Statistics
| Branch: | Tag: | Revision:

root / hbal.1 @ 669d7e3d

History | View | Annotate | Download (14.3 kB)

1
.TH HBAL 1 2009-03-14 htools "Ganeti H-tools"
2
.SH NAME
3
hbal \- Cluster balancer for Ganeti
4

    
5
.SH SYNOPSIS
6
.B hbal
7
.B "[-C]"
8
.B "[-p]"
9
.B "[-o]"
10
.B "-l"
11
.BI "[ -m " cluster "]"
12
.BI "[-n " nodes-file " ]"
13
.BI "[ -i " instances-file "]"
14

    
15
.B hbal
16
.B --version
17

    
18
.SH DESCRIPTION
19
hbal is a cluster balancer that looks at the current state of the
20
cluster (nodes with their total and free disk, memory, etc.) and
21
instance placement and computes a series of steps designed to bring
22
the cluster into a better state.
23

    
24
The algorithm to do so is designed to be stable (i.e. it will give you
25
the same results when restarting it from the middle of the solution)
26
and reasonably fast. It is not, however, designed to be a perfect
27
algorithm - it is possible to make it go into a corner from which it
28
can find no improvement, because it only look one "step" ahead.
29

    
30
By default, the program will show the solution incrementally as it is
31
computed, in a somewhat cryptic format; for getting the actual Ganeti
32
command list, use the \fB-C\fR option.
33

    
34
.SS ALGORITHM
35

    
36
The program works in independent steps; at each step, we compute the
37
best instance move that lowers the cluster score.
38

    
39
The possible move type for an instance are combinations of
40
failover/migrate and replace-disks such that we change one of the
41
instance nodes, and the other one remains (but possibly with changed
42
role, e.g. from primary it becomes secondary). The list is:
43
  - failover (f)
44
  - replace secondary (r)
45
  - replace primary, a composite move (f, r, f)
46
  - failover and replace secondary, also composite (f, r)
47
  - replace secondary and failover, also composite (r, f)
48

    
49
We don't do the only remaining possibility of replacing both nodes
50
(r,f,r,f or the equivalent f,r,f,r) since these move needs an
51
exhaustive search over both candidate primary and secondary nodes, and
52
is O(n*n) in the number of nodes. Furthermore, it doesn't seems to
53
give better scores but will result in more disk replacements.
54

    
55
.SS CLUSTER SCORING
56

    
57
As said before, the algorithm tries to minimise the cluster score at
58
each step. Currently this score is computed as a sum of the following
59
components:
60
  - coefficient of variance of the percent of free memory
61
  - coefficient of variance of the percent of reserved memory
62
  - coefficient of variance of the percent of free disk
63
  - percentage of nodes failing N+1 check
64

    
65
The free memory and free disk values help ensure that all nodes are
66
somewhat balanced in their resource usage. The reserved memory helps
67
to ensure that nodes are somewhat balanced in holding secondary
68
instances, and that no node keeps too much memory reserved for
69
N+1. And finally, the N+1 percentage helps guide the algorithm towards
70
eliminating N+1 failures, if possible.
71

    
72
Except for the N+1 failures, we use the coefficient of variance since
73
this brings the values into the same unit so to speak, and with a
74
restrict domain of values (between zero and one). The percentage of
75
N+1 failures, while also in this numeric range, doesn't actually has
76
the same meaning, but it has shown to work well.
77

    
78
The other alternative, using for N+1 checks the coefficient of
79
variance of (N+1 fail=1, N+1 pass=0) across nodes could hint the
80
algorithm to make more N+1 failures if most nodes are N+1 fail
81
already. Since this (making N+1 failures) is not allowed by other
82
rules of the algorithm, so the N+1 checks would simply not work
83
anymore in this case.
84

    
85
On a perfectly balanced cluster (all nodes the same size, all
86
instances the same size and spread across the nodes equally), all
87
values would be zero. This doesn't happen too often in practice :)
88

    
89
.SS OTHER POSSIBLE METRICS
90

    
91
It would be desirable to add more metrics to the algorithm, especially
92
dynamically-computed metrics, such as:
93
  - CPU usage of instances, combined with VCPU versus PCPU count
94
  - Disk IO usage
95
  - Network IO
96

