Statistics
| Branch: | Tag: | Revision:

root / htools / Ganeti / HTools / Cluster.hs @ 16670b57

History | View | Annotate | Download (60.9 kB)

1 e4f08c46 Iustin Pop
{-| Implementation of cluster-wide logic.
2 e4f08c46 Iustin Pop
3 e4f08c46 Iustin Pop
This module holds all pure cluster-logic; I\/O related functionality
4 525bfb36 Iustin Pop
goes into the /Main/ module for the individual binaries.
5 e4f08c46 Iustin Pop
6 e4f08c46 Iustin Pop
-}
7 e4f08c46 Iustin Pop
8 e2fa2baf Iustin Pop
{-
9 e2fa2baf Iustin Pop
10 aa5b2f07 Iustin Pop
Copyright (C) 2009, 2010, 2011, 2012 Google Inc.
11 e2fa2baf Iustin Pop
12 e2fa2baf Iustin Pop
This program is free software; you can redistribute it and/or modify
13 e2fa2baf Iustin Pop
it under the terms of the GNU General Public License as published by
14 e2fa2baf Iustin Pop
the Free Software Foundation; either version 2 of the License, or
15 e2fa2baf Iustin Pop
(at your option) any later version.
16 e2fa2baf Iustin Pop
17 e2fa2baf Iustin Pop
This program is distributed in the hope that it will be useful, but
18 e2fa2baf Iustin Pop
WITHOUT ANY WARRANTY; without even the implied warranty of
19 e2fa2baf Iustin Pop
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 e2fa2baf Iustin Pop
General Public License for more details.
21 e2fa2baf Iustin Pop
22 e2fa2baf Iustin Pop
You should have received a copy of the GNU General Public License
23 e2fa2baf Iustin Pop
along with this program; if not, write to the Free Software
24 e2fa2baf Iustin Pop
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 e2fa2baf Iustin Pop
02110-1301, USA.
26 e2fa2baf Iustin Pop
27 e2fa2baf Iustin Pop
-}
28 e2fa2baf Iustin Pop
29 669d7e3d Iustin Pop
module Ganeti.HTools.Cluster
30 f23f21c3 Iustin Pop
  (
31 f23f21c3 Iustin Pop
    -- * Types
32 f23f21c3 Iustin Pop
    AllocSolution(..)
33 f23f21c3 Iustin Pop
  , EvacSolution(..)
34 f23f21c3 Iustin Pop
  , Table(..)
35 f23f21c3 Iustin Pop
  , CStats(..)
36 f23f21c3 Iustin Pop
  , AllocStats
37 f23f21c3 Iustin Pop
  , AllocResult
38 f23f21c3 Iustin Pop
  , AllocMethod
39 f23f21c3 Iustin Pop
  -- * Generic functions
40 f23f21c3 Iustin Pop
  , totalResources
41 f23f21c3 Iustin Pop
  , computeAllocationDelta
42 f23f21c3 Iustin Pop
  -- * First phase functions
43 f23f21c3 Iustin Pop
  , computeBadItems
44 f23f21c3 Iustin Pop
  -- * Second phase functions
45 f23f21c3 Iustin Pop
  , printSolutionLine
46 f23f21c3 Iustin Pop
  , formatCmds
47 f23f21c3 Iustin Pop
  , involvedNodes
48 f23f21c3 Iustin Pop
  , splitJobs
49 f23f21c3 Iustin Pop
  -- * Display functions
50 f23f21c3 Iustin Pop
  , printNodes
51 f23f21c3 Iustin Pop
  , printInsts
52 f23f21c3 Iustin Pop
  -- * Balacing functions
53 f23f21c3 Iustin Pop
  , checkMove
54 f23f21c3 Iustin Pop
  , doNextBalance
55 f23f21c3 Iustin Pop
  , tryBalance
56 f23f21c3 Iustin Pop
  , compCV
57 f23f21c3 Iustin Pop
  , compCVNodes
58 f23f21c3 Iustin Pop
  , compDetailedCV
59 f23f21c3 Iustin Pop
  , printStats
60 f23f21c3 Iustin Pop
  , iMoveToJob
61 f23f21c3 Iustin Pop
  -- * IAllocator functions
62 f23f21c3 Iustin Pop
  , genAllocNodes
63 f23f21c3 Iustin Pop
  , tryAlloc
64 f23f21c3 Iustin Pop
  , tryMGAlloc
65 f23f21c3 Iustin Pop
  , tryNodeEvac
66 f23f21c3 Iustin Pop
  , tryChangeGroup
67 f23f21c3 Iustin Pop
  , collapseFailures
68 f23f21c3 Iustin Pop
  -- * Allocation functions
69 f23f21c3 Iustin Pop
  , iterateAlloc
70 f23f21c3 Iustin Pop
  , tieredAlloc
71 f23f21c3 Iustin Pop
  -- * Node group functions
72 f23f21c3 Iustin Pop
  , instanceGroup
73 f23f21c3 Iustin Pop
  , findSplitInstances
74 f23f21c3 Iustin Pop
  , splitCluster
75 f23f21c3 Iustin Pop
  ) where
76 e4f08c46 Iustin Pop
77 63a78055 Iustin Pop
import qualified Data.IntSet as IntSet
78 e4f08c46 Iustin Pop
import Data.List
79 129734d3 Iustin Pop
import Data.Maybe (fromJust, isNothing)
80 5182e970 Iustin Pop
import Data.Ord (comparing)
81 e4f08c46 Iustin Pop
import Text.Printf (printf)
82 e4f08c46 Iustin Pop
83 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Container as Container
84 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Instance as Instance
85 669d7e3d Iustin Pop
import qualified Ganeti.HTools.Node as Node
86 aec636b9 Iustin Pop
import qualified Ganeti.HTools.Group as Group
87 e4c5beaf Iustin Pop
import Ganeti.HTools.Types
88 669d7e3d Iustin Pop
import Ganeti.HTools.Utils
89 1adec4be Iustin Pop
import Ganeti.HTools.Compat
90 6b20875c Iustin Pop
import qualified Ganeti.OpCodes as OpCodes
91 e4f08c46 Iustin Pop
92 9188aeef Iustin Pop
-- * Types
93 9188aeef Iustin Pop
94 0c936d24 Iustin Pop
-- | Allocation\/relocation solution.
95 85d0ddc3 Iustin Pop
data AllocSolution = AllocSolution
96 129734d3 Iustin Pop
  { asFailures :: [FailMode]              -- ^ Failure counts
97 129734d3 Iustin Pop
  , asAllocs   :: Int                     -- ^ Good allocation count
98 129734d3 Iustin Pop
  , asSolution :: Maybe Node.AllocElement -- ^ The actual allocation result
99 129734d3 Iustin Pop
  , asLog      :: [String]                -- ^ Informational messages
100 85d0ddc3 Iustin Pop
  }
101 85d0ddc3 Iustin Pop
102 47eed3f4 Iustin Pop
-- | Node evacuation/group change iallocator result type. This result
103 47eed3f4 Iustin Pop
-- type consists of actual opcodes (a restricted subset) that are
104 47eed3f4 Iustin Pop
-- transmitted back to Ganeti.
105 47eed3f4 Iustin Pop
data EvacSolution = EvacSolution
106 f23f21c3 Iustin Pop
  { esMoved   :: [(Idx, Gdx, [Ndx])]  -- ^ Instances moved successfully
107 f23f21c3 Iustin Pop
  , esFailed  :: [(Idx, String)]      -- ^ Instances which were not
108 f23f21c3 Iustin Pop
                                      -- relocated
109 f23f21c3 Iustin Pop
  , esOpCodes :: [[OpCodes.OpCode]]   -- ^ List of jobs
110 6a855aaa Iustin Pop
  } deriving (Show)
111 47eed3f4 Iustin Pop
112 40ee14bc Iustin Pop
-- | Allocation results, as used in 'iterateAlloc' and 'tieredAlloc'.
113 40ee14bc Iustin Pop
type AllocResult = (FailStats, Node.List, Instance.List,
114 40ee14bc Iustin Pop
                    [Instance.Instance], [CStats])
115 40ee14bc Iustin Pop
116 6cb1649f Iustin Pop
-- | A type denoting the valid allocation mode/pairs.
117 525bfb36 Iustin Pop
--
118 b0631f10 Iustin Pop
-- For a one-node allocation, this will be a @Left ['Ndx']@, whereas
119 b0631f10 Iustin Pop
-- for a two-node allocation, this will be a @Right [('Ndx',
120 b0631f10 Iustin Pop
-- ['Ndx'])]@. In the latter case, the list is basically an
121 b0631f10 Iustin Pop
-- association list, grouped by primary node and holding the potential
122 b0631f10 Iustin Pop
-- secondary nodes in the sub-list.
123 b0631f10 Iustin Pop
type AllocNodes = Either [Ndx] [(Ndx, [Ndx])]
124 6cb1649f Iustin Pop
125 525bfb36 Iustin Pop
-- | The empty solution we start with when computing allocations.
126 97936d51 Iustin Pop
emptyAllocSolution :: AllocSolution
127 97936d51 Iustin Pop
emptyAllocSolution = AllocSolution { asFailures = [], asAllocs = 0
128 129734d3 Iustin Pop
                                   , asSolution = Nothing, asLog = [] }
129 78694255 Iustin Pop
130 47eed3f4 Iustin Pop
-- | The empty evac solution.
131 47eed3f4 Iustin Pop
emptyEvacSolution :: EvacSolution
132 47eed3f4 Iustin Pop
emptyEvacSolution = EvacSolution { esMoved = []
133 47eed3f4 Iustin Pop
                                 , esFailed = []
134 47eed3f4 Iustin Pop
                                 , esOpCodes = []
135 47eed3f4 Iustin Pop
                                 }
136 47eed3f4 Iustin Pop
137 525bfb36 Iustin Pop
-- | The complete state for the balancing solution.
138 262a08a2 Iustin Pop
data Table = Table Node.List Instance.List Score [Placement]
139 6bc39970 Iustin Pop
             deriving (Show, Read)
140 e4f08c46 Iustin Pop
141 179c0828 Iustin Pop
-- | Cluster statistics data type.
142 7034694d Iustin Pop
data CStats = CStats { csFmem :: Integer -- ^ Cluster free mem
143 7034694d Iustin Pop
                     , csFdsk :: Integer -- ^ Cluster free disk
144 7034694d Iustin Pop
                     , csAmem :: Integer -- ^ Cluster allocatable mem
145 7034694d Iustin Pop
                     , csAdsk :: Integer -- ^ Cluster allocatable disk
146 7034694d Iustin Pop
                     , csAcpu :: Integer -- ^ Cluster allocatable cpus
147 7034694d Iustin Pop
                     , csMmem :: Integer -- ^ Max node allocatable mem
148 7034694d Iustin Pop
                     , csMdsk :: Integer -- ^ Max node allocatable disk
149 7034694d Iustin Pop
                     , csMcpu :: Integer -- ^ Max node allocatable cpu
150 7034694d Iustin Pop
                     , csImem :: Integer -- ^ Instance used mem
151 7034694d Iustin Pop
                     , csIdsk :: Integer -- ^ Instance used disk
152 7034694d Iustin Pop
                     , csIcpu :: Integer -- ^ Instance used cpu
153 7034694d Iustin Pop
                     , csTmem :: Double  -- ^ Cluster total mem
154 7034694d Iustin Pop
                     , csTdsk :: Double  -- ^ Cluster total disk
155 7034694d Iustin Pop
                     , csTcpu :: Double  -- ^ Cluster total cpus
156 7034694d Iustin Pop
                     , csVcpu :: Integer -- ^ Cluster virtual cpus (if
157 7034694d Iustin Pop
                                         -- node pCpu has been set,
158 7034694d Iustin Pop
                                         -- otherwise -1)
159 7034694d Iustin Pop
                     , csXmem :: Integer -- ^ Unnacounted for mem
160 7034694d Iustin Pop
                     , csNmem :: Integer -- ^ Node own memory
161 7034694d Iustin Pop
                     , csScore :: Score  -- ^ The cluster score
162 7034694d Iustin Pop
                     , csNinst :: Int    -- ^ The total number of instances
163 1a7eff0e Iustin Pop
                     }
164 6bc39970 Iustin Pop
            deriving (Show, Read)
165 1a7eff0e Iustin Pop
166 525bfb36 Iustin Pop
-- | Currently used, possibly to allocate, unallocable.
167 9b8fac3d Iustin Pop
type AllocStats = (RSpec, RSpec, RSpec)
168 9b8fac3d Iustin Pop
169 7eda951b Iustin Pop
-- | A simple type for allocation functions.
170 7eda951b Iustin Pop
type AllocMethod =  Node.List           -- ^ Node list
171 7eda951b Iustin Pop
                 -> Instance.List       -- ^ Instance list
172 7eda951b Iustin Pop
                 -> Maybe Int           -- ^ Optional allocation limit
173 7eda951b Iustin Pop
                 -> Instance.Instance   -- ^ Instance spec for allocation
174 7eda951b Iustin Pop
                 -> AllocNodes          -- ^ Which nodes we should allocate on
175 7eda951b Iustin Pop
                 -> [Instance.Instance] -- ^ Allocated instances
176 7eda951b Iustin Pop
                 -> [CStats]            -- ^ Running cluster stats
177 7eda951b Iustin Pop
                 -> Result AllocResult  -- ^ Allocation result
178 7eda951b Iustin Pop
179 9188aeef Iustin Pop
-- * Utility functions
180 9188aeef Iustin Pop
181 e4f08c46 Iustin Pop
-- | Verifies the N+1 status and return the affected nodes.
182 e4f08c46 Iustin Pop
verifyN1 :: [Node.Node] -> [Node.Node]
183 9f6dcdea Iustin Pop
verifyN1 = filter Node.failN1
184 e4f08c46 Iustin Pop
185 9188aeef Iustin Pop
{-| Computes the pair of bad nodes and instances.
186 9188aeef Iustin Pop
187 9188aeef Iustin Pop
The bad node list is computed via a simple 'verifyN1' check, and the
188 9188aeef Iustin Pop
bad instance list is the list of primary and secondary instances of
189 9188aeef Iustin Pop
those nodes.
190 9188aeef Iustin Pop
191 9188aeef Iustin Pop
-}
192 9188aeef Iustin Pop
computeBadItems :: Node.List -> Instance.List ->
193 9188aeef Iustin Pop
                   ([Node.Node], [Instance.Instance])
194 9188aeef Iustin Pop
computeBadItems nl il =
195 dbba5246 Iustin Pop
  let bad_nodes = verifyN1 $ getOnline nl
196 5182e970 Iustin Pop
      bad_instances = map (`Container.find` il) .
