fn sname fields = do
646
  let name = mkName sname
647
      funname = mkName $ "load" ++ sname
648
      arg1 = mkName "v"
649
      objname = mkName "o"
650
      opid = mkName "op_id"
651
  st1 <- bindS (varP objname) [| liftM JSON.fromJSObject
652
                                 (JSON.readJSON $(varE arg1)) |]
653
  fbinds <- mapM load_fn fields
654
  let (fnames, fstmts) = unzip fbinds
655
  let cval = foldl (\accu fn -> AppE accu (VarE fn)) (ConE name) fnames
656
      fstmts' = st1:fstmts ++ [NoBindS (AppE (VarE 'return) cval)]
657
  sigt <- [t| JSON.JSValue -> JSON.Result $(conT name) |]
658
  return $ (SigD funname sigt,
659
            FunD funname [Clause [VarP arg1] (NormalB (DoE fstmts')) []])
660

    
661
loadObjectField :: Field -> Q (Name, Stmt)
662
loadObjectField field = do
663
  let name = fieldVariable field
664
      fvar = mkName name
665
  -- these are used in all patterns below
666
  let objvar = varNameE "o"
667
      objfield = stringE (fieldName field)
668
      loadexp =
669
        if fieldIsOptional field
670
          then [| $(varNameE "maybeFromObj") $objvar $objfield |]
671
          else case fieldDefault field of
672
                 Just defv ->
673
                   [| $(varNameE "fromObjWithDefault") $objvar
674
                      $objfield $defv |]
675
                 Nothing -> [| $(varNameE "fromObj") $objvar $objfield |]
676
  bexp <- loadFn field loadexp
677

    
678
  return (fvar, BindS (VarP fvar) bexp)
679

    
680
objectReadJSON :: String -> Q Dec
681
objectReadJSON name = do
682
  let s = mkName "s"
683
  body <- [| case JSON.readJSON $(varE s) of
684
               JSON.Ok s' -> $(varE .mkName $ "load" ++ name) s'
685
               JSON.Error e ->
686
                 JSON.Error $ "Can't parse value for type " ++
687
                       $(stringE name) ++ ": " ++ e
688
           |]
689
  return $ FunD (mkName "readJSON") [Clause [VarP s] (NormalB body) []]
690

    
691
-- * Inheritable parameter tables implementation
692

    
693
-- | Compute parameter type names.
694
paramTypeNames :: String -> (String, String)
695
paramTypeNames root = ("Filled"  ++ root ++ "Params",
696
                       "Partial" ++ root ++ "Params")
697

    
698
-- | Compute information about the type of a parameter field.
699
paramFieldTypeInfo :: String -> Field -> Q (Name, Strict, Type)
700
paramFieldTypeInfo field_pfx fd = do
701
  t <- actualFieldType fd
702
  let n = mkName . (++ "P") . (field_pfx ++) .
703
          fieldRecordName $ fd
704
  return (n, NotStrict, AppT (ConT ''Maybe) t)
705

    
706
-- | Build a parameter declaration.
707
--
708
-- This function builds two different data structures: a /filled/ one,
709
-- in which all fields are required, and a /partial/ one, in which all
710
-- fields are optional. Due to the current record syntax issues, the
711
-- fields need to be named differrently for the two structures, so the
712
-- partial ones get a /P/ suffix.
713
buildParam :: String -> String -> [Field] -> Q [Dec]
714
buildParam sname field_pfx fields = do
715
  let (sname_f, sname_p) = paramTypeNames sname
716
      name_f = mkName sname_f
717
      name_p = mkName sname_p
718
  fields_f <- mapM (fieldTypeInfo field_pfx) fields
719
  fields_p <- mapM (paramFieldTypeInfo field_pfx) fields
720
  let decl_f = RecC name_f fields_f
721
      decl_p = RecC name_p fields_p
722
  let declF = DataD [] name_f [] [decl_f] [''Show, ''Read, ''Eq]
723
      declP = DataD [] name_p [] [decl_p] [''Show, ''Read, ''Eq]
724
  ser_decls_f <- buildObjectSerialisation sname_f fields
725
  ser_decls_p <- buildPParamSerialisation sname_p fields
726
  fill_decls <- fillParam sname field_pfx fields
727
  return $ [declF, declP] ++ ser_decls_f ++ ser_decls_p ++ fill_decls
728