    
97
.SH OPTIONS
98
The options that can be passed to the program are as follows:
99
.TP
100
.B -C, --print-commands
101
Print the command list at the end of the run. Without this, the
102
program will only show a shorter, but cryptic output.
103
.TP
104
.B -p, --print-nodes
105
Prints the before and after node status, in a format designed to allow
106
the user to understand the node's most important parameters.
107

    
108
The node list will contain these informations:
109
  - a character denoting the N+1 status of the node, with blank
110
    meaning pass and an asterisk ('*') meaning fail
111
  - the node name
112
  - the total node memory
113
  - the free node memory
114
  - the reserved node memory, which is the amount of free memory
115
    needed for N+1 compliance
116
  - total disk
117
  - free disk
118
  - number of primary instances
119
  - number of secondary instances
120
  - percent of free memory
121
  - percent of free disk
122

    
123
.TP
124
.B -o, --oneline
125
Only shows a one-line output from the program, designed for the case
126
when one wants to look at multiple clusters at once and check their
127
status.
128

    
129
The line will contain four fields:
130
  - initial cluster score
131
  - number of steps in the solution
132
  - final cluster score
133
  - improvement in the cluster score
134

    
135
.TP
136
.BI "-n" nodefile ", --nodes=" nodefile
137
The name of the file holding node information (if not collecting via
138
RAPI), instead of the default
139
.I nodes
140
file.
141

    
142
.TP
143
.BI "-i" instancefile ", --instances=" instancefile
144
The name of the file holding instance information (if not collecting
145
via RAPI), instead of the default
146
.I instances
147
file.
148

    
149
.TP
150
.BI "-m" cluster
151
Collect data not from files but directly from the
152
.I cluster
153
given as an argument via RAPI. This work for both Ganeti 1.2 and
154
Ganeti 2.0.
155

    
156
.TP
157
.BI "-l" N ", --max-length=" N
158
Restrict the solution to this length. This can be used for example to
159
automate the execution of the balancing.
160

    
161
.TP
162
.B -v, --verbose
163
Increase the output verbosity. Each usage of this option will increase
164
the verbosity (currently more than 2 doesn't make sense) from the
165
default of zero.
166

    
167
.TP
168
.B -V, --version
169
Just show the program version and exit.
170

    
171
.SH EXIT STATUS
172

    
173
The exist status of the command will be zero, unless for some reason
174
the algorithm fatally failed (e.g. wrong node or instance data).
175

    
176
.SH BUGS
177

    
178
The program does not check its input data for consistency, and aborts
179
with cryptic errors messages in this case.
180

    
181
The algorithm is not perfect.
182

    
183
The output format is not easily scriptable, and the program should
184
feed moves directly into Ganeti (either via RAPI or via a gnt-debug
185
input file).
186

    
187
.SH EXAMPLE
188

    
189
.SS Default output
190

    
191
With the default options, the program shows each individual step and
192
the improvements it brings in cluster score:
193

    
194
.in +4n
195
.nf
196
.RB "$" " hbal"
197
Loaded 20 nodes, 80 instances
198
Cluster is not N+1 happy, continuing but no guarantee that the cluster will end N+1 happy.
199
Initial score: 0.52329131
200
Trying to minimize the CV...
201
    1. instance14  node1:node10  => node16:node10 0.42109120 a=f r:node16 f
202
    2. instance54  node4:node15  => node16:node15 0.31904594 a=f r:node16 f
203
    3. instance4   node5:node2   => node2:node16  0.26611015 a=f r:node16
204
    4. instance48  node18:node20 => node2:node18  0.21361717 a=r:node2 f
205
    5. instance93  node19:node18 => node16:node19 0.16166425 a=r:node16 f
206
    6. instance89  node3:node20  => node2:node3   0.11005629 a=r:node2 f
207
    7. instance5   node6:node2   => node16:node6  0.05841589 a=r:node16 f
208
    8. instance94  node7:node20  => node20:node16 0.00658759 a=f r:node16
209
    9. instance44  node20:node2  => node2:node15  0.00438740 a=f r:node15
210
   10. instance62  node14:node18 => node14:node16 0.00390087 a=r:node16
211
   11. instance13  node11:node14 => node11:node16 0.00361787 a=r:node16
212
   12. instance19  node10:node11 => node10:node7  0.00336636 a=r:node7
213
   13. instance43  node12:node13 => node12:node1  0.00305681 a=r:node1
214
   14. instance1   node1:node2   => node1:node4   0.00263124 a=r:node4
215
   15. instance58  node19:node20 => node19:node17 0.00252594 a=r:node17
216
Cluster score improved from 0.52329131 to 0.00252594
217
.fi
218
.in
219

