Statistics
| Branch: | Revision:

root / hw / msix.c @ 00c3a05b

History | View | Annotate | Download (11.9 kB)

1
/*
2
 * MSI-X device support
3
 *
4
 * This module includes support for MSI-X in pci devices.
5
 *
6
 * Author: Michael S. Tsirkin <mst@redhat.com>
7
 *
8
 *  Copyright (c) 2009, Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2.  See
11
 * the COPYING file in the top-level directory.
12
 */
13

    
14
#include "hw.h"
15
#include "msix.h"
16
#include "pci.h"
17
#include "range.h"
18

    
19
#define MSIX_CAP_LENGTH 12
20

    
21
/* MSI enable bit and maskall bit are in byte 1 in FLAGS register */
22
#define MSIX_CONTROL_OFFSET (PCI_MSIX_FLAGS + 1)
23
#define MSIX_ENABLE_MASK (PCI_MSIX_FLAGS_ENABLE >> 8)
24
#define MSIX_MASKALL_MASK (PCI_MSIX_FLAGS_MASKALL >> 8)
25

    
26
/* How much space does an MSIX table need. */
27
/* The spec requires giving the table structure
28
 * a 4K aligned region all by itself. */
29
#define MSIX_PAGE_SIZE 0x1000
30
/* Reserve second half of the page for pending bits */
31
#define MSIX_PAGE_PENDING (MSIX_PAGE_SIZE / 2)
32
#define MSIX_MAX_ENTRIES 32
33

    
34

    
35
/* Flag for interrupt controller to declare MSI-X support */
36
int msix_supported;
37

    
38
/* Add MSI-X capability to the config space for the device. */
39
/* Given a bar and its size, add MSI-X table on top of it
40
 * and fill MSI-X capability in the config space.
41
 * Original bar size must be a power of 2 or 0.
42
 * New bar size is returned. */
43
static int msix_add_config(struct PCIDevice *pdev, unsigned short nentries,
44
                           unsigned bar_nr, unsigned bar_size)
45
{
46
    int config_offset;
47
    uint8_t *config;
48
    uint32_t new_size;
49

    
50
    if (nentries < 1 || nentries > PCI_MSIX_FLAGS_QSIZE + 1)
51
        return -EINVAL;
52
    if (bar_size > 0x80000000)
53
        return -ENOSPC;
54

    
55
    /* Add space for MSI-X structures */
56
    if (!bar_size) {
57
        new_size = MSIX_PAGE_SIZE;
58
    } else if (bar_size < MSIX_PAGE_SIZE) {
59
        bar_size = MSIX_PAGE_SIZE;
60
        new_size = MSIX_PAGE_SIZE * 2;
61
    } else {
62
        new_size = bar_size * 2;
63
    }
64

    
65
    pdev->msix_bar_size = new_size;
66
    config_offset = pci_add_capability(pdev, PCI_CAP_ID_MSIX,
67
                                       0, MSIX_CAP_LENGTH);
68
    if (config_offset < 0)
69
        return config_offset;
70
    config = pdev->config + config_offset;
71

    
72
    pci_set_word(config + PCI_MSIX_FLAGS, nentries - 1);
73
    /* Table on top of BAR */
74
    pci_set_long(config + PCI_MSIX_TABLE, bar_size | bar_nr);
75
    /* Pending bits on top of that */
76
    pci_set_long(config + PCI_MSIX_PBA, (bar_size + MSIX_PAGE_PENDING) |
77
                 bar_nr);
78
    pdev->msix_cap = config_offset;
79
    /* Make flags bit writable. */
80
    pdev->wmask[config_offset + MSIX_CONTROL_OFFSET] |= MSIX_ENABLE_MASK |
81
            MSIX_MASKALL_MASK;
82
    pdev->msix_function_masked = true;
83
    return 0;
84
}
85