197 9f6dcdea Iustin Pop
                      sort . nub $
198 2060348b Iustin Pop
                      concatMap (\ n -> Node.sList n ++ Node.pList n) bad_nodes
199 9188aeef Iustin Pop
  in
200 9188aeef Iustin Pop
    (bad_nodes, bad_instances)
201 9188aeef Iustin Pop
202 255f55a9 Iustin Pop
-- | Extracts the node pairs for an instance. This can fail if the
203 255f55a9 Iustin Pop
-- instance is single-homed. FIXME: this needs to be improved,
204 255f55a9 Iustin Pop
-- together with the general enhancement for handling non-DRBD moves.
205 255f55a9 Iustin Pop
instanceNodes :: Node.List -> Instance.Instance ->
206 255f55a9 Iustin Pop
                 (Ndx, Ndx, Node.Node, Node.Node)
207 255f55a9 Iustin Pop
instanceNodes nl inst =
208 255f55a9 Iustin Pop
  let old_pdx = Instance.pNode inst
209 255f55a9 Iustin Pop
      old_sdx = Instance.sNode inst
210 255f55a9 Iustin Pop
      old_p = Container.find old_pdx nl
211 255f55a9 Iustin Pop
      old_s = Container.find old_sdx nl
212 255f55a9 Iustin Pop
  in (old_pdx, old_sdx, old_p, old_s)
213 255f55a9 Iustin Pop
214 525bfb36 Iustin Pop
-- | Zero-initializer for the CStats type.
215 1a7eff0e Iustin Pop
emptyCStats :: CStats
216 86ecce4a Iustin Pop
emptyCStats = CStats 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
217 1a7eff0e Iustin Pop
218 525bfb36 Iustin Pop
-- | Update stats with data from a new node.
219 1a7eff0e Iustin Pop
updateCStats :: CStats -> Node.Node -> CStats
220 1a7eff0e Iustin Pop
updateCStats cs node =
221 f23f21c3 Iustin Pop
  let CStats { csFmem = x_fmem, csFdsk = x_fdsk,
222 f23f21c3 Iustin Pop
               csAmem = x_amem, csAcpu = x_acpu, csAdsk = x_adsk,
223 f23f21c3 Iustin Pop
               csMmem = x_mmem, csMdsk = x_mdsk, csMcpu = x_mcpu,
224 f23f21c3 Iustin Pop
               csImem = x_imem, csIdsk = x_idsk, csIcpu = x_icpu,
225 f23f21c3 Iustin Pop
               csTmem = x_tmem, csTdsk = x_tdsk, csTcpu = x_tcpu,
226 f23f21c3 Iustin Pop
               csVcpu = x_vcpu,
227 f23f21c3 Iustin Pop
               csXmem = x_xmem, csNmem = x_nmem, csNinst = x_ninst
228 f23f21c3 Iustin Pop
             }
229 f23f21c3 Iustin Pop
        = cs
230 f23f21c3 Iustin Pop
      inc_amem = Node.fMem node - Node.rMem node
231 f23f21c3 Iustin Pop
      inc_amem' = if inc_amem > 0 then inc_amem else 0
232 f23f21c3 Iustin Pop
      inc_adsk = Node.availDisk node
233 f23f21c3 Iustin Pop
      inc_imem = truncate (Node.tMem node) - Node.nMem node
234 f23f21c3 Iustin Pop
                 - Node.xMem node - Node.fMem node
235 f23f21c3 Iustin Pop
      inc_icpu = Node.uCpu node
236 f23f21c3 Iustin Pop
      inc_idsk = truncate (Node.tDsk node) - Node.fDsk node
237 f23f21c3 Iustin Pop
      inc_vcpu = Node.hiCpu node
238 f23f21c3 Iustin Pop
      inc_acpu = Node.availCpu node
239 f23f21c3 Iustin Pop
  in cs { csFmem = x_fmem + fromIntegral (Node.fMem node)
240 f23f21c3 Iustin Pop
        , csFdsk = x_fdsk + fromIntegral (Node.fDsk node)
241 f23f21c3 Iustin Pop
        , csAmem = x_amem + fromIntegral inc_amem'
242 f23f21c3 Iustin Pop
        , csAdsk = x_adsk + fromIntegral inc_adsk
243 f23f21c3 Iustin Pop
        , csAcpu = x_acpu + fromIntegral inc_acpu
244 f23f21c3 Iustin Pop
        , csMmem = max x_mmem (fromIntegral inc_amem')
245 f23f21c3 Iustin Pop
        , csMdsk = max x_mdsk (fromIntegral inc_adsk)
246 f23f21c3 Iustin Pop
        , csMcpu = max x_mcpu (fromIntegral inc_acpu)
247 f23f21c3 Iustin Pop
        , csImem = x_imem + fromIntegral inc_imem
248 f23f21c3 Iustin Pop
        , csIdsk = x_idsk + fromIntegral inc_idsk
249 f23f21c3 Iustin Pop
        , csIcpu = x_icpu + fromIntegral inc_icpu
250 f23f21c3 Iustin Pop
        , csTmem = x_tmem + Node.tMem node
251 f23f21c3 Iustin Pop
        , csTdsk = x_tdsk + Node.tDsk node
252 f23f21c3 Iustin Pop
        , csTcpu = x_tcpu + Node.tCpu node
253 f23f21c3 Iustin Pop
        , csVcpu = x_vcpu + fromIntegral inc_vcpu
254 f23f21c3 Iustin Pop
        , csXmem = x_xmem + fromIntegral (Node.xMem node)
255 f23f21c3 Iustin Pop
        , csNmem = x_nmem + fromIntegral (Node.nMem node)
256 f23f21c3 Iustin Pop
        , csNinst = x_ninst + length (Node.pList node)
257 f23f21c3 Iustin Pop
        }
258 1a7eff0e Iustin Pop
259 9188aeef Iustin Pop
-- | Compute the total free disk and memory in the cluster.
260 1a7eff0e Iustin Pop
totalResources :: Node.List -> CStats
261 de4ac2c2 Iustin Pop
totalResources nl =
262 f23f21c3 Iustin Pop
  let cs = foldl' updateCStats emptyCStats . Container.elems $ nl
263 f23f21c3 Iustin Pop
  in cs { csScore = compCV nl }
264 9188aeef Iustin Pop
265 9b8fac3d Iustin Pop
-- | Compute the delta between two cluster state.
266 9b8fac3d Iustin Pop
--
267 9b8fac3d Iustin Pop
-- This is used when doing allocations, to understand better the
268 e2436511 Iustin Pop
-- available cluster resources. The return value is a triple of the
269 e2436511 Iustin Pop
-- current used values, the delta that was still allocated, and what
270 e2436511 Iustin Pop
-- was left unallocated.
271 9b8fac3d Iustin Pop
computeAllocationDelta :: CStats -> CStats -> AllocStats
272 9b8fac3d Iustin Pop
computeAllocationDelta cini cfin =
273 f23f21c3 Iustin Pop
  let CStats {csImem = i_imem, csIdsk = i_idsk, csIcpu = i_icpu} = cini
274 f23f21c3 Iustin Pop
      CStats {csImem = f_imem, csIdsk = f_idsk, csIcpu = f_icpu,
275 f23f21c3 Iustin Pop
              csTmem = t_mem, csTdsk = t_dsk, csVcpu = v_cpu } = cfin
276 f23f21c3 Iustin Pop
      rini = RSpec (fromIntegral i_icpu) (fromIntegral i_imem)
277 f23f21c3 Iustin Pop
             (fromIntegral i_idsk)
278 f23f21c3 Iustin Pop
      rfin = RSpec (fromIntegral (f_icpu - i_icpu))
279 f23f21c3 Iustin Pop
             (fromIntegral (f_imem - i_imem))
280 f23f21c3 Iustin Pop
             (fromIntegral (f_idsk - i_idsk))
281 f23f21c3 Iustin Pop
      un_cpu = fromIntegral (v_cpu - f_icpu)::Int
282 f23f21c3 Iustin Pop
      runa = RSpec un_cpu (truncate t_mem - fromIntegral f_imem)
283 f23f21c3 Iustin Pop
             (truncate t_dsk - fromIntegral f_idsk)
284 f23f21c3 Iustin Pop
  in (rini, rfin, runa)
285 9b8fac3d Iustin Pop
286 525bfb36 Iustin Pop
-- | The names and weights of the individual elements in the CV list.
287 8a3b30ca Iustin Pop
detailedCVInfo :: [(Double, String)]
288 8a3b30ca Iustin Pop
detailedCVInfo = [ (1,  "free_mem_cv")
289 8a3b30ca Iustin Pop
                 , (1,  "free_disk_cv")
290 8a3b30ca Iustin Pop
                 , (1,  "n1_cnt")
291 8a3b30ca Iustin Pop
                 , (1,  "reserved_mem_cv")
292 8a3b30ca Iustin Pop
                 , (4,  "offline_all_cnt")
293 8a3b30ca Iustin Pop
                 , (16, "offline_pri_cnt")
294 8a3b30ca Iustin Pop
                 , (1,  "vcpu_ratio_cv")
295 8a3b30ca Iustin Pop
                 , (1,  "cpu_load_cv")
296 8a3b30ca Iustin Pop
                 , (1,  "mem_load_cv")
297 8a3b30ca Iustin Pop
                 , (1,  "disk_load_cv")
298 8a3b30ca Iustin Pop
                 , (1,  "net_load_cv")
299 306cccd5 Iustin Pop
                 , (2,  "pri_tags_score")
300 8a3b30ca Iustin Pop
                 ]
301 8a3b30ca Iustin Pop
302 179c0828 Iustin Pop
-- | Holds the weights used by 'compCVNodes' for each metric.
303 8a3b30ca Iustin Pop
detailedCVWeights :: [Double]
304 8a3b30ca Iustin Pop
detailedCVWeights = map fst detailedCVInfo
305 fca250e9 Iustin Pop
306 9188aeef Iustin Pop
-- | Compute the mem and disk covariance.
307 9bb5721c Iustin Pop
compDetailedCV :: [Node.Node] -> [Double]
308 9bb5721c Iustin Pop
compDetailedCV all_nodes =
309 f23f21c3 Iustin Pop
  let (offline, nodes) = partition Node.offline all_nodes
310 f23f21c3 Iustin Pop
      mem_l = map Node.pMem nodes
311 f23f21c3 Iustin Pop
      dsk_l = map Node.pDsk nodes
312 f23f21c3 Iustin Pop
      -- metric: memory covariance
313 f23f21c3 Iustin Pop
      mem_cv = stdDev mem_l
314 f23f21c3 Iustin Pop
      -- metric: disk covariance
315 f23f21c3 Iustin Pop
      dsk_cv = stdDev dsk_l
316 f23f21c3 Iustin Pop
      -- metric: count of instances living on N1 failing nodes
317 f23f21c3 Iustin Pop
      n1_score = fromIntegral . sum . map (\n -> length (Node.sList n) +
318 f23f21c3 Iustin Pop
                                                 length (Node.pList n)) .
319 f23f21c3 Iustin Pop
                 filter Node.failN1 $ nodes :: Double
320 f23f21c3 Iustin Pop
      res_l = map Node.pRem nodes
321 f23f21c3 Iustin Pop
      -- metric: reserved memory covariance
322 f23f21c3 Iustin Pop
      res_cv = stdDev res_l
323 f23f21c3 Iustin Pop
      -- offline instances metrics
324 f23f21c3 Iustin Pop
      offline_ipri = sum . map (length . Node.pList) $ offline
325 f23f21c3 Iustin Pop
      offline_isec = sum . map (length . Node.sList) $ offline
326 f23f21c3 Iustin Pop
      -- metric: count of instances on offline nodes
327 f23f21c3 Iustin Pop
      off_score = fromIntegral (offline_ipri + offline_isec)::Double
328 f23f21c3 Iustin Pop
      -- metric: count of primary instances on offline nodes (this
329 f23f21c3 Iustin Pop
      -- helps with evacuation/failover of primary instances on
330 f23f21c3 Iustin Pop
      -- 2-node clusters with one node offline)
331 f23f21c3 Iustin Pop
      off_pri_score = fromIntegral offline_ipri::Double
332 f23f21c3 Iustin Pop
      cpu_l = map Node.pCpu nodes
333 f23f21c3 Iustin Pop
      -- metric: covariance of vcpu/pcpu ratio
334 f23f21c3 Iustin Pop
      cpu_cv = stdDev cpu_l
335 f23f21c3 Iustin Pop
      -- metrics: covariance of cpu, memory, disk and network load
336 f23f21c3 Iustin Pop
      (c_load, m_load, d_load, n_load) =
337 f23f21c3 Iustin Pop
        unzip4 $ map (\n ->
338 f23f21c3 Iustin Pop
                      let DynUtil c1 m1 d1 n1 = Node.utilLoad n
339 f23f21c3 Iustin Pop
                          DynUtil c2 m2 d2 n2 = Node.utilPool n
340 f23f21c3 Iustin Pop
                      in (c1/c2, m1/m2, d1/d2, n1/n2)) nodes
341 f23f21c3 Iustin Pop
      -- metric: conflicting instance count
342 f23f21c3 Iustin Pop
      pri_tags_inst = sum $ map Node.conflictingPrimaries nodes
343 f23f21c3 Iustin Pop
      pri_tags_score = fromIntegral pri_tags_inst::Double
344 f23f21c3 Iustin Pop
  in [ mem_cv, dsk_cv, n1_score, res_cv, off_score, off_pri_score, cpu_cv
345 f23f21c3 Iustin Pop
     , stdDev c_load, stdDev m_load , stdDev d_load, stdDev n_load
346 f23f21c3 Iustin Pop
     , pri_tags_score ]
347 9188aeef Iustin Pop
348 9188aeef Iustin Pop
-- | Compute the /total/ variance.
349 9bb5721c Iustin Pop
compCVNodes :: [Node.Node] -> Double
350 9bb5721c Iustin Pop
compCVNodes = sum . zipWith (*) detailedCVWeights . compDetailedCV
351 9bb5721c Iustin Pop
352 9bb5721c Iustin Pop
-- | Wrapper over 'compCVNodes' for callers that have a 'Node.List'.
353 9188aeef Iustin Pop
compCV :: Node.List -> Double
354 9bb5721c Iustin Pop
compCV = compCVNodes . Container.elems
355 9bb5721c Iustin Pop
356 525bfb36 Iustin Pop
-- | Compute online nodes from a 'Node.List'.