    
220
In the above output, we can see:
221
  - the input data (here from files) shows a cluster with 20 nodes and
222
    80 instances
223
  - the cluster is not initially N+1 compliant
224
  - the initial score is 0.52329131
225

    
226
The step list follows, showing the instance, its initial
227
primary/secondary nodes, the new primary secondary, the cluster list,
228
and the actions taken in this step (with 'f' denoting failover/migrate
229
and 'r' denoting replace secondary).
230

    
231
Finally, the program shows the improvement in cluster score.
232

    
233
A more detailed output is obtained via the \fB-C\fR and \fB-p\fR options:
234

    
235
.in +4n
236
.nf
237
.RB "$" " hbal"
238
Loaded 20 nodes, 80 instances
239
Cluster is not N+1 happy, continuing but no guarantee that the cluster will end N+1 happy.
240
Initial cluster status:
241
N1 Name   t_mem f_mem r_mem t_dsk f_dsk pri sec  p_fmem  p_fdsk
242
 * node1  32762  1280  6000  1861  1026   5   3 0.03907 0.55179
243
   node2  32762 31280 12000  1861  1026   0   8 0.95476 0.55179
244
 * node3  32762  1280  6000  1861  1026   5   3 0.03907 0.55179
245
 * node4  32762  1280  6000  1861  1026   5   3 0.03907 0.55179
246
 * node5  32762  1280  6000  1861   978   5   5 0.03907 0.52573
247
 * node6  32762  1280  6000  1861  1026   5   3 0.03907 0.55179
248
 * node7  32762  1280  6000  1861  1026   5   3 0.03907 0.55179
249
   node8  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
250
   node9  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
251
 * node10 32762  7280 12000  1861  1026   4   4 0.22221 0.55179
252
   node11 32762  7280  6000  1861   922   4   5 0.22221 0.49577
253
   node12 32762  7280  6000  1861  1026   4   4 0.22221 0.55179
254
   node13 32762  7280  6000  1861   922   4   5 0.22221 0.49577
255
   node14 32762  7280  6000  1861   922   4   5 0.22221 0.49577
256
 * node15 32762  7280 12000  1861  1131   4   3 0.22221 0.60782
257
   node16 32762 31280     0  1861  1860   0   0 0.95476 1.00000
258
   node17 32762  7280  6000  1861  1106   5   3 0.22221 0.59479
259
 * node18 32762  1280  6000  1396   561   5   3 0.03907 0.40239
260
 * node19 32762  1280  6000  1861  1026   5   3 0.03907 0.55179
261
   node20 32762 13280 12000  1861   689   3   9 0.40535 0.37068
262

    
263
Initial score: 0.52329131
264
Trying to minimize the CV...
265
    1. instance14  node1:node10  => node16:node10 0.42109120 a=f r:node16 f
266
    2. instance54  node4:node15  => node16:node15 0.31904594 a=f r:node16 f
267
    3. instance4   node5:node2   => node2:node16  0.26611015 a=f r:node16
268
    4. instance48  node18:node20 => node2:node18  0.21361717 a=r:node2 f
269
    5. instance93  node19:node18 => node16:node19 0.16166425 a=r:node16 f
270
    6. instance89  node3:node20  => node2:node3   0.11005629 a=r:node2 f
271
    7. instance5   node6:node2   => node16:node6  0.05841589 a=r:node16 f
272
    8. instance94  node7:node20  => node20:node16 0.00658759 a=f r:node16
273
    9. instance44  node20:node2  => node2:node15  0.00438740 a=f r:node15
274
   10. instance62  node14:node18 => node14:node16 0.00390087 a=r:node16
275
   11. instance13  node11:node14 => node11:node16 0.00361787 a=r:node16
276
   12. instance19  node10:node11 => node10:node7  0.00336636 a=r:node7
277
   13. instance43  node12:node13 => node12:node1  0.00305681 a=r:node1
278
   14. instance1   node1:node2   => node1:node4   0.00263124 a=r:node4
279
   15. instance58  node19:node20 => node19:node17 0.00252594 a=r:node17
280
Cluster score improved from 0.52329131 to 0.00252594
281