    
86
static uint64_t msix_mmio_read(void *opaque, target_phys_addr_t addr,
87
                               unsigned size)
88
{
89
    PCIDevice *dev = opaque;
90
    unsigned int offset = addr & (MSIX_PAGE_SIZE - 1) & ~0x3;
91
    void *page = dev->msix_table_page;
92

    
93
    return pci_get_long(page + offset);
94
}
95

    
96
static uint8_t msix_pending_mask(int vector)
97
{
98
    return 1 << (vector % 8);
99
}
100

    
101
static uint8_t *msix_pending_byte(PCIDevice *dev, int vector)
102
{
103
    return dev->msix_table_page + MSIX_PAGE_PENDING + vector / 8;
104
}
105

    
106
static int msix_is_pending(PCIDevice *dev, int vector)
107
{
108
    return *msix_pending_byte(dev, vector) & msix_pending_mask(vector);
109
}
110

    
111
static void msix_set_pending(PCIDevice *dev, int vector)
112
{
113
    *msix_pending_byte(dev, vector) |= msix_pending_mask(vector);
114
}
115

    
116
static void msix_clr_pending(PCIDevice *dev, int vector)
117
{
118
    *msix_pending_byte(dev, vector) &= ~msix_pending_mask(vector);
119
}
120

    
121
static bool msix_vector_masked(PCIDevice *dev, int vector, bool fmask)
122
{
123
    unsigned offset = vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
124
    return fmask || dev->msix_table_page[offset] & PCI_MSIX_ENTRY_CTRL_MASKBIT;
125
}
126

    
127
static bool msix_is_masked(PCIDevice *dev, int vector)
128
{
129
    return msix_vector_masked(dev, vector, dev->msix_function_masked);
130
}
131

    
132
static void msix_handle_mask_update(PCIDevice *dev, int vector, bool was_masked)
133
{
134
    bool is_masked = msix_is_masked(dev, vector);
135
    if (is_masked == was_masked) {
136
        return;
137
    }
138

    
139
    if (!is_masked && msix_is_pending(dev, vector)) {
140
        msix_clr_pending(dev, vector);
141
        msix_notify(dev, vector);
142
    }
143
}
144

    
145
static void msix_update_function_masked(PCIDevice *dev)
146
{
147
    dev->msix_function_masked = !msix_enabled(dev) ||
148
        (dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & MSIX_MASKALL_MASK);
149
}
150

    
151
/* Handle MSI-X capability config write. */
152
void msix_write_config(PCIDevice *dev, uint32_t addr,
153
                       uint32_t val, int len)
154
{
155
    unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET;
156
    int vector;
157
    bool was_masked;
158

    
159
    if (!range_covers_byte(addr, len, enable_pos)) {
160
        return;
161
    }
162

    
163
    was_masked = dev->msix_function_masked;
164
    msix_update_function_masked(dev);
165

    
166
    if (!msix_enabled(dev)) {
167
        return;
168
    }
169

    
170
    pci_device_deassert_intx(dev);
171

    
172
    if (dev->msix_function_masked == was_masked) {
173
        return;
174
    }
175

    
176
    for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
177
        msix_handle_mask_update(dev, vector,
178
                                msix_vector_masked(dev, vector, was_masked));
179
    }
180
}
181

    
182
static void msix_mmio_write(void *opaque, target_phys_addr_t addr,
183
                            uint64_t val, unsigned size)
184
{
185
    PCIDevice *dev = opaque;
186
    unsigned int offset = addr & (MSIX_PAGE_SIZE - 1) & ~0x3;
187
    int vector = offset / PCI_MSIX_ENTRY_SIZE;
188
    bool was_masked;
189

    
190
    /* MSI-X page includes a read-only PBA and a writeable Vector Control. */
191
    if (vector >= dev->msix_entries_nr) {
192
        return;
193
    }
194

    
195
    was_masked = msix_is_masked(dev, vector);
196
    pci_set_long(dev->msix_table_page + offset, val);
197
    msix_handle_mask_update(dev, vector, was_masked);
198
}
199