357 dbba5246 Iustin Pop
getOnline :: Node.List -> [Node.Node]
358 dbba5246 Iustin Pop
getOnline = filter (not . Node.offline) . Container.elems
359 dbba5246 Iustin Pop
360 525bfb36 Iustin Pop
-- * Balancing functions
361 9188aeef Iustin Pop
362 9188aeef Iustin Pop
-- | Compute best table. Note that the ordering of the arguments is important.
363 9188aeef Iustin Pop
compareTables :: Table -> Table -> Table
364 9188aeef Iustin Pop
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
365 f23f21c3 Iustin Pop
  if a_cv > b_cv then b else a
366 9188aeef Iustin Pop
367 9188aeef Iustin Pop
-- | Applies an instance move to a given node list and instance.
368 262a08a2 Iustin Pop
applyMove :: Node.List -> Instance.Instance
369 8880d889 Iustin Pop
          -> IMove -> OpResult (Node.List, Instance.Instance, Ndx, Ndx)
370 00b51a14 Iustin Pop
-- Failover (f)
371 e4f08c46 Iustin Pop
applyMove nl inst Failover =
372 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
373 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
374 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
375 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
376 3603605a Iustin Pop
        new_p <- Node.addPriEx (Node.offline old_p) int_s inst
377 f23f21c3 Iustin Pop
        new_s <- Node.addSec int_p inst old_sdx
378 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst old_sdx old_pdx
379 f23f21c3 Iustin Pop
        return (Container.addTwo old_pdx new_s old_sdx new_p nl,
380 f23f21c3 Iustin Pop
                new_inst, old_sdx, old_pdx)
381 f23f21c3 Iustin Pop
  in new_nl
382 e4f08c46 Iustin Pop
383 00b51a14 Iustin Pop
-- Replace the primary (f:, r:np, f)
384 e4f08c46 Iustin Pop
applyMove nl inst (ReplacePrimary new_pdx) =
385 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
386 f23f21c3 Iustin Pop
      tgt_n = Container.find new_pdx nl
387 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
388 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
389 f23f21c3 Iustin Pop
      force_p = Node.offline old_p
390 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
391 f23f21c3 Iustin Pop
                  -- check that the current secondary can host the instance
392 f23f21c3 Iustin Pop
                  -- during the migration
393 f23f21c3 Iustin Pop
        tmp_s <- Node.addPriEx force_p int_s inst
394 f23f21c3 Iustin Pop
        let tmp_s' = Node.removePri tmp_s inst
395 f23f21c3 Iustin Pop
        new_p <- Node.addPriEx force_p tgt_n inst
396 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_p tmp_s' inst new_pdx
397 f23f21c3 Iustin Pop
        let new_inst = Instance.setPri inst new_pdx
398 f23f21c3 Iustin Pop
        return (Container.add new_pdx new_p $
399 f23f21c3 Iustin Pop
                Container.addTwo old_pdx int_p old_sdx new_s nl,
400 f23f21c3 Iustin Pop
                new_inst, new_pdx, old_sdx)
401 f23f21c3 Iustin Pop
  in new_nl
402 e4f08c46 Iustin Pop
403 00b51a14 Iustin Pop
-- Replace the secondary (r:ns)
404 e4f08c46 Iustin Pop
applyMove nl inst (ReplaceSecondary new_sdx) =
405 f23f21c3 Iustin Pop
  let old_pdx = Instance.pNode inst
406 f23f21c3 Iustin Pop
      old_sdx = Instance.sNode inst
407 f23f21c3 Iustin Pop
      old_s = Container.find old_sdx nl
408 f23f21c3 Iustin Pop
      tgt_n = Container.find new_sdx nl
409 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
410 f23f21c3 Iustin Pop
      force_s = Node.offline old_s
411 f23f21c3 Iustin Pop
      new_inst = Instance.setSec inst new_sdx
412 f23f21c3 Iustin Pop
      new_nl = Node.addSecEx force_s tgt_n inst old_pdx >>=
413 f23f21c3 Iustin Pop
               \new_s -> return (Container.addTwo new_sdx
414 f23f21c3 Iustin Pop
                                 new_s old_sdx int_s nl,
415 f23f21c3 Iustin Pop
                                 new_inst, old_pdx, new_sdx)
416 f23f21c3 Iustin Pop
  in new_nl
417 e4f08c46 Iustin Pop
418 00b51a14 Iustin Pop
-- Replace the secondary and failover (r:np, f)
419 79ac6b6f Iustin Pop
applyMove nl inst (ReplaceAndFailover new_pdx) =
420 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
421 f23f21c3 Iustin Pop
      tgt_n = Container.find new_pdx nl
422 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
423 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
424 f23f21c3 Iustin Pop
      force_s = Node.offline old_s
425 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
426 f23f21c3 Iustin Pop
        new_p <- Node.addPri tgt_n inst
427 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_s int_p inst new_pdx
428 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst new_pdx old_pdx
429 f23f21c3 Iustin Pop
        return (Container.add new_pdx new_p $
430 f23f21c3 Iustin Pop
                Container.addTwo old_pdx new_s old_sdx int_s nl,
431 f23f21c3 Iustin Pop
                new_inst, new_pdx, old_pdx)
432 f23f21c3 Iustin Pop
  in new_nl
433 79ac6b6f Iustin Pop
434 19493d33 Iustin Pop
-- Failver and replace the secondary (f, r:ns)
435 19493d33 Iustin Pop
applyMove nl inst (FailoverAndReplace new_sdx) =
436 255f55a9 Iustin Pop
  let (old_pdx, old_sdx, old_p, old_s) = instanceNodes nl inst
437 f23f21c3 Iustin Pop
      tgt_n = Container.find new_sdx nl
438 f23f21c3 Iustin Pop
      int_p = Node.removePri old_p inst
439 f23f21c3 Iustin Pop
      int_s = Node.removeSec old_s inst
440 f23f21c3 Iustin Pop
      force_p = Node.offline old_p
441 f23f21c3 Iustin Pop
      new_nl = do -- Maybe monad
442 f23f21c3 Iustin Pop
        new_p <- Node.addPriEx force_p int_s inst
443 f23f21c3 Iustin Pop
        new_s <- Node.addSecEx force_p tgt_n inst old_sdx
444 f23f21c3 Iustin Pop
        let new_inst = Instance.setBoth inst old_sdx new_sdx
445 f23f21c3 Iustin Pop
        return (Container.add new_sdx new_s $
446 f23f21c3 Iustin Pop
                Container.addTwo old_sdx new_p old_pdx int_p nl,
447 f23f21c3 Iustin Pop
                new_inst, old_sdx, new_sdx)
448 f23f21c3 Iustin Pop
  in new_nl
449 19493d33 Iustin Pop
450 9188aeef Iustin Pop
-- | Tries to allocate an instance on one given node.
451 0d66ea67 Iustin Pop
allocateOnSingle :: Node.List -> Instance.Instance -> Ndx
452 1fe81531 Iustin Pop
                 -> OpResult Node.AllocElement
453 0d66ea67 Iustin Pop
allocateOnSingle nl inst new_pdx =
454 f23f21c3 Iustin Pop
  let p = Container.find new_pdx nl
455 f23f21c3 Iustin Pop
      new_inst = Instance.setBoth inst new_pdx Node.noSecondary
456 aa5b2f07 Iustin Pop
  in do
457 aa5b2f07 Iustin Pop
    Instance.instMatchesPolicy inst (Node.iPolicy p)
458 aa5b2f07 Iustin Pop
    new_p <- Node.addPri p inst
459 f23f21c3 Iustin Pop
    let new_nl = Container.add new_pdx new_p nl
460 f23f21c3 Iustin Pop
        new_score = compCV nl
461 f23f21c3 Iustin Pop
    return (new_nl, new_inst, [new_p], new_score)
462 5e15f460 Iustin Pop
463 9188aeef Iustin Pop
-- | Tries to allocate an instance on a given pair of nodes.
464 0d66ea67 Iustin Pop
allocateOnPair :: Node.List -> Instance.Instance -> Ndx -> Ndx
465 1fe81531 Iustin Pop
               -> OpResult Node.AllocElement
466 0d66ea67 Iustin Pop
allocateOnPair nl inst new_pdx new_sdx =
467 f23f21c3 Iustin Pop
  let tgt_p = Container.find new_pdx nl
468 f23f21c3 Iustin Pop
      tgt_s = Container.find new_sdx nl
469 f23f21c3 Iustin Pop
  in do
470 aa5b2f07 Iustin Pop
    Instance.instMatchesPolicy inst (Node.iPolicy tgt_p)
471 f23f21c3 Iustin Pop
    new_p <- Node.addPri tgt_p inst
472 f23f21c3 Iustin Pop
    new_s <- Node.addSec tgt_s inst new_pdx
473 f23f21c3 Iustin Pop
    let new_inst = Instance.setBoth inst new_pdx new_sdx
474 f23f21c3 Iustin Pop
        new_nl = Container.addTwo new_pdx new_p new_sdx new_s nl
475 f23f21c3 Iustin Pop
    return (new_nl, new_inst, [new_p, new_s], compCV new_nl)
476 4a340313 Iustin Pop
477 9188aeef Iustin Pop
-- | Tries to perform an instance move and returns the best table
478 9188aeef Iustin Pop
-- between the original one and the new one.
479 e4f08c46 Iustin Pop
checkSingleStep :: Table -- ^ The original table
480 e4f08c46 Iustin Pop
                -> Instance.Instance -- ^ The instance to move
481 e4f08c46 Iustin Pop
                -> Table -- ^ The current best table
482 e4f08c46 Iustin Pop
                -> IMove -- ^ The move to apply
483 e4f08c46 Iustin Pop
                -> Table -- ^ The final best table
484 e4f08c46 Iustin Pop
checkSingleStep ini_tbl target cur_tbl move =
485 f23f21c3 Iustin Pop
  let Table ini_nl ini_il _ ini_plc = ini_tbl
486 f23f21c3 Iustin Pop
      tmp_resu = applyMove ini_nl target move
487 f23f21c3 Iustin Pop
  in case tmp_resu of
488 f23f21c3 Iustin Pop
       OpFail _ -> cur_tbl
489 f23f21c3 Iustin Pop
       OpGood (upd_nl, new_inst, pri_idx, sec_idx) ->
490 f23f21c3 Iustin Pop
         let tgt_idx = Instance.idx target
491 f23f21c3 Iustin Pop
             upd_cvar = compCV upd_nl
492 f23f21c3 Iustin Pop
             upd_il = Container.add tgt_idx new_inst ini_il
493 f23f21c3 Iustin Pop
             upd_plc = (tgt_idx, pri_idx, sec_idx, move, upd_cvar):ini_plc
494 f23f21c3 Iustin Pop
             upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
495 f23f21c3 Iustin Pop
         in compareTables cur_tbl upd_tbl
496 e4f08c46 Iustin Pop
497 c0501c69 Iustin Pop
-- | Given the status of the current secondary as a valid new node and
498 c0501c69 Iustin Pop
-- the current candidate target node, generate the possible moves for
499 c0501c69 Iustin Pop
-- a instance.
500 c0501c69 Iustin Pop
possibleMoves :: Bool      -- ^ Whether the secondary node is a valid new node
501 e08424a8 Guido Trotter
              -> Bool      -- ^ Whether we can change the primary node
502 c0501c69 Iustin Pop
              -> Ndx       -- ^ Target node candidate
503 c0501c69 Iustin Pop
              -> [IMove]   -- ^ List of valid result moves
504 e08424a8 Guido Trotter
505 e08424a8 Guido Trotter
possibleMoves _ False tdx =
506 f23f21c3 Iustin Pop
  [ReplaceSecondary tdx]
507 e08424a8 Guido Trotter
508 e08424a8 Guido Trotter
possibleMoves True True tdx =
509 f23f21c3 Iustin Pop
  [ ReplaceSecondary tdx
510 f23f21c3 Iustin Pop
  , ReplaceAndFailover tdx
511 f23f21c3 Iustin Pop
  , ReplacePrimary tdx
512 f23f21c3 Iustin Pop
  , FailoverAndReplace tdx
513 f23f21c3 Iustin Pop
  ]
514 40d4eba0 Iustin Pop
515 e08424a8 Guido Trotter
possibleMoves False True tdx =
516 f23f21c3 Iustin Pop
  [ ReplaceSecondary tdx
517 f23f21c3 Iustin Pop
  , ReplaceAndFailover tdx
518 f23f21c3 Iustin Pop
  ]
519 40d4eba0 Iustin Pop
520 40d4eba0 Iustin Pop
-- | Compute the best move for a given instance.
521 c0501c69 Iustin Pop
checkInstanceMove :: [Ndx]             -- ^ Allowed target node indices
522 c0501c69 Iustin Pop
                  -> Bool              -- ^ Whether disk moves are allowed
523 e08424a8 Guido Trotter
                  -> Bool              -- ^ Whether instance moves are allowed
524 c0501c69 Iustin Pop
                  -> Table             -- ^ Original table
525 c0501c69 Iustin Pop
                  -> Instance.Instance -- ^ Instance to move
526 c0501c69 Iustin Pop
                  -> Table             -- ^ Best new table for this instance
527 e08424a8 Guido Trotter
checkInstanceMove nodes_idx disk_moves inst_moves ini_tbl target =
528 f23f21c3 Iustin Pop
  let opdx = Instance.pNode target
529 f23f21c3 Iustin Pop
      osdx = Instance.sNode target
530 3603605a Iustin Pop
      bad_nodes = [opdx, osdx]
531 3603605a Iustin Pop
      nodes = filter (`notElem` bad_nodes) nodes_idx
532 f23f21c3 Iustin Pop
      use_secondary = elem osdx nodes_idx && inst_moves
533 f23f21c3 Iustin Pop
      aft_failover = if use_secondary -- if allowed to failover
534 40d4eba0 Iustin Pop
                       then checkSingleStep ini_tbl target ini_tbl Failover
535 40d4eba0 Iustin Pop
                       else ini_tbl
536 f23f21c3 Iustin Pop
      all_moves = if disk_moves
537 e08424a8 Guido Trotter
                    then concatMap
538 f23f21c3 Iustin Pop
                           (possibleMoves use_secondary inst_moves) nodes
539 c0501c69 Iustin Pop
                    else []
540 4e25d1c2 Iustin Pop
    in
541 4e25d1c2 Iustin Pop
      -- iterate over the possible nodes for this instance
542 9dc6023f Iustin Pop
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
543 4e25d1c2 Iustin Pop
544 e4f08c46 Iustin Pop
-- | Compute the best next move.