    
282
Commands to run to reach the above solution:
283
  echo step 1
284
  echo gnt-instance migrate instance14
285
  echo gnt-instance replace-disks -n node16 instance14
286
  echo gnt-instance migrate instance14
287
  echo step 2
288
  echo gnt-instance migrate instance54
289
  echo gnt-instance replace-disks -n node16 instance54
290
  echo gnt-instance migrate instance54
291
  echo step 3
292
  echo gnt-instance migrate instance4
293
  echo gnt-instance replace-disks -n node16 instance4
294
  echo step 4
295
  echo gnt-instance replace-disks -n node2 instance48
296
  echo gnt-instance migrate instance48
297
  echo step 5
298
  echo gnt-instance replace-disks -n node16 instance93
299
  echo gnt-instance migrate instance93
300
  echo step 6
301
  echo gnt-instance replace-disks -n node2 instance89
302
  echo gnt-instance migrate instance89
303
  echo step 7
304
  echo gnt-instance replace-disks -n node16 instance5
305
  echo gnt-instance migrate instance5
306
  echo step 8
307
  echo gnt-instance migrate instance94
308
  echo gnt-instance replace-disks -n node16 instance94
309
  echo step 9
310
  echo gnt-instance migrate instance44
311
  echo gnt-instance replace-disks -n node15 instance44
312
  echo step 10
313
  echo gnt-instance replace-disks -n node16 instance62
314
  echo step 11
315
  echo gnt-instance replace-disks -n node16 instance13
316
  echo step 12
317
  echo gnt-instance replace-disks -n node7 instance19
318
  echo step 13
319
  echo gnt-instance replace-disks -n node1 instance43
320
  echo step 14
321
  echo gnt-instance replace-disks -n node4 instance1
322
  echo step 15
323
  echo gnt-instance replace-disks -n node17 instance58
324

    
325
Final cluster status:
326
N1 Name   t_mem f_mem r_mem t_dsk f_dsk pri sec  p_fmem  p_fdsk
327
   node1  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
328
   node2  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
329
   node3  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
330
   node4  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
331
   node5  32762  7280  6000  1861  1078   4   5 0.22221 0.57947
332
   node6  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
333
   node7  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
334
   node8  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
335
   node9  32762  7280  6000  1861  1026   4   4 0.22221 0.55179
336
   node10 32762  7280  6000  1861  1026   4   4 0.22221 0.55179
337
   node11 32762  7280  6000  1861  1022   4   4 0.22221 0.54951
338
   node12 32762  7280  6000  1861  1026   4   4 0.22221 0.55179
339
   node13 32762  7280  6000  1861  1022   4   4 0.22221 0.54951
340
   node14 32762  7280  6000  1861  1022   4   4 0.22221 0.54951
341
   node15 32762  7280  6000  1861  1031   4   4 0.22221 0.55408
342
   node16 32762  7280  6000  1861  1060   4   4 0.22221 0.57007
343
   node17 32762  7280  6000  1861  1006   5   4 0.22221 0.54105
344
   node18 32762  7280  6000  1396   761   4   2 0.22221 0.54570
345
   node19 32762  7280  6000  1861  1026   4   4 0.22221 0.55179
346
   node20 32762 13280  6000  1861  1089   3   5 0.40535 0.58565
347

    
348
.fi
349
.in
350

    
351
Here we see, beside the step list, the initial and final cluster
352
status, with the final one showing all nodes being N+1 compliant, and
353
the command list to reach the final solution. In the initial listing,
354
we see which nodes are not N+1 compliant.
355

    
356
The algorithm is stable as long as each step above is fully completed,
357
e.g. in step 8, both the migrate and the replace-disks are
358
done. Otherwise, if only the migrate is done, the input data is
359
changed in a way that the program will output a different solution
360
list (but hopefully will end in the same state).
361

    
362
.SH SEE ALSO
363
hn1(1), ganeti(7), gnt-instance(8), gnt-node(8)