    
200
static const MemoryRegionOps msix_mmio_ops = {
201
    .read = msix_mmio_read,
202
    .write = msix_mmio_write,
203
    .endianness = DEVICE_NATIVE_ENDIAN,
204
    .valid = {
205
        .min_access_size = 4,
206
        .max_access_size = 4,
207
    },
208
};
209

    
210
static void msix_mmio_setup(PCIDevice *d, MemoryRegion *bar)
211
{
212
    uint8_t *config = d->config + d->msix_cap;
213
    uint32_t table = pci_get_long(config + PCI_MSIX_TABLE);
214
    uint32_t offset = table & ~(MSIX_PAGE_SIZE - 1);
215
    /* TODO: for assigned devices, we'll want to make it possible to map
216
     * pending bits separately in case they are in a separate bar. */
217

    
218
    memory_region_add_subregion(bar, offset, &d->msix_mmio);
219
}
220

    
221
static void msix_mask_all(struct PCIDevice *dev, unsigned nentries)
222
{
223
    int vector;
224
    for (vector = 0; vector < nentries; ++vector) {
225
        unsigned offset =
226
            vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
227
        dev->msix_table_page[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
228
    }
229
}
230

    
231
/* Initialize the MSI-X structures. Note: if MSI-X is supported, BAR size is
232
 * modified, it should be retrieved with msix_bar_size. */
233
int msix_init(struct PCIDevice *dev, unsigned short nentries,
234
              MemoryRegion *bar,
235
              unsigned bar_nr, unsigned bar_size)
236
{
237
    int ret;
238
    /* Nothing to do if MSI is not supported by interrupt controller */
239
    if (!msix_supported)
240
        return -ENOTSUP;
241

    
242
    if (nentries > MSIX_MAX_ENTRIES)
243
        return -EINVAL;
244

    
245
    dev->msix_entry_used = g_malloc0(MSIX_MAX_ENTRIES *
246
                                        sizeof *dev->msix_entry_used);
247

    
248
    dev->msix_table_page = g_malloc0(MSIX_PAGE_SIZE);
249
    msix_mask_all(dev, nentries);
250

    
251
    memory_region_init_io(&dev->msix_mmio, &msix_mmio_ops, dev,
252
                          "msix", MSIX_PAGE_SIZE);
253

    
254
    dev->msix_entries_nr = nentries;
255
    ret = msix_add_config(dev, nentries, bar_nr, bar_size);
256
    if (ret)
257
        goto err_config;
258

    
259
    dev->cap_present |= QEMU_PCI_CAP_MSIX;
260
    msix_mmio_setup(dev, bar);
261
    return 0;
262

    
263
err_config:
264
    dev->msix_entries_nr = 0;
265
    memory_region_destroy(&dev->msix_mmio);
266
    g_free(dev->msix_table_page);
267
    dev->msix_table_page = NULL;
268
    g_free(dev->msix_entry_used);
269
    dev->msix_entry_used = NULL;
270
    return ret;
271
}
272

    
273
static void msix_free_irq_entries(PCIDevice *dev)
274
{
275
    int vector;
276

    
277
    for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
278
        dev->msix_entry_used[vector] = 0;
279
        msix_clr_pending(dev, vector);
280
    }
281
}
282

    
283
/* Clean up resources for the device. */
284
int msix_uninit(PCIDevice *dev, MemoryRegion *bar)
285
{
286
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
287
        return 0;
288
    pci_del_capability(dev, PCI_CAP_ID_MSIX, MSIX_CAP_LENGTH);
289
    dev->msix_cap = 0;
290
    msix_free_irq_entries(dev);
291
    dev->msix_entries_nr = 0;
292
    memory_region_del_subregion(bar, &dev->msix_mmio);
293
    memory_region_destroy(&dev->msix_mmio);
294
    g_free(dev->msix_table_page);
295
    dev->msix_table_page = NULL;
296
    g_free(dev->msix_entry_used);
297
    dev->msix_entry_used = NULL;
298
    dev->cap_present &= ~QEMU_PCI_CAP_MSIX;
299
    return 0;
300
}
301