545 608efcce Iustin Pop
checkMove :: [Ndx]               -- ^ Allowed target node indices
546 c0501c69 Iustin Pop
          -> Bool                -- ^ Whether disk moves are allowed
547 e08424a8 Guido Trotter
          -> Bool                -- ^ Whether instance moves are allowed
548 256810de Iustin Pop
          -> Table               -- ^ The current solution
549 e4f08c46 Iustin Pop
          -> [Instance.Instance] -- ^ List of instances still to move
550 256810de Iustin Pop
          -> Table               -- ^ The new solution
551 e08424a8 Guido Trotter
checkMove nodes_idx disk_moves inst_moves ini_tbl victims =
552 f23f21c3 Iustin Pop
  let Table _ _ _ ini_plc = ini_tbl
553 f23f21c3 Iustin Pop
      -- we're using rwhnf from the Control.Parallel.Strategies
554 f23f21c3 Iustin Pop
      -- package; we don't need to use rnf as that would force too
555 f23f21c3 Iustin Pop
      -- much evaluation in single-threaded cases, and in
556 f23f21c3 Iustin Pop
      -- multi-threaded case the weak head normal form is enough to
557 f23f21c3 Iustin Pop
      -- spark the evaluation
558 f23f21c3 Iustin Pop
      tables = parMap rwhnf (checkInstanceMove nodes_idx disk_moves
559 f23f21c3 Iustin Pop
                             inst_moves ini_tbl)
560 f23f21c3 Iustin Pop
               victims
561 f23f21c3 Iustin Pop
      -- iterate over all instances, computing the best move
562 f23f21c3 Iustin Pop
      best_tbl = foldl' compareTables ini_tbl tables
563 f23f21c3 Iustin Pop
      Table _ _ _ best_plc = best_tbl
564 f23f21c3 Iustin Pop
  in if length best_plc == length ini_plc
565 a804261a Iustin Pop
       then ini_tbl -- no advancement
566 a804261a Iustin Pop
       else best_tbl
567 e4f08c46 Iustin Pop
568 525bfb36 Iustin Pop
-- | Check if we are allowed to go deeper in the balancing.
569 3fea6959 Iustin Pop
doNextBalance :: Table     -- ^ The starting table
570 3fea6959 Iustin Pop
              -> Int       -- ^ Remaining length
571 3fea6959 Iustin Pop
              -> Score     -- ^ Score at which to stop
572 3fea6959 Iustin Pop
              -> Bool      -- ^ The resulting table and commands
573 5ad86777 Iustin Pop
doNextBalance ini_tbl max_rounds min_score =
574 f23f21c3 Iustin Pop
  let Table _ _ ini_cv ini_plc = ini_tbl
575 f23f21c3 Iustin Pop
      ini_plc_len = length ini_plc
576 f23f21c3 Iustin Pop
  in (max_rounds < 0 || ini_plc_len < max_rounds) && ini_cv > min_score
577 5ad86777 Iustin Pop
578 525bfb36 Iustin Pop
-- | Run a balance move.
579 f25e5aac Iustin Pop
tryBalance :: Table       -- ^ The starting table
580 f25e5aac Iustin Pop
           -> Bool        -- ^ Allow disk moves
581 e08424a8 Guido Trotter
           -> Bool        -- ^ Allow instance moves
582 2e28ac32 Iustin Pop
           -> Bool        -- ^ Only evacuate moves
583 848b65c9 Iustin Pop
           -> Score       -- ^ Min gain threshold
584 848b65c9 Iustin Pop
           -> Score       -- ^ Min gain
585 f25e5aac Iustin Pop
           -> Maybe Table -- ^ The resulting table and commands
586 e08424a8 Guido Trotter
tryBalance ini_tbl disk_moves inst_moves evac_mode mg_limit min_gain =
587 5ad86777 Iustin Pop
    let Table ini_nl ini_il ini_cv _ = ini_tbl
588 5ad86777 Iustin Pop
        all_inst = Container.elems ini_il
589 2e28ac32 Iustin Pop
        all_inst' = if evac_mode
590 2e28ac32 Iustin Pop
                    then let bad_nodes = map Node.idx . filter Node.offline $
591 2e28ac32 Iustin Pop
                                         Container.elems ini_nl
592 77ecfa82 Iustin Pop
                         in filter (any (`elem` bad_nodes) . Instance.allNodes)
593 2e28ac32 Iustin Pop
                            all_inst
594 2e28ac32 Iustin Pop
                    else all_inst
595 c424cdc8 Iustin Pop
        reloc_inst = filter Instance.movable all_inst'
596 5ad86777 Iustin Pop
        node_idx = map Node.idx . filter (not . Node.offline) $
597 5ad86777 Iustin Pop
                   Container.elems ini_nl
598 e08424a8 Guido Trotter
        fin_tbl = checkMove node_idx disk_moves inst_moves ini_tbl reloc_inst
599 5ad86777 Iustin Pop
        (Table _ _ fin_cv _) = fin_tbl
600 f25e5aac Iustin Pop
    in
601 848b65c9 Iustin Pop
      if fin_cv < ini_cv && (ini_cv > mg_limit || ini_cv - fin_cv >= min_gain)
602 5ad86777 Iustin Pop
      then Just fin_tbl -- this round made success, return the new table
603 f25e5aac Iustin Pop
      else Nothing
604 f25e5aac Iustin Pop
605 478df686 Iustin Pop
-- * Allocation functions
606 478df686 Iustin Pop
607 525bfb36 Iustin Pop
-- | Build failure stats out of a list of failures.
608 478df686 Iustin Pop
collapseFailures :: [FailMode] -> FailStats
609 478df686 Iustin Pop
collapseFailures flst =
610 b4bae394 Iustin Pop
    map (\k -> (k, foldl' (\a e -> if e == k then a + 1 else a) 0 flst))
611 b4bae394 Iustin Pop
            [minBound..maxBound]
612 478df686 Iustin Pop
613 d7339c99 Iustin Pop
-- | Compares two Maybe AllocElement and chooses the besst score.
614 d7339c99 Iustin Pop
bestAllocElement :: Maybe Node.AllocElement
615 d7339c99 Iustin Pop
                 -> Maybe Node.AllocElement
616 d7339c99 Iustin Pop
                 -> Maybe Node.AllocElement
617 d7339c99 Iustin Pop
bestAllocElement a Nothing = a
618 d7339c99 Iustin Pop
bestAllocElement Nothing b = b
619 d7339c99 Iustin Pop
bestAllocElement a@(Just (_, _, _, ascore)) b@(Just (_, _, _, bscore)) =
620 9fc18384 Iustin Pop
  if ascore < bscore then a else b
621 d7339c99 Iustin Pop
622 478df686 Iustin Pop
-- | Update current Allocation solution and failure stats with new
623 525bfb36 Iustin Pop
-- elements.
624 1fe81531 Iustin Pop
concatAllocs :: AllocSolution -> OpResult Node.AllocElement -> AllocSolution
625 85d0ddc3 Iustin Pop
concatAllocs as (OpFail reason) = as { asFailures = reason : asFailures as }
626 478df686 Iustin Pop
627 d7339c99 Iustin Pop
concatAllocs as (OpGood ns) =
628 9fc18384 Iustin Pop
  let -- Choose the old or new solution, based on the cluster score
629 9fc18384 Iustin Pop
    cntok = asAllocs as
630 9fc18384 Iustin Pop
    osols = asSolution as
631 9fc18384 Iustin Pop
    nsols = bestAllocElement osols (Just ns)
632 9fc18384 Iustin Pop
    nsuc = cntok + 1
633 478df686 Iustin Pop
    -- Note: we force evaluation of nsols here in order to keep the
634 478df686 Iustin Pop
    -- memory profile low - we know that we will need nsols for sure
635 478df686 Iustin Pop
    -- in the next cycle, so we force evaluation of nsols, since the
636 478df686 Iustin Pop
    -- foldl' in the caller will only evaluate the tuple, but not the
637 7d11799b Iustin Pop
    -- elements of the tuple
638 9fc18384 Iustin Pop
  in nsols `seq` nsuc `seq` as { asAllocs = nsuc, asSolution = nsols }
639 dbba5246 Iustin Pop
640 f828f4aa Iustin Pop
-- | Sums two 'AllocSolution' structures.
641 f828f4aa Iustin Pop
sumAllocs :: AllocSolution -> AllocSolution -> AllocSolution
642 f828f4aa Iustin Pop
sumAllocs (AllocSolution aFails aAllocs aSols aLog)
643 f828f4aa Iustin Pop
          (AllocSolution bFails bAllocs bSols bLog) =
644 9fc18384 Iustin Pop
  -- note: we add b first, since usually it will be smaller; when
645 9fc18384 Iustin Pop
  -- fold'ing, a will grow and grow whereas b is the per-group
646 9fc18384 Iustin Pop
  -- result, hence smaller
647 9fc18384 Iustin Pop
  let nFails  = bFails ++ aFails
648 9fc18384 Iustin Pop
      nAllocs = aAllocs + bAllocs
649 9fc18384 Iustin Pop
      nSols   = bestAllocElement aSols bSols
650 9fc18384 Iustin Pop
      nLog    = bLog ++ aLog
651 9fc18384 Iustin Pop
  in AllocSolution nFails nAllocs nSols nLog
652 f828f4aa Iustin Pop
653 525bfb36 Iustin Pop
-- | Given a solution, generates a reasonable description for it.
654 859fc11d Iustin Pop
describeSolution :: AllocSolution -> String
655 859fc11d Iustin Pop
describeSolution as =
656 859fc11d Iustin Pop
  let fcnt = asFailures as
657 129734d3 Iustin Pop
      sols = asSolution as
658 859fc11d Iustin Pop
      freasons =
659 859fc11d Iustin Pop
        intercalate ", " . map (\(a, b) -> printf "%s: %d" (show a) b) .
660 859fc11d Iustin Pop
        filter ((> 0) . snd) . collapseFailures $ fcnt
661 129734d3 Iustin Pop
  in case sols of
662 129734d3 Iustin Pop
     Nothing -> "No valid allocation solutions, failure reasons: " ++
663 129734d3 Iustin Pop
                (if null fcnt then "unknown reasons" else freasons)
664 129734d3 Iustin Pop
     Just (_, _, nodes, cv) ->
665 129734d3 Iustin Pop
         printf ("score: %.8f, successes %d, failures %d (%s)" ++
666 129734d3 Iustin Pop
                 " for node(s) %s") cv (asAllocs as) (length fcnt) freasons
667 129734d3 Iustin Pop
               (intercalate "/" . map Node.name $ nodes)
668 859fc11d Iustin Pop
669 525bfb36 Iustin Pop
-- | Annotates a solution with the appropriate string.
670 859fc11d Iustin Pop
annotateSolution :: AllocSolution -> AllocSolution
671 859fc11d Iustin Pop
annotateSolution as = as { asLog = describeSolution as : asLog as }
672 859fc11d Iustin Pop
673 47eed3f4 Iustin Pop
-- | Reverses an evacuation solution.
674 47eed3f4 Iustin Pop
--
675 47eed3f4 Iustin Pop
-- Rationale: we always concat the results to the top of the lists, so
676 47eed3f4 Iustin Pop
-- for proper jobset execution, we should reverse all lists.
677 47eed3f4 Iustin Pop
reverseEvacSolution :: EvacSolution -> EvacSolution
678 47eed3f4 Iustin Pop
reverseEvacSolution (EvacSolution f m o) =
679 9fc18384 Iustin Pop
  EvacSolution (reverse f) (reverse m) (reverse o)
680 47eed3f4 Iustin Pop
681 6cb1649f Iustin Pop
-- | Generate the valid node allocation singles or pairs for a new instance.
682 6d0bc5ca Iustin Pop
genAllocNodes :: Group.List        -- ^ Group list
683 6d0bc5ca Iustin Pop
              -> Node.List         -- ^ The node map
684 6cb1649f Iustin Pop
              -> Int               -- ^ The number of nodes required
685 6d0bc5ca Iustin Pop
              -> Bool              -- ^ Whether to drop or not
686 6d0bc5ca Iustin Pop
                                   -- unallocable nodes
687 6cb1649f Iustin Pop
              -> Result AllocNodes -- ^ The (monadic) result
688 6d0bc5ca Iustin Pop
genAllocNodes gl nl count drop_unalloc =
689 9fc18384 Iustin Pop
  let filter_fn = if drop_unalloc
690 e4491427 Iustin Pop
                    then filter (Group.isAllocable .
691 e4491427 Iustin Pop
                                 flip Container.find gl . Node.group)
692 6d0bc5ca Iustin Pop
                    else id
693 9fc18384 Iustin Pop
      all_nodes = filter_fn $ getOnline nl
694 9fc18384 Iustin Pop
      all_pairs = [(Node.idx p,
695 9fc18384 Iustin Pop
                    [Node.idx s | s <- all_nodes,
696 9fc18384 Iustin Pop
                                       Node.idx p /= Node.idx s,
697 9fc18384 Iustin Pop
                                       Node.group p == Node.group s]) |
698 9fc18384 Iustin Pop
                   p <- all_nodes]
699 9fc18384 Iustin Pop
  in case count of
700 9fc18384 Iustin Pop
       1 -> Ok (Left (map Node.idx all_nodes))
701 9fc18384 Iustin Pop
       2 -> Ok (Right (filter (not . null . snd) all_pairs))
702 9fc18384 Iustin Pop
       _ -> Bad "Unsupported number of nodes, only one or two  supported"
703 6cb1649f Iustin Pop
704 dbba5246 Iustin Pop
-- | Try to allocate an instance on the cluster.
705 dbba5246 Iustin Pop
tryAlloc :: (Monad m) =>
706 dbba5246 Iustin Pop
            Node.List         -- ^ The node list
707 dbba5246 Iustin Pop
         -> Instance.List     -- ^ The instance list
708 dbba5246 Iustin Pop
         -> Instance.Instance -- ^ The instance to allocate
709 6cb1649f Iustin Pop
         -> AllocNodes        -- ^ The allocation targets
710 78694255 Iustin Pop
         -> m AllocSolution   -- ^ Possible solution list
711 1bf6d813 Iustin Pop
tryAlloc _  _ _    (Right []) = fail "Not enough online nodes"
712 6cb1649f Iustin Pop
tryAlloc nl _ inst (Right ok_pairs) =
713 9fc18384 Iustin Pop
  let psols = parMap rwhnf (\(p, ss) ->
714 9fc18384 Iustin Pop
                              foldl' (\cstate ->
715 9fc18384 Iustin Pop
                                        concatAllocs cstate .