    
729
buildPParamSerialisation :: String -> [Field] -> Q [Dec]
730
buildPParamSerialisation sname fields = do
731
  let name = mkName sname
732
  savedecls <- genSaveObject savePParamField sname fields
733
  (loadsig, loadfn) <- genLoadObject loadPParamField sname fields
734
  shjson <- objectShowJSON sname
735
  rdjson <- objectReadJSON sname
736
  let instdecl = InstanceD [] (AppT (ConT ''JSON.JSON) (ConT name))
737
                 [rdjson, shjson]
738
  return $ savedecls ++ [loadsig, loadfn, instdecl]
739

    
740
savePParamField :: Name -> Field -> Q Exp
741
savePParamField fvar field = do
742
  checkNonOptDef field
743
  let actualVal = mkName "v"
744
  normalexpr <- saveObjectField actualVal field
745
  -- we have to construct the block here manually, because we can't
746
  -- splice-in-splice
747
  return $ CaseE (VarE fvar) [ Match (ConP 'Nothing [])
748
                                       (NormalB (ConE '[])) []
749
                             , Match (ConP 'Just [VarP actualVal])
750
                                       (NormalB normalexpr) []
751
                             ]
752
loadPParamField :: Field -> Q (Name, Stmt)
753
loadPParamField field = do
754
  checkNonOptDef field
755
  let name = fieldName field
756
      fvar = mkName name
757
  -- these are used in all patterns below
758
  let objvar = varNameE "o"
759
      objfield = stringE name
760
      loadexp = [| $(varNameE "maybeFromObj") $objvar $objfield |]
761
  bexp <- loadFn field loadexp
762
  return (fvar, BindS (VarP fvar) bexp)
763

    
764
-- | Builds a simple declaration of type @n_x = fromMaybe f_x p_x@.
765
buildFromMaybe :: String -> Q Dec
766
buildFromMaybe fname =
767
  valD (varP (mkName $ "n_" ++ fname))
768
         (normalB [| $(varNameE "fromMaybe")
769
                        $(varNameE $ "f_" ++ fname)
770
                        $(varNameE $ "p_" ++ fname) |]) []
771

    
772
fillParam :: String -> String -> [Field] -> Q [Dec]
773
fillParam sname field_pfx fields = do
774
  let fnames = map (\fd -> field_pfx ++ fieldRecordName fd) fields
775
      (sname_f, sname_p) = paramTypeNames sname
776
      oname_f = "fobj"
777
      oname_p = "pobj"
778
      name_f = mkName sname_f
779
      name_p = mkName sname_p
780
      fun_name = mkName $ "fill" ++ sname ++ "Params"
781
      le_full = ValD (ConP name_f (map (VarP . mkName . ("f_" ++)) fnames))
782
                (NormalB . VarE . mkName $ oname_f) []
783
      le_part = ValD (ConP name_p (map (VarP . mkName . ("p_" ++)) fnames))
784
                (NormalB . VarE . mkName $ oname_p) []
785
      obj_new = foldl (\accu vname -> AppE accu (VarE vname)) (ConE name_f)
786
                $ map (mkName . ("n_" ++)) fnames
787
  le_new <- mapM buildFromMaybe fnames
788
  funt <- [t| $(conT name_f) -> $(conT name_p) -> $(conT name_f) |]
789
  let sig = SigD fun_name funt
790
      fclause = Clause [VarP (mkName oname_f), VarP (mkName oname_p)]
791
                (NormalB $ LetE (le_full:le_part:le_new) obj_new) []
792
      fun = FunD fun_name [fclause]
793
  return [sig, fun]