    
302
void msix_save(PCIDevice *dev, QEMUFile *f)
303
{
304
    unsigned n = dev->msix_entries_nr;
305

    
306
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
307
        return;
308
    }
309

    
310
    qemu_put_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
311
    qemu_put_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
312
}
313

    
314
/* Should be called after restoring the config space. */
315
void msix_load(PCIDevice *dev, QEMUFile *f)
316
{
317
    unsigned n = dev->msix_entries_nr;
318

    
319
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
320
        return;
321
    }
322

    
323
    msix_free_irq_entries(dev);
324
    qemu_get_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
325
    qemu_get_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
326
    msix_update_function_masked(dev);
327
}
328

    
329
/* Does device support MSI-X? */
330
int msix_present(PCIDevice *dev)
331
{
332
    return dev->cap_present & QEMU_PCI_CAP_MSIX;
333
}
334

    
335
/* Is MSI-X enabled? */
336
int msix_enabled(PCIDevice *dev)
337
{
338
    return (dev->cap_present & QEMU_PCI_CAP_MSIX) &&
339
        (dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
340
         MSIX_ENABLE_MASK);
341
}
342

    
343
/* Size of bar where MSI-X table resides, or 0 if MSI-X not supported. */
344
uint32_t msix_bar_size(PCIDevice *dev)
345
{
346
    return (dev->cap_present & QEMU_PCI_CAP_MSIX) ?
347
        dev->msix_bar_size : 0;
348
}
349

    
350
/* Send an MSI-X message */
351
void msix_notify(PCIDevice *dev, unsigned vector)
352
{
353
    uint8_t *table_entry = dev->msix_table_page + vector * PCI_MSIX_ENTRY_SIZE;
354
    uint64_t address;
355
    uint32_t data;
356

    
357
    if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector])
358
        return;
359
    if (msix_is_masked(dev, vector)) {
360
        msix_set_pending(dev, vector);
361
        return;
362
    }
363

    
364
    address = pci_get_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR);
365
    data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA);
366
    stl_le_phys(address, data);
367
}
368

    
369
void msix_reset(PCIDevice *dev)
370
{
371
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
372
        return;
373
    msix_free_irq_entries(dev);
374
    dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &=
375
            ~dev->wmask[dev->msix_cap + MSIX_CONTROL_OFFSET];
376
    memset(dev->msix_table_page, 0, MSIX_PAGE_SIZE);
377
    msix_mask_all(dev, dev->msix_entries_nr);
378
}
379

    
380
/* PCI spec suggests that devices make it possible for software to configure
381
 * less vectors than supported by the device, but does not specify a standard
382
 * mechanism for devices to do so.
383
 *
384
 * We support this by asking devices to declare vectors software is going to
385
 * actually use, and checking this on the notification path. Devices that
386
 * don't want to follow the spec suggestion can declare all vectors as used. */
387

    
388
/* Mark vector as used. */
389
int msix_vector_use(PCIDevice *dev, unsigned vector)
390
{
391
    if (vector >= dev->msix_entries_nr)
392
        return -EINVAL;
393
    dev->msix_entry_used[vector]++;
394
    return 0;
395
}
396

    
397
/* Mark vector as unused. */
398
void msix_vector_unuse(PCIDevice *dev, unsigned vector)
399
{
400
    if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) {
401
        return;
402
    }
403
    if (--dev->msix_entry_used[vector]) {
404
        return;
405
    }
406
    msix_clr_pending(dev, vector);
407
}
408

    
409
void msix_unuse_all_vectors(PCIDevice *dev)
410
{
411
    if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
412
        return;
413
    msix_free_irq_entries(dev);
414
}