716 9fc18384 Iustin Pop
                                        allocateOnPair nl inst p)
717 9fc18384 Iustin Pop
                              emptyAllocSolution ss) ok_pairs
718 9fc18384 Iustin Pop
      sols = foldl' sumAllocs emptyAllocSolution psols
719 9fc18384 Iustin Pop
  in return $ annotateSolution sols
720 dbba5246 Iustin Pop
721 1bf6d813 Iustin Pop
tryAlloc _  _ _    (Left []) = fail "No online nodes"
722 6cb1649f Iustin Pop
tryAlloc nl _ inst (Left all_nodes) =
723 9fc18384 Iustin Pop
  let sols = foldl' (\cstate ->
724 9fc18384 Iustin Pop
                       concatAllocs cstate . allocateOnSingle nl inst
725 9fc18384 Iustin Pop
                    ) emptyAllocSolution all_nodes
726 9fc18384 Iustin Pop
  in return $ annotateSolution sols
727 dbba5246 Iustin Pop
728 525bfb36 Iustin Pop
-- | Given a group/result, describe it as a nice (list of) messages.
729 aec636b9 Iustin Pop
solutionDescription :: Group.List -> (Gdx, Result AllocSolution) -> [String]
730 aec636b9 Iustin Pop
solutionDescription gl (groupId, result) =
731 9b1584fc Iustin Pop
  case result of
732 73206d0a Iustin Pop
    Ok solution -> map (printf "Group %s (%s): %s" gname pol) (asLog solution)
733 aec636b9 Iustin Pop
    Bad message -> [printf "Group %s: error %s" gname message]
734 73206d0a Iustin Pop
  where grp = Container.find groupId gl
735 73206d0a Iustin Pop
        gname = Group.name grp
736 5f828ce4 Agata Murawska
        pol = allocPolicyToRaw (Group.allocPolicy grp)
737 9b1584fc Iustin Pop
738 9b1584fc Iustin Pop
-- | From a list of possibly bad and possibly empty solutions, filter
739 88253d03 Iustin Pop
-- only the groups with a valid result. Note that the result will be
740 525bfb36 Iustin Pop
-- reversed compared to the original list.
741 73206d0a Iustin Pop
filterMGResults :: Group.List
742 73206d0a Iustin Pop
                -> [(Gdx, Result AllocSolution)]
743 73206d0a Iustin Pop
                -> [(Gdx, AllocSolution)]
744 88253d03 Iustin Pop
filterMGResults gl = foldl' fn []
745 9fc18384 Iustin Pop
  where unallocable = not . Group.isAllocable . flip Container.find gl
746 9fc18384 Iustin Pop
        fn accu (gdx, rasol) =
747 9fc18384 Iustin Pop
          case rasol of
748 9fc18384 Iustin Pop
            Bad _ -> accu
749 9fc18384 Iustin Pop
            Ok sol | isNothing (asSolution sol) -> accu
750 9fc18384 Iustin Pop
                   | unallocable gdx -> accu
751 9fc18384 Iustin Pop
                   | otherwise -> (gdx, sol):accu
752 9b1584fc Iustin Pop
753 525bfb36 Iustin Pop
-- | Sort multigroup results based on policy and score.
754 73206d0a Iustin Pop
sortMGResults :: Group.List
755 73206d0a Iustin Pop
             -> [(Gdx, AllocSolution)]
756 73206d0a Iustin Pop
             -> [(Gdx, AllocSolution)]
757 73206d0a Iustin Pop
sortMGResults gl sols =
758 9fc18384 Iustin Pop
  let extractScore (_, _, _, x) = x
759 9fc18384 Iustin Pop
      solScore (gdx, sol) = (Group.allocPolicy (Container.find gdx gl),
760 9fc18384 Iustin Pop
                             (extractScore . fromJust . asSolution) sol)
761 9fc18384 Iustin Pop
  in sortBy (comparing solScore) sols
762 73206d0a Iustin Pop
763 8fd09137 Iustin Pop
-- | Finds the best group for an instance on a multi-group cluster.
764 d72ff6c3 Iustin Pop
--
765 d72ff6c3 Iustin Pop
-- Only solutions in @preferred@ and @last_resort@ groups will be
766 d72ff6c3 Iustin Pop
-- accepted as valid, and additionally if the allowed groups parameter
767 d72ff6c3 Iustin Pop
-- is not null then allocation will only be run for those group
768 d72ff6c3 Iustin Pop
-- indices.
769 8fd09137 Iustin Pop
findBestAllocGroup :: Group.List           -- ^ The group list
770 8fd09137 Iustin Pop
                   -> Node.List            -- ^ The node list
771 8fd09137 Iustin Pop
                   -> Instance.List        -- ^ The instance list
772 d72ff6c3 Iustin Pop
                   -> Maybe [Gdx]          -- ^ The allowed groups
773 8fd09137 Iustin Pop
                   -> Instance.Instance    -- ^ The instance to allocate
774 8fd09137 Iustin Pop
                   -> Int                  -- ^ Required number of nodes
775 8fd09137 Iustin Pop
                   -> Result (Gdx, AllocSolution, [String])
776 d72ff6c3 Iustin Pop
findBestAllocGroup mggl mgnl mgil allowed_gdxs inst cnt =
777 9b1584fc Iustin Pop
  let groups = splitCluster mgnl mgil
778 d72ff6c3 Iustin Pop
      groups' = maybe groups (\gs -> filter ((`elem` gs) . fst) groups)
779 d72ff6c3 Iustin Pop
                allowed_gdxs
780 9b1584fc Iustin Pop
      sols = map (\(gid, (nl, il)) ->
781 6d0bc5ca Iustin Pop
                   (gid, genAllocNodes mggl nl cnt False >>=
782 6d0bc5ca Iustin Pop
                       tryAlloc nl il inst))
783 d72ff6c3 Iustin Pop
             groups'::[(Gdx, Result AllocSolution)]
784 aec636b9 Iustin Pop
      all_msgs = concatMap (solutionDescription mggl) sols
785 73206d0a Iustin Pop
      goodSols = filterMGResults mggl sols
786 73206d0a Iustin Pop
      sortedSols = sortMGResults mggl goodSols
787 9b1584fc Iustin Pop
  in if null sortedSols
788 6a855aaa Iustin Pop
       then if null groups'
789 6a855aaa Iustin Pop
              then Bad $ "no groups for evacuation: allowed groups was" ++
790 6a855aaa Iustin Pop
                     show allowed_gdxs ++ ", all groups: " ++
791 6a855aaa Iustin Pop
                     show (map fst groups)
792 6a855aaa Iustin Pop
              else Bad $ intercalate ", " all_msgs
793 9fc18384 Iustin Pop
       else let (final_group, final_sol) = head sortedSols
794 9fc18384 Iustin Pop
            in return (final_group, final_sol, all_msgs)
795 8fd09137 Iustin Pop
796 8fd09137 Iustin Pop
-- | Try to allocate an instance on a multi-group cluster.
797 8fd09137 Iustin Pop
tryMGAlloc :: Group.List           -- ^ The group list
798 8fd09137 Iustin Pop
           -> Node.List            -- ^ The node list
799 8fd09137 Iustin Pop
           -> Instance.List        -- ^ The instance list
800 8fd09137 Iustin Pop
           -> Instance.Instance    -- ^ The instance to allocate
801 8fd09137 Iustin Pop
           -> Int                  -- ^ Required number of nodes
802 8fd09137 Iustin Pop
           -> Result AllocSolution -- ^ Possible solution list
803 8fd09137 Iustin Pop
tryMGAlloc mggl mgnl mgil inst cnt = do
804 8fd09137 Iustin Pop
  (best_group, solution, all_msgs) <-
805 d72ff6c3 Iustin Pop
      findBestAllocGroup mggl mgnl mgil Nothing inst cnt
806 8fd09137 Iustin Pop
  let group_name = Group.name $ Container.find best_group mggl
807 8fd09137 Iustin Pop
      selmsg = "Selected group: " ++ group_name
808 8fd09137 Iustin Pop
  return $ solution { asLog = selmsg:all_msgs }
809 9b1584fc Iustin Pop
810 47eed3f4 Iustin Pop
-- | Function which fails if the requested mode is change secondary.
811 47eed3f4 Iustin Pop
--
812 47eed3f4 Iustin Pop
-- This is useful since except DRBD, no other disk template can
813 47eed3f4 Iustin Pop
-- execute change secondary; thus, we can just call this function
814 47eed3f4 Iustin Pop
-- instead of always checking for secondary mode. After the call to
815 47eed3f4 Iustin Pop
-- this function, whatever mode we have is just a primary change.
816 47eed3f4 Iustin Pop
failOnSecondaryChange :: (Monad m) => EvacMode -> DiskTemplate -> m ()
817 47eed3f4 Iustin Pop
failOnSecondaryChange ChangeSecondary dt =
818 9fc18384 Iustin Pop
  fail $ "Instances with disk template '" ++ diskTemplateToRaw dt ++
819 47eed3f4 Iustin Pop
         "' can't execute change secondary"
820 47eed3f4 Iustin Pop
failOnSecondaryChange _ _ = return ()
821 47eed3f4 Iustin Pop
822 47eed3f4 Iustin Pop
-- | Run evacuation for a single instance.
823 20b376ff Iustin Pop
--
824 20b376ff Iustin Pop
-- /Note:/ this function should correctly execute both intra-group
825 20b376ff Iustin Pop
-- evacuations (in all modes) and inter-group evacuations (in the
826 20b376ff Iustin Pop
-- 'ChangeAll' mode). Of course, this requires that the correct list
827 20b376ff Iustin Pop
-- of target nodes is passed.
828 47eed3f4 Iustin Pop
nodeEvacInstance :: Node.List         -- ^ The node list (cluster-wide)
829 47eed3f4 Iustin Pop
                 -> Instance.List     -- ^ Instance list (cluster-wide)
830 47eed3f4 Iustin Pop
                 -> EvacMode          -- ^ The evacuation mode
831 47eed3f4 Iustin Pop
                 -> Instance.Instance -- ^ The instance to be evacuated
832 a86fbf36 Iustin Pop
                 -> Gdx               -- ^ The group we're targetting
833 47eed3f4 Iustin Pop
                 -> [Ndx]             -- ^ The list of available nodes
834 47eed3f4 Iustin Pop
                                      -- for allocation
835 47eed3f4 Iustin Pop
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode])
836 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode (Instance.Instance
837 a86fbf36 Iustin Pop
                           {Instance.diskTemplate = dt@DTDiskless}) _ _ =
838 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
839 47eed3f4 Iustin Pop
                  fail "Diskless relocations not implemented yet"
840 47eed3f4 Iustin Pop
841 47eed3f4 Iustin Pop
nodeEvacInstance _ _ _ (Instance.Instance
842 a86fbf36 Iustin Pop
                        {Instance.diskTemplate = DTPlain}) _ _ =
843 47eed3f4 Iustin Pop
                  fail "Instances of type plain cannot be relocated"
844 47eed3f4 Iustin Pop
845 47eed3f4 Iustin Pop
nodeEvacInstance _ _ _ (Instance.Instance
846 a86fbf36 Iustin Pop
                        {Instance.diskTemplate = DTFile}) _ _ =
847 47eed3f4 Iustin Pop
                  fail "Instances of type file cannot be relocated"
848 47eed3f4 Iustin Pop
849 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode  (Instance.Instance
850 a86fbf36 Iustin Pop
                            {Instance.diskTemplate = dt@DTSharedFile}) _ _ =
851 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
852 47eed3f4 Iustin Pop
                  fail "Shared file relocations not implemented yet"
853 47eed3f4 Iustin Pop
854 47eed3f4 Iustin Pop
nodeEvacInstance _ _ mode (Instance.Instance
855 a86fbf36 Iustin Pop
                           {Instance.diskTemplate = dt@DTBlock}) _ _ =
856 47eed3f4 Iustin Pop
                  failOnSecondaryChange mode dt >>
857 47eed3f4 Iustin Pop
                  fail "Block device relocations not implemented yet"
858 47eed3f4 Iustin Pop
859 bef83fd1 Iustin Pop
nodeEvacInstance nl il ChangePrimary
860 a86fbf36 Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
861 a86fbf36 Iustin Pop
                 _ _ =
862 bef83fd1 Iustin Pop
  do
863 bef83fd1 Iustin Pop
    (nl', inst', _, _) <- opToResult $ applyMove nl inst Failover
864 bef83fd1 Iustin Pop
    let idx = Instance.idx inst
865 bef83fd1 Iustin Pop
        il' = Container.add idx inst' il
866 bef83fd1 Iustin Pop
        ops = iMoveToJob nl' il' idx Failover
867 bef83fd1 Iustin Pop
    return (nl', il', ops)
868 bef83fd1 Iustin Pop
869 db56cfc4 Iustin Pop
nodeEvacInstance nl il ChangeSecondary
870 db56cfc4 Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
871 a86fbf36 Iustin Pop
                 gdx avail_nodes =
872 db56cfc4 Iustin Pop
  do
873 db56cfc4 Iustin Pop
    (nl', inst', _, ndx) <- annotateResult "Can't find any good node" $
874 db56cfc4 Iustin Pop
                            eitherToResult $
875 db56cfc4 Iustin Pop
                            foldl' (evacDrbdSecondaryInner nl inst gdx)
876 db56cfc4 Iustin Pop
                            (Left "no nodes available") avail_nodes
877 db56cfc4 Iustin Pop
    let idx = Instance.idx inst
878 db56cfc4 Iustin Pop
        il' = Container.add idx inst' il
879 db56cfc4 Iustin Pop
        ops = iMoveToJob nl' il' idx (ReplaceSecondary ndx)
880 db56cfc4 Iustin Pop
    return (nl', il', ops)
881 db56cfc4 Iustin Pop
882 97da6b71 Iustin Pop
-- The algorithm for ChangeAll is as follows:
883 97da6b71 Iustin Pop
--
884 97da6b71 Iustin Pop
-- * generate all (primary, secondary) node pairs for the target groups
885 97da6b71 Iustin Pop
-- * for each pair, execute the needed moves (r:s, f, r:s) and compute
886 97da6b71 Iustin Pop
--   the final node list state and group score
887 97da6b71 Iustin Pop
-- * select the best choice via a foldl that uses the same Either
888 97da6b71 Iustin Pop
--   String solution as the ChangeSecondary mode
889 d52d41de Iustin Pop
nodeEvacInstance nl il ChangeAll
890 d52d41de Iustin Pop
                 inst@(Instance.Instance {Instance.diskTemplate = DTDrbd8})
891 a86fbf36 Iustin Pop
                 gdx avail_nodes =
892 d52d41de Iustin Pop
  do
893 97da6b71 Iustin Pop
    let no_nodes = Left "no nodes available"
894 97da6b71 Iustin Pop
        node_pairs = [(p,s) | p <- avail_nodes, s <- avail_nodes, p /= s]
895 97da6b71 Iustin Pop
    (nl', il', ops, _) <-
896 97da6b71 Iustin Pop
        annotateResult "Can't find any good nodes for relocation" $
897 d52d41de Iustin Pop
        eitherToResult $
898 97da6b71 Iustin Pop
        foldl'
899 97da6b71 Iustin Pop
        (\accu nodes -> case evacDrbdAllInner nl il inst gdx nodes of
900 97da6b71 Iustin Pop
                          Bad msg ->
901 97da6b71 Iustin Pop
                              case accu of
902 97da6b71 Iustin Pop
                                Right _ -> accu
903 97da6b71 Iustin Pop
                                -- we don't need more details (which
904 97da6b71 Iustin Pop
                                -- nodes, etc.) as we only selected
905 97da6b71 Iustin Pop
                                -- this group if we can allocate on
906 97da6b71 Iustin Pop
                                -- it, hence failures will not
907 97da6b71 Iustin Pop
                                -- propagate out of this fold loop
908 97da6b71 Iustin Pop
                                Left _ -> Left $ "Allocation failed: " ++ msg
909 97da6b71 Iustin Pop
                          Ok result@(_, _, _, new_cv) ->
910 97da6b71 Iustin Pop
                              let new_accu = Right result in
911 97da6b71 Iustin Pop
                              case accu of
912 97da6b71 Iustin Pop
                                Left _ -> new_accu
913 97da6b71 Iustin Pop
                                Right (_, _, _, old_cv) ->
914 97da6b71 Iustin Pop
                                    if old_cv < new_cv
915 97da6b71 Iustin Pop
                                    then accu
916 97da6b71 Iustin Pop
                                    else new_accu
917 97da6b71 Iustin Pop
        ) no_nodes node_pairs
918 97da6b71 Iustin Pop
919 97da6b71 Iustin Pop
    return (nl', il', ops)
920 47eed3f4 Iustin Pop
921 db56cfc4 Iustin Pop
-- | Inner fold function for changing secondary of a DRBD instance.
922 db56cfc4 Iustin Pop
--
923 97da6b71 Iustin Pop
-- The running solution is either a @Left String@, which means we
924 db56cfc4 Iustin Pop
-- don't have yet a working solution, or a @Right (...)@, which
925 db56cfc4 Iustin Pop
-- represents a valid solution; it holds the modified node list, the
926 db56cfc4 Iustin Pop
-- modified instance (after evacuation), the score of that solution,
927 db56cfc4 Iustin Pop
-- and the new secondary node index.
928 db56cfc4 Iustin Pop
evacDrbdSecondaryInner :: Node.List -- ^ Cluster node list
929 db56cfc4 Iustin Pop
                       -> Instance.Instance -- ^ Instance being evacuated
930 db56cfc4 Iustin Pop
                       -> Gdx -- ^ The group index of the instance
931 db56cfc4 Iustin Pop
                       -> Either String ( Node.List
932 db56cfc4 Iustin Pop
                                        , Instance.Instance
933 db56cfc4 Iustin Pop
                                        , Score
934 db56cfc4 Iustin Pop
                                        , Ndx)  -- ^ Current best solution
935 db56cfc4 Iustin Pop
                       -> Ndx  -- ^ Node we're evaluating as new secondary
936 db56cfc4 Iustin Pop
                       -> Either String ( Node.List
937 db56cfc4 Iustin Pop
                                        , Instance.Instance
938 db56cfc4 Iustin Pop
                                        , Score
939 db56cfc4 Iustin Pop
                                        , Ndx) -- ^ New best solution
940 db56cfc4 Iustin Pop
evacDrbdSecondaryInner nl inst gdx accu ndx =
941 9fc18384 Iustin Pop
  case applyMove nl inst (ReplaceSecondary ndx) of
942 9fc18384 Iustin Pop
    OpFail fm ->
943 9fc18384 Iustin Pop
      case accu of
944 9fc18384 Iustin Pop
        Right _ -> accu
945 9fc18384 Iustin Pop
        Left _ -> Left $ "Node " ++ Container.nameOf nl ndx ++
946 9fc18384 Iustin Pop
                  " failed: " ++ show fm
947 9fc18384 Iustin Pop
    OpGood (nl', inst', _, _) ->
948 9fc18384 Iustin Pop
      let nodes = Container.elems nl'
949 9fc18384 Iustin Pop
          -- The fromJust below is ugly (it can fail nastily), but
950 9fc18384 Iustin Pop
          -- at this point we should have any internal mismatches,
951 9fc18384 Iustin Pop
          -- and adding a monad here would be quite involved
952 9fc18384 Iustin Pop
          grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
953 9fc18384 Iustin Pop
          new_cv = compCVNodes grpnodes
954 9fc18384 Iustin Pop
          new_accu = Right (nl', inst', new_cv, ndx)
955 9fc18384 Iustin Pop
      in case accu of
956 9fc18384 Iustin Pop
           Left _ -> new_accu
957 9fc18384 Iustin Pop
           Right (_, _, old_cv, _) ->
958 9fc18384 Iustin Pop
             if old_cv < new_cv
959 9fc18384 Iustin Pop
               then accu
960 9fc18384 Iustin Pop
               else new_accu
961 db56cfc4 Iustin Pop
962 97da6b71 Iustin Pop
-- | Compute result of changing all nodes of a DRBD instance.
963 97da6b71 Iustin Pop
--
964 97da6b71 Iustin Pop
-- Given the target primary and secondary node (which might be in a
965 97da6b71 Iustin Pop
-- different group or not), this function will 'execute' all the
966 97da6b71 Iustin Pop
-- required steps and assuming all operations succceed, will return
967 97da6b71 Iustin Pop
-- the modified node and instance lists, the opcodes needed for this
968 97da6b71 Iustin Pop
-- and the new group score.
969 97da6b71 Iustin Pop
evacDrbdAllInner :: Node.List         -- ^ Cluster node list
970 97da6b71 Iustin Pop
                 -> Instance.List     -- ^ Cluster instance list
971 97da6b71 Iustin Pop
                 -> Instance.Instance -- ^ The instance to be moved
972 97da6b71 Iustin Pop
                 -> Gdx               -- ^ The target group index
973 97da6b71 Iustin Pop
                                      -- (which can differ from the
974 97da6b71 Iustin Pop
                                      -- current group of the
975 97da6b71 Iustin Pop
                                      -- instance)
976 97da6b71 Iustin Pop
                 -> (Ndx, Ndx)        -- ^ Tuple of new
977 97da6b71 Iustin Pop
                                      -- primary\/secondary nodes
978 97da6b71 Iustin Pop
                 -> Result (Node.List, Instance.List, [OpCodes.OpCode], Score)
979 9fc18384 Iustin Pop
evacDrbdAllInner nl il inst gdx (t_pdx, t_sdx) = do
980 9fc18384 Iustin Pop
  let primary = Container.find (Instance.pNode inst) nl
981 9fc18384 Iustin Pop
      idx = Instance.idx inst
982 9fc18384 Iustin Pop
  -- if the primary is offline, then we first failover
983 9fc18384 Iustin Pop
  (nl1, inst1, ops1) <-
984 9fc18384 Iustin Pop
    if Node.offline primary
985 9fc18384 Iustin Pop
      then do
986 9fc18384 Iustin Pop
        (nl', inst', _, _) <-
987 9fc18384 Iustin Pop
          annotateResult "Failing over to the secondary" $
988 9fc18384 Iustin Pop
          opToResult $ applyMove nl inst Failover
989 9fc18384 Iustin Pop
        return (nl', inst', [Failover])
990 9fc18384 Iustin Pop
      else return (nl, inst, [])
991 9fc18384 Iustin Pop
  let (o1, o2, o3) = (ReplaceSecondary t_pdx,
992 9fc18384 Iustin Pop
                      Failover,
993 9fc18384 Iustin Pop
                      ReplaceSecondary t_sdx)
994 9fc18384 Iustin Pop
  -- we now need to execute a replace secondary to the future
995 9fc18384 Iustin Pop
  -- primary node
996 9fc18384 Iustin Pop
  (nl2, inst2, _, _) <-
997 9fc18384 Iustin Pop
    annotateResult "Changing secondary to new primary" $
998 9fc18384 Iustin Pop
    opToResult $
999 9fc18384 Iustin Pop
    applyMove nl1 inst1 o1
1000 9fc18384 Iustin Pop
  let ops2 = o1:ops1
1001 9fc18384 Iustin Pop
  -- we now execute another failover, the primary stays fixed now
1002 9fc18384 Iustin Pop
  (nl3, inst3, _, _) <- annotateResult "Failing over to new primary" $
1003 9fc18384 Iustin Pop
                        opToResult $ applyMove nl2 inst2 o2
1004 9fc18384 Iustin Pop
  let ops3 = o2:ops2
1005 9fc18384 Iustin Pop
  -- and finally another replace secondary, to the final secondary
1006 9fc18384 Iustin Pop
  (nl4, inst4, _, _) <-
1007 9fc18384 Iustin Pop
    annotateResult "Changing secondary to final secondary" $
1008 9fc18384 Iustin Pop
    opToResult $
1009 9fc18384 Iustin Pop
    applyMove nl3 inst3 o3
1010 9fc18384 Iustin Pop
  let ops4 = o3:ops3
1011 9fc18384 Iustin Pop
      il' = Container.add idx inst4 il
1012 9fc18384 Iustin Pop
      ops = concatMap (iMoveToJob nl4 il' idx) $ reverse ops4
1013 9fc18384 Iustin Pop
  let nodes = Container.elems nl4
1014 9fc18384 Iustin Pop
      -- The fromJust below is ugly (it can fail nastily), but
1015 9fc18384 Iustin Pop
      -- at this point we should have any internal mismatches,
1016 9fc18384 Iustin Pop
      -- and adding a monad here would be quite involved
1017 9fc18384 Iustin Pop
      grpnodes = fromJust (gdx `lookup` Node.computeGroups nodes)
1018 9fc18384 Iustin Pop
      new_cv = compCVNodes grpnodes
1019 9fc18384 Iustin Pop
  return (nl4, il', ops, new_cv)
1020 97da6b71 Iustin Pop
1021 c9a9b853 Iustin Pop
-- | Computes the nodes in a given group which are available for
1022 c9a9b853 Iustin Pop
-- allocation.
1023 c9a9b853 Iustin Pop
availableGroupNodes :: [(Gdx, [Ndx])] -- ^ Group index/node index assoc list
1024 c9a9b853 Iustin Pop
                    -> IntSet.IntSet  -- ^ Nodes that are excluded
1025 c9a9b853 Iustin Pop
                    -> Gdx            -- ^ The group for which we
1026 c9a9b853 Iustin Pop
                                      -- query the nodes
1027 c9a9b853 Iustin Pop
                    -> Result [Ndx]   -- ^ List of available node indices
1028 c9a9b853 Iustin Pop
availableGroupNodes group_nodes excl_ndx gdx = do
1029 47eed3f4 Iustin Pop
  local_nodes <- maybe (Bad $ "Can't find group with index " ++ show gdx)
1030 47eed3f4 Iustin Pop
                 Ok (lookup gdx group_nodes)
1031 47eed3f4 Iustin Pop
  let avail_nodes = filter (not . flip IntSet.member excl_ndx) local_nodes
1032 47eed3f4 Iustin Pop
  return avail_nodes
1033 47eed3f4 Iustin Pop
1034 47eed3f4 Iustin Pop
-- | Updates the evac solution with the results of an instance
1035 47eed3f4 Iustin Pop
-- evacuation.
1036 47eed3f4 Iustin Pop
updateEvacSolution :: (Node.List, Instance.List, EvacSolution)
1037 5440c877 Iustin Pop
                   -> Idx
1038 47eed3f4 Iustin Pop
                   -> Result (Node.List, Instance.List, [OpCodes.OpCode])
1039 47eed3f4 Iustin Pop
                   -> (Node.List, Instance.List, EvacSolution)
1040 5440c877 Iustin Pop
updateEvacSolution (nl, il, es) idx (Bad msg) =
1041 9fc18384 Iustin Pop
  (nl, il, es { esFailed = (idx, msg):esFailed es})
1042 5440c877 Iustin Pop
updateEvacSolution (_, _, es) idx (Ok (nl, il, opcodes)) =
1043 9fc18384 Iustin Pop
  (nl, il, es { esMoved = new_elem:esMoved es
1044 9fc18384 Iustin Pop
              , esOpCodes = opcodes:esOpCodes es })
1045 9fc18384 Iustin Pop
    where inst = Container.find idx il
1046 9fc18384 Iustin Pop
          new_elem = (idx,
1047 9fc18384 Iustin Pop
                      instancePriGroup nl inst,
1048 9fc18384 Iustin Pop
                      Instance.allNodes inst)
1049 47eed3f4 Iustin Pop
1050 47eed3f4 Iustin Pop
-- | Node-evacuation IAllocator mode main function.
1051 47eed3f4 Iustin Pop
tryNodeEvac :: Group.List    -- ^ The cluster groups
1052 47eed3f4 Iustin Pop
            -> Node.List     -- ^ The node list (cluster-wide, not per group)
1053 47eed3f4 Iustin Pop
            -> Instance.List -- ^ Instance list (cluster-wide)
1054 47eed3f4 Iustin Pop
            -> EvacMode      -- ^ The evacuation mode
1055 47eed3f4 Iustin Pop
            -> [Idx]         -- ^ List of instance (indices) to be evacuated
1056 4036f63a Iustin Pop
            -> Result (Node.List, Instance.List, EvacSolution)
1057 47eed3f4 Iustin Pop
tryNodeEvac _ ini_nl ini_il mode idxs =
1058 9fc18384 Iustin Pop
  let evac_ndx = nodesToEvacuate ini_il mode idxs
1059 9fc18384 Iustin Pop
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1060 9fc18384 Iustin Pop
      excl_ndx = foldl' (flip IntSet.insert) evac_ndx offline
1061 9fc18384 Iustin Pop
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1062 9fc18384 Iustin Pop
                                           (Container.elems nl))) $
1063 9fc18384 Iustin Pop
                  splitCluster ini_nl ini_il
1064 9fc18384 Iustin Pop
      (fin_nl, fin_il, esol) =
1065 9fc18384 Iustin Pop
        foldl' (\state@(nl, il, _) inst ->
1066 9fc18384 Iustin Pop
                  let gdx = instancePriGroup nl inst
1067 9fc18384 Iustin Pop
                      pdx = Instance.pNode inst in
1068 9fc18384 Iustin Pop
                  updateEvacSolution state (Instance.idx inst) $
1069 9fc18384 Iustin Pop
                  availableGroupNodes group_ndx
1070 9fc18384 Iustin Pop
                    (IntSet.insert pdx excl_ndx) gdx >>=
1071 9fc18384 Iustin Pop
                      nodeEvacInstance nl il mode inst gdx
1072 9fc18384 Iustin Pop
               )
1073 9fc18384 Iustin Pop
        (ini_nl, ini_il, emptyEvacSolution)
1074 9fc18384 Iustin Pop
        (map (`Container.find` ini_il) idxs)
1075 9fc18384 Iustin Pop
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1076 47eed3f4 Iustin Pop
1077 20b376ff Iustin Pop
-- | Change-group IAllocator mode main function.
1078 20b376ff Iustin Pop
--
1079 20b376ff Iustin Pop
-- This is very similar to 'tryNodeEvac', the only difference is that
1080 20b376ff Iustin Pop
-- we don't choose as target group the current instance group, but
1081 20b376ff Iustin Pop
-- instead:
1082 20b376ff Iustin Pop
--
1083 20b376ff Iustin Pop
--   1. at the start of the function, we compute which are the target
1084 20b376ff Iustin Pop
--   groups; either no groups were passed in, in which case we choose
1085 20b376ff Iustin Pop
--   all groups out of which we don't evacuate instance, or there were
1086 20b376ff Iustin Pop
--   some groups passed, in which case we use those
1087 20b376ff Iustin Pop
--
1088 20b376ff Iustin Pop
--   2. for each instance, we use 'findBestAllocGroup' to choose the
1089 20b376ff Iustin Pop
--   best group to hold the instance, and then we do what
1090 20b376ff Iustin Pop
--   'tryNodeEvac' does, except for this group instead of the current
1091 20b376ff Iustin Pop
--   instance group.
1092 20b376ff Iustin Pop
--
1093 20b376ff Iustin Pop
-- Note that the correct behaviour of this function relies on the
1094 20b376ff Iustin Pop
-- function 'nodeEvacInstance' to be able to do correctly both
1095 20b376ff Iustin Pop
-- intra-group and inter-group moves when passed the 'ChangeAll' mode.
1096 20b376ff Iustin Pop
tryChangeGroup :: Group.List    -- ^ The cluster groups
1097 20b376ff Iustin Pop
               -> Node.List     -- ^ The node list (cluster-wide)
1098 20b376ff Iustin Pop
               -> Instance.List -- ^ Instance list (cluster-wide)
1099 20b376ff Iustin Pop
               -> [Gdx]         -- ^ Target groups; if empty, any
1100 20b376ff Iustin Pop
                                -- groups not being evacuated
1101 20b376ff Iustin Pop
               -> [Idx]         -- ^ List of instance (indices) to be evacuated
1102 4036f63a Iustin Pop
               -> Result (Node.List, Instance.List, EvacSolution)
1103 20b376ff Iustin Pop
tryChangeGroup gl ini_nl ini_il gdxs idxs =
1104 9fc18384 Iustin Pop
  let evac_gdxs = nub $ map (instancePriGroup ini_nl .
1105 9fc18384 Iustin Pop
                             flip Container.find ini_il) idxs
1106 9fc18384 Iustin Pop
      target_gdxs = (if null gdxs
1107 20b376ff Iustin Pop
                       then Container.keys gl
1108 20b376ff Iustin Pop
                       else gdxs) \\ evac_gdxs
1109 9fc18384 Iustin Pop
      offline = map Node.idx . filter Node.offline $ Container.elems ini_nl
1110 9fc18384 Iustin Pop
      excl_ndx = foldl' (flip IntSet.insert) IntSet.empty offline
1111 9fc18384 Iustin Pop
      group_ndx = map (\(gdx, (nl, _)) -> (gdx, map Node.idx
1112 9fc18384 Iustin Pop
                                           (Container.elems nl))) $
1113 9fc18384 Iustin Pop
                  splitCluster ini_nl ini_il
1114 9fc18384 Iustin Pop
      (fin_nl, fin_il, esol) =
1115 9fc18384 Iustin Pop
        foldl' (\state@(nl, il, _) inst ->
1116 9fc18384 Iustin Pop
                  let solution = do
1117 9fc18384 Iustin Pop
                        let ncnt = Instance.requiredNodes $
1118 9fc18384 Iustin Pop
                                   Instance.diskTemplate inst
1119 9fc18384 Iustin Pop
                        (gdx, _, _) <- findBestAllocGroup gl nl il
1120 9fc18384 Iustin Pop
                                       (Just target_gdxs) inst ncnt
1121 9fc18384 Iustin Pop
                        av_nodes <- availableGroupNodes group_ndx
1122 9fc18384 Iustin Pop
                                    excl_ndx gdx
1123 9fc18384 Iustin Pop
                        nodeEvacInstance nl il ChangeAll inst gdx av_nodes
1124 9fc18384 Iustin Pop
                  in updateEvacSolution state (Instance.idx inst) solution
1125 9fc18384 Iustin Pop
               )
1126 9fc18384 Iustin Pop
        (ini_nl, ini_il, emptyEvacSolution)
1127 9fc18384 Iustin Pop
        (map (`Container.find` ini_il) idxs)
1128 9fc18384 Iustin Pop
  in return (fin_nl, fin_il, reverseEvacSolution esol)
1129 20b376ff Iustin Pop
1130 7eda951b Iustin Pop
-- | Standard-sized allocation method.
1131 7eda951b Iustin Pop
--
1132 7eda951b Iustin Pop
-- This places instances of the same size on the cluster until we're
1133 7eda951b Iustin Pop
-- out of space. The result will be a list of identically-sized
1134 7eda951b Iustin Pop
-- instances.
1135 7eda951b Iustin Pop
iterateAlloc :: AllocMethod
1136 8f48f67d Iustin Pop
iterateAlloc nl il limit newinst allocnodes ixes cstats =
1137 9fc18384 Iustin Pop
  let depth = length ixes
1138 9fc18384 Iustin Pop
      newname = printf "new-%d" depth::String
1139 dce9bbb3 Iustin Pop
      newidx = Container.size il
1140 9fc18384 Iustin Pop
      newi2 = Instance.setIdx (Instance.setName newinst newname) newidx
1141 9fc18384 Iustin Pop
      newlimit = fmap (flip (-) 1) limit
1142 9fc18384 Iustin Pop
  in case tryAlloc nl il newi2 allocnodes of
1143 9fc18384 Iustin Pop
       Bad s -> Bad s
1144 9fc18384 Iustin Pop
       Ok (AllocSolution { asFailures = errs, asSolution = sols3 }) ->
1145 9fc18384 Iustin Pop
         let newsol = Ok (collapseFailures errs, nl, il, ixes, cstats) in
1146 9fc18384 Iustin Pop
         case sols3 of
1147 9fc18384 Iustin Pop
           Nothing -> newsol
1148 9fc18384 Iustin Pop
           Just (xnl, xi, _, _) ->
1149 9fc18384 Iustin Pop
             if limit == Just 0
1150 9fc18384 Iustin Pop
               then newsol
1151 9fc18384 Iustin Pop
               else iterateAlloc xnl (Container.add newidx xi il)
1152 9fc18384 Iustin Pop
                      newlimit newinst allocnodes (xi:ixes)
1153 9fc18384 Iustin Pop
                      (totalResources xnl:cstats)
1154 3ce8009a Iustin Pop
1155 7eda951b Iustin Pop
-- | Tiered allocation method.
1156 7eda951b Iustin Pop
--
1157 7eda951b Iustin Pop
-- This places instances on the cluster, and decreases the spec until
1158 7eda951b Iustin Pop
-- we can allocate again. The result will be a list of decreasing
1159 7eda951b Iustin Pop
-- instance specs.
1160 7eda951b Iustin Pop
tieredAlloc :: AllocMethod
1161 8f48f67d Iustin Pop
tieredAlloc nl il limit newinst allocnodes ixes cstats =
1162 9fc18384 Iustin Pop
  case iterateAlloc nl il limit newinst allocnodes ixes cstats of
1163 9fc18384 Iustin Pop
    Bad s -> Bad s
1164 9fc18384 Iustin Pop
    Ok (errs, nl', il', ixes', cstats') ->
1165 9fc18384 Iustin Pop
      let newsol = Ok (errs, nl', il', ixes', cstats')
1166 9fc18384 Iustin Pop
          ixes_cnt = length ixes'
1167 9fc18384 Iustin Pop
          (stop, newlimit) = case limit of
1168 9fc18384 Iustin Pop
                               Nothing -> (False, Nothing)
1169 9fc18384 Iustin Pop
                               Just n -> (n <= ixes_cnt,
1170 9fc18384 Iustin Pop
                                            Just (n - ixes_cnt)) in
1171 9fc18384 Iustin Pop
      if stop then newsol else
1172 3ce8009a Iustin Pop
          case Instance.shrinkByType newinst . fst . last $
1173 3ce8009a Iustin Pop
               sortBy (comparing snd) errs of
1174 8f48f67d Iustin Pop
            Bad _ -> newsol
1175 8f48f67d Iustin Pop
            Ok newinst' -> tieredAlloc nl' il' newlimit
1176 8f48f67d Iustin Pop
                           newinst' allocnodes ixes' cstats'
1177 3ce8009a Iustin Pop
1178 9188aeef Iustin Pop
-- * Formatting functions
1179 e4f08c46 Iustin Pop
1180 e4f08c46 Iustin Pop
-- | Given the original and final nodes, computes the relocation description.
1181 c9926b22 Iustin Pop
computeMoves :: Instance.Instance -- ^ The instance to be moved
1182 c9926b22 Iustin Pop
             -> String -- ^ The instance name
1183 668c03b3 Iustin Pop
             -> IMove  -- ^ The move being performed
1184 e4f08c46 Iustin Pop
             -> String -- ^ New primary
1185 e4f08c46 Iustin Pop
             -> String -- ^ New secondary
1186 e4f08c46 Iustin Pop
             -> (String, [String])
1187 e4f08c46 Iustin Pop
                -- ^ Tuple of moves and commands list; moves is containing
1188 e4f08c46 Iustin Pop
                -- either @/f/@ for failover or @/r:name/@ for replace
1189 e4f08c46 Iustin Pop
                -- secondary, while the command list holds gnt-instance
1190 e4f08c46 Iustin Pop
                -- commands (without that prefix), e.g \"@failover instance1@\"
1191 668c03b3 Iustin Pop
computeMoves i inam mv c d =
1192 9fc18384 Iustin Pop
  case mv of
1193 9fc18384 Iustin Pop
    Failover -> ("f", [mig])
1194 9fc18384 Iustin Pop
    FailoverAndReplace _ -> (printf "f r:%s" d, [mig, rep d])
1195 9fc18384 Iustin Pop
    ReplaceSecondary _ -> (printf "r:%s" d, [rep d])
1196 9fc18384 Iustin Pop
    ReplaceAndFailover _ -> (printf "r:%s f" c, [rep c, mig])
1197 9fc18384 Iustin Pop
    ReplacePrimary _ -> (printf "f r:%s f" c, [mig, rep c, mig])
1198 9fc18384 Iustin Pop
  where morf = if Instance.instanceRunning i then "migrate" else "failover"
1199 9fc18384 Iustin Pop
        mig = printf "%s -f %s" morf inam::String
1200 9fc18384 Iustin Pop
        rep n = printf "replace-disks -n %s %s" n inam
1201 e4f08c46 Iustin Pop
1202 9188aeef Iustin Pop
-- | Converts a placement to string format.
1203 9188aeef Iustin Pop
printSolutionLine :: Node.List     -- ^ The node list
1204 9188aeef Iustin Pop
                  -> Instance.List -- ^ The instance list
1205 9188aeef Iustin Pop
                  -> Int           -- ^ Maximum node name length
1206 9188aeef Iustin Pop
                  -> Int           -- ^ Maximum instance name length
1207 9188aeef Iustin Pop
                  -> Placement     -- ^ The current placement
1208 9188aeef Iustin Pop
                  -> Int           -- ^ The index of the placement in
1209 9188aeef Iustin Pop
                                   -- the solution
1210 db1bcfe8 Iustin Pop
                  -> (String, [String])
1211 db1bcfe8 Iustin Pop
printSolutionLine nl il nmlen imlen plc pos =
1212 9fc18384 Iustin Pop
  let pmlen = (2*nmlen + 1)
1213 9fc18384 Iustin Pop
      (i, p, s, mv, c) = plc
1214 9fc18384 Iustin Pop
      inst = Container.find i il
1215 9fc18384 Iustin Pop
      inam = Instance.alias inst
1216 9fc18384 Iustin Pop
      npri = Node.alias $ Container.find p nl
1217 9fc18384 Iustin Pop
      nsec = Node.alias $ Container.find s nl
1218 9fc18384 Iustin Pop
      opri = Node.alias $ Container.find (Instance.pNode inst) nl
1219 9fc18384 Iustin Pop
      osec = Node.alias $ Container.find (Instance.sNode inst) nl
1220 9fc18384 Iustin Pop
      (moves, cmds) =  computeMoves inst inam mv npri nsec
1221 9fc18384 Iustin Pop
      ostr = printf "%s:%s" opri osec::String
1222 9fc18384 Iustin Pop
      nstr = printf "%s:%s" npri nsec::String
1223 9fc18384 Iustin Pop
  in (printf "  %3d. %-*s %-*s => %-*s %.8f a=%s"
1224 9fc18384 Iustin Pop
      pos imlen inam pmlen ostr
1225 9fc18384 Iustin Pop
      pmlen nstr c moves,
1226 9fc18384 Iustin Pop
      cmds)
1227 ca8258d9 Iustin Pop
1228 0e8ae201 Iustin Pop
-- | Return the instance and involved nodes in an instance move.
1229 77ecfa82 Iustin Pop
--
1230 77ecfa82 Iustin Pop
-- Note that the output list length can vary, and is not required nor
1231 77ecfa82 Iustin Pop
-- guaranteed to be of any specific length.
1232 77ecfa82 Iustin Pop
involvedNodes :: Instance.List -- ^ Instance list, used for retrieving
1233 77ecfa82 Iustin Pop
                               -- the instance from its index; note
1234 77ecfa82 Iustin Pop
                               -- that this /must/ be the original
1235 77ecfa82 Iustin Pop
                               -- instance list, so that we can
1236 77ecfa82 Iustin Pop
                               -- retrieve the old nodes
1237 77ecfa82 Iustin Pop
              -> Placement     -- ^ The placement we're investigating,
1238 77ecfa82 Iustin Pop
                               -- containing the new nodes and
1239 77ecfa82 Iustin Pop
                               -- instance index
1240 77ecfa82 Iustin Pop
              -> [Ndx]         -- ^ Resulting list of node indices
1241 0e8ae201 Iustin Pop
involvedNodes il plc =
1242 9fc18384 Iustin Pop
  let (i, np, ns, _, _) = plc
1243 9fc18384 Iustin Pop
      inst = Container.find i il
1244 9fc18384 Iustin Pop
  in nub $ [np, ns] ++ Instance.allNodes inst
1245 0e8ae201 Iustin Pop
1246 0e8ae201 Iustin Pop
-- | Inner function for splitJobs, that either appends the next job to
1247 0e8ae201 Iustin Pop
-- the current jobset, or starts a new jobset.
1248 0e8ae201 Iustin Pop
mergeJobs :: ([JobSet], [Ndx]) -> MoveJob -> ([JobSet], [Ndx])
1249 924f9c16 Iustin Pop
mergeJobs ([], _) n@(ndx, _, _, _) = ([[n]], ndx)
1250 924f9c16 Iustin Pop
mergeJobs (cjs@(j:js), nbuf) n@(ndx, _, _, _)
1251 9fc18384 Iustin Pop
  | null (ndx `intersect` nbuf) = ((n:j):js, ndx ++ nbuf)
1252 9fc18384 Iustin Pop
  | otherwise = ([n]:cjs, ndx)
1253 0e8ae201 Iustin Pop
1254 0e8ae201 Iustin Pop
-- | Break a list of moves into independent groups. Note that this
1255 0e8ae201 Iustin Pop
-- will reverse the order of jobs.
1256 0e8ae201 Iustin Pop
splitJobs :: [MoveJob] -> [JobSet]
1257 0e8ae201 Iustin Pop
splitJobs = fst . foldl mergeJobs ([], [])
1258 0e8ae201 Iustin Pop
1259 0e8ae201 Iustin Pop
-- | Given a list of commands, prefix them with @gnt-instance@ and
1260 0e8ae201 Iustin Pop
-- also beautify the display a little.
1261 0e8ae201 Iustin Pop
formatJob :: Int -> Int -> (Int, MoveJob) -> [String]
1262 924f9c16 Iustin Pop
formatJob jsn jsl (sn, (_, _, _, cmds)) =
1263 9fc18384 Iustin Pop
  let out =
1264 9fc18384 Iustin Pop
        printf "  echo job %d/%d" jsn sn:
1265 9fc18384 Iustin Pop
        printf "  check":
1266 9fc18384 Iustin Pop
        map ("  gnt-instance " ++) cmds
1267 9fc18384 Iustin Pop
  in if sn == 1
1268 0e8ae201 Iustin Pop
       then ["", printf "echo jobset %d, %d jobs" jsn jsl] ++ out
1269 0e8ae201 Iustin Pop
       else out
1270 0e8ae201 Iustin Pop
1271 9188aeef Iustin Pop
-- | Given a list of commands, prefix them with @gnt-instance@ and
1272 9188aeef Iustin Pop
-- also beautify the display a little.
1273 0e8ae201 Iustin Pop
formatCmds :: [JobSet] -> String
1274 9f6dcdea Iustin Pop
formatCmds =
1275 9fc18384 Iustin Pop
  unlines .
1276 9fc18384 Iustin Pop
  concatMap (\(jsn, js) -> concatMap (formatJob jsn (length js))
1277 9fc18384 Iustin Pop
                           (zip [1..] js)) .
1278 9fc18384 Iustin Pop
  zip [1..]
1279 142538ff Iustin Pop
1280 e4f08c46 Iustin Pop
-- | Print the node list.
1281 e98fb766 Iustin Pop
printNodes :: Node.List -> [String] -> String
1282 e98fb766 Iustin Pop
printNodes nl fs =
1283 9fc18384 Iustin Pop
  let fields = case fs of
1284 9fc18384 Iustin Pop
                 [] -> Node.defaultFields
1285 9fc18384 Iustin Pop
                 "+":rest -> Node.defaultFields ++ rest
1286 9fc18384 Iustin Pop
                 _ -> fs
1287 9fc18384 Iustin Pop
      snl = sortBy (comparing Node.idx) (Container.elems nl)
1288 9fc18384 Iustin Pop
      (header, isnum) = unzip $ map Node.showHeader fields
1289 3603605a Iustin Pop
  in unlines . map ((:) ' ' .  unwords) $
1290 9fc18384 Iustin Pop
     formatTable (header:map (Node.list fields) snl) isnum
1291 e4f08c46 Iustin Pop
1292 507fda3f Iustin Pop
-- | Print the instance list.
1293 507fda3f Iustin Pop
printInsts :: Node.List -> Instance.List -> String
1294 507fda3f Iustin Pop
printInsts nl il =
1295 9fc18384 Iustin Pop
  let sil = sortBy (comparing Instance.idx) (Container.elems il)
1296 9fc18384 Iustin Pop
      helper inst = [ if Instance.instanceRunning inst then "R" else " "
1297 9fc18384 Iustin Pop
                    , Instance.name inst
1298 9fc18384 Iustin Pop
                    , Container.nameOf nl (Instance.pNode inst)
1299 9fc18384 Iustin Pop
                    , let sdx = Instance.sNode inst
1300 9fc18384 Iustin Pop
                      in if sdx == Node.noSecondary
1301 5182e970 Iustin Pop
                           then  ""
1302 5182e970 Iustin Pop
                           else Container.nameOf nl sdx
1303 9fc18384 Iustin Pop
                    , if Instance.autoBalance inst then "Y" else "N"
1304 9fc18384 Iustin Pop
                    , printf "%3d" $ Instance.vcpus inst
1305 9fc18384 Iustin Pop
                    , printf "%5d" $ Instance.mem inst
1306 9fc18384 Iustin Pop
                    , printf "%5d" $ Instance.dsk inst `div` 1024
1307 9fc18384 Iustin Pop
                    , printf "%5.3f" lC
1308 9fc18384 Iustin Pop
                    , printf "%5.3f" lM
1309 9fc18384 Iustin Pop
                    , printf "%5.3f" lD
1310 9fc18384 Iustin Pop
                    , printf "%5.3f" lN
1311 9fc18384 Iustin Pop
                    ]
1312 9fc18384 Iustin Pop
          where DynUtil lC lM lD lN = Instance.util inst
1313 9fc18384 Iustin Pop
      header = [ "F", "Name", "Pri_node", "Sec_node", "Auto_bal"
1314 9fc18384 Iustin Pop
               , "vcpu", "mem" , "dsk", "lCpu", "lMem", "lDsk", "lNet" ]
1315 9fc18384 Iustin Pop
      isnum = False:False:False:False:False:repeat True
1316 3603605a Iustin Pop
  in unlines . map ((:) ' ' . unwords) $
1317 9fc18384 Iustin Pop
     formatTable (header:map helper sil) isnum
1318 507fda3f Iustin Pop
1319 9188aeef Iustin Pop
-- | Shows statistics for a given node list.
1320 262a08a2 Iustin Pop
printStats :: Node.List -> String
1321 e4f08c46 Iustin Pop
printStats nl =
1322 9fc18384 Iustin Pop
  let dcvs = compDetailedCV $ Container.elems nl
1323 9fc18384 Iustin Pop
      (weights, names) = unzip detailedCVInfo
1324 9fc18384 Iustin Pop
      hd = zip3 (weights ++ repeat 1) (names ++ repeat "unknown") dcvs
1325 9fc18384 Iustin Pop
      formatted = map (\(w, header, val) ->
1326 9fc18384 Iustin Pop
                         printf "%s=%.8f(x%.2f)" header val w::String) hd
1327 9fc18384 Iustin Pop
  in intercalate ", " formatted
1328 6b20875c Iustin Pop
1329 6b20875c Iustin Pop
-- | Convert a placement into a list of OpCodes (basically a job).
1330 179c0828 Iustin Pop
iMoveToJob :: Node.List        -- ^ The node list; only used for node
1331 179c0828 Iustin Pop
                               -- names, so any version is good
1332 179c0828 Iustin Pop
                               -- (before or after the operation)
1333 179c0828 Iustin Pop
           -> Instance.List    -- ^ The instance list; also used for
1334 179c0828 Iustin Pop
                               -- names only
1335 179c0828 Iustin Pop
           -> Idx              -- ^ The index of the instance being
1336 179c0828 Iustin Pop
                               -- moved
1337 179c0828 Iustin Pop
           -> IMove            -- ^ The actual move to be described
1338 179c0828 Iustin Pop
           -> [OpCodes.OpCode] -- ^ The list of opcodes equivalent to
1339 179c0828 Iustin Pop
                               -- the given move
1340 3e4480e0 Iustin Pop
iMoveToJob nl il idx move =
1341 9fc18384 Iustin Pop
  let inst = Container.find idx il
1342 9fc18384 Iustin Pop
      iname = Instance.name inst
1343 9fc18384 Iustin Pop
      lookNode  = Just . Container.nameOf nl
1344 9fc18384 Iustin Pop
      opF = OpCodes.OpInstanceMigrate iname True False True Nothing
1345 9fc18384 Iustin Pop
      opR n = OpCodes.OpInstanceReplaceDisks iname (lookNode n)
1346 9fc18384 Iustin Pop
              OpCodes.ReplaceNewSecondary [] Nothing
1347 9fc18384 Iustin Pop
  in case move of
1348 9fc18384 Iustin Pop
       Failover -> [ opF ]
1349 9fc18384 Iustin Pop
       ReplacePrimary np -> [ opF, opR np, opF ]
1350 9fc18384 Iustin Pop
       ReplaceSecondary ns -> [ opR ns ]
1351 9fc18384 Iustin Pop
       ReplaceAndFailover np -> [ opR np, opF ]
1352 9fc18384 Iustin Pop
       FailoverAndReplace ns -> [ opF, opR ns ]
1353 32b8d9c0 Iustin Pop
1354 949397c8 Iustin Pop
-- * Node group functions
1355 949397c8 Iustin Pop
1356 525bfb36 Iustin Pop
-- | Computes the group of an instance.
1357 10ef6b4e Iustin Pop
instanceGroup :: Node.List -> Instance.Instance -> Result Gdx
1358 32b8d9c0 Iustin Pop
instanceGroup nl i =
1359 32b8d9c0 Iustin Pop
  let sidx = Instance.sNode i
1360 32b8d9c0 Iustin Pop
      pnode = Container.find (Instance.pNode i) nl
1361 32b8d9c0 Iustin Pop
      snode = if sidx == Node.noSecondary
1362 32b8d9c0 Iustin Pop
              then pnode
1363 32b8d9c0 Iustin Pop
              else Container.find sidx nl
1364 10ef6b4e Iustin Pop
      pgroup = Node.group pnode
1365 10ef6b4e Iustin Pop
      sgroup = Node.group snode
1366 10ef6b4e Iustin Pop
  in if pgroup /= sgroup
1367 9fc18384 Iustin Pop
       then fail ("Instance placed accross two node groups, primary " ++
1368 9fc18384 Iustin Pop
                  show pgroup ++ ", secondary " ++ show sgroup)
1369 9fc18384 Iustin Pop
       else return pgroup
1370 32b8d9c0 Iustin Pop
1371 525bfb36 Iustin Pop
-- | Computes the group of an instance per the primary node.
1372 4bc33d60 Iustin Pop
instancePriGroup :: Node.List -> Instance.Instance -> Gdx
1373 4bc33d60 Iustin Pop
instancePriGroup nl i =
1374 4bc33d60 Iustin Pop
  let pnode = Container.find (Instance.pNode i) nl
1375 4bc33d60 Iustin Pop
  in  Node.group pnode
1376 4bc33d60 Iustin Pop
1377 32b8d9c0 Iustin Pop
-- | Compute the list of badly allocated instances (split across node
1378 525bfb36 Iustin Pop
-- groups).
1379 32b8d9c0 Iustin Pop
findSplitInstances :: Node.List -> Instance.List -> [Instance.Instance]
1380 2a8e2dc9 Iustin Pop
findSplitInstances nl =
1381 2a8e2dc9 Iustin Pop
  filter (not . isOk . instanceGroup nl) . Container.elems
1382 f4161783 Iustin Pop
1383 525bfb36 Iustin Pop
-- | Splits a cluster into the component node groups.
1384 f4161783 Iustin Pop
splitCluster :: Node.List -> Instance.List ->
1385 10ef6b4e Iustin Pop
                [(Gdx, (Node.List, Instance.List))]
1386 f4161783 Iustin Pop
splitCluster nl il =
1387 f4161783 Iustin Pop
  let ngroups = Node.computeGroups (Container.elems nl)
1388 f4161783 Iustin Pop
  in map (\(guuid, nodes) ->
1389 f4161783 Iustin Pop
           let nidxs = map Node.idx nodes
1390 f4161783 Iustin Pop
               nodes' = zip nidxs nodes
1391 f4161783 Iustin Pop
               instances = Container.filter ((`elem` nidxs) . Instance.pNode) il
1392 cb0c77ff Iustin Pop
           in (guuid, (Container.fromList nodes', instances))) ngroups
1393 1f4ae205 Iustin Pop
1394 63a78055 Iustin Pop
-- | Compute the list of nodes that are to be evacuated, given a list
1395 63a78055 Iustin Pop
-- of instances and an evacuation mode.
1396 63a78055 Iustin Pop
nodesToEvacuate :: Instance.List -- ^ The cluster-wide instance list
1397 63a78055 Iustin Pop
                -> EvacMode      -- ^ The evacuation mode we're using
1398 63a78055 Iustin Pop
                -> [Idx]         -- ^ List of instance indices being evacuated
1399 63a78055 Iustin Pop
                -> IntSet.IntSet -- ^ Set of node indices
1400 63a78055 Iustin Pop
nodesToEvacuate il mode =
1401 9fc18384 Iustin Pop
  IntSet.delete Node.noSecondary .
1402 9fc18384 Iustin Pop
  foldl' (\ns idx ->
1403 9fc18384 Iustin Pop
            let i = Container.find idx il
1404 9fc18384 Iustin Pop
                pdx = Instance.pNode i
1405 9fc18384 Iustin Pop
                sdx = Instance.sNode i
1406 9fc18384 Iustin Pop
                dt = Instance.diskTemplate i
1407 9fc18384 Iustin Pop
                withSecondary = case dt of
1408 9fc18384 Iustin Pop
                                  DTDrbd8 -> IntSet.insert sdx ns
1409 9fc18384 Iustin Pop
                                  _ -> ns
1410 9fc18384 Iustin Pop
            in case mode of
1411 9fc18384 Iustin Pop
                 ChangePrimary   -> IntSet.insert pdx ns
1412 9fc18384 Iustin Pop
                 ChangeSecondary -> withSecondary
1413 9fc18384 Iustin Pop
                 ChangeAll       -> IntSet.insert pdx withSecondary
1414 9fc18384 Iustin Pop
         ) IntSet.empty