Statistics
| Branch: | Revision:

root / exec-all.h @ 00f82b8a

History | View | Annotate | Download (17.6 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 32
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
/* Maximum size a TCG op can expand to.  This is complicated because a
40
   single op may require several host instructions and regirster reloads.
41
   For now take a wild guess at 128 bytes, which should allow at least
42
   a couple of fixup instructions per argument.  */
43
#define TCG_MAX_OP_SIZE 128
44

    
45
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46

    
47
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51
extern target_ulong gen_opc_jump_pc[2];
52
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53

    
54
typedef void (GenOpFunc)(void);
55
typedef void (GenOpFunc1)(long);
56
typedef void (GenOpFunc2)(long, long);
57
typedef void (GenOpFunc3)(long, long, long);
58

    
59
#if defined(TARGET_I386)
60

    
61
void optimize_flags_init(void);
62

    
63
#endif
64

    
65
extern FILE *logfile;
66
extern int loglevel;
67

    
68
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
69
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
70
unsigned long code_gen_max_block_size(void);
71
void cpu_gen_init(void);
72
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
73
                 int *gen_code_size_ptr);
74
int cpu_restore_state(struct TranslationBlock *tb,
75
                      CPUState *env, unsigned long searched_pc,
76
                      void *puc);
77
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
78
                      int max_code_size, int *gen_code_size_ptr);
79
int cpu_restore_state_copy(struct TranslationBlock *tb,
80
                           CPUState *env, unsigned long searched_pc,
81
                           void *puc);
82
void cpu_resume_from_signal(CPUState *env1, void *puc);
83
void cpu_exec_init(CPUState *env);
84
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
85
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
86
                                   int is_cpu_write_access);
87
void tb_invalidate_page_range(target_ulong start, target_ulong end);
88
void tlb_flush_page(CPUState *env, target_ulong addr);
89
void tlb_flush(CPUState *env, int flush_global);
90
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
91
                      target_phys_addr_t paddr, int prot,
92
                      int mmu_idx, int is_softmmu);
93
static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
94
                               target_phys_addr_t paddr, int prot,
95
                               int mmu_idx, int is_softmmu)
96
{
97
    if (prot & PAGE_READ)
98
        prot |= PAGE_EXEC;
99
    return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
100
}
101

    
102
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
103

    
104
#define CODE_GEN_PHYS_HASH_BITS     15
105
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
106

    
107
/* maximum total translate dcode allocated */
108

    
109
/* NOTE: the translated code area cannot be too big because on some
110
   archs the range of "fast" function calls is limited. Here is a
111
   summary of the ranges:
112

113
   i386  : signed 32 bits
114
   arm   : signed 26 bits
115
   ppc   : signed 24 bits
116
   sparc : signed 32 bits
117
   alpha : signed 23 bits
118
*/
119

    
120
#if defined(__alpha__)
121
#define CODE_GEN_BUFFER_SIZE     (2 * 1024 * 1024)
122
#elif defined(__ia64)
123
#define CODE_GEN_BUFFER_SIZE     (4 * 1024 * 1024)        /* range of addl */
124
#elif defined(__powerpc__)
125
#define CODE_GEN_BUFFER_SIZE     (6 * 1024 * 1024)
126
#else
127
/* XXX: make it dynamic on x86 */
128
#define CODE_GEN_BUFFER_SIZE     (16 * 1024 * 1024)
129
#endif
130

    
131
//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)
132

    
133
/* estimated block size for TB allocation */
134
/* XXX: use a per code average code fragment size and modulate it
135
   according to the host CPU */
136
#if defined(CONFIG_SOFTMMU)
137
#define CODE_GEN_AVG_BLOCK_SIZE 128
138
#else
139
#define CODE_GEN_AVG_BLOCK_SIZE 64
140
#endif
141

    
142
#define CODE_GEN_MAX_BLOCKS    (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
143

    
144
#if defined(__powerpc__) || defined(__x86_64__)
145
#define USE_DIRECT_JUMP
146
#endif
147
#if defined(__i386__) && !defined(_WIN32)
148
#define USE_DIRECT_JUMP
149
#endif
150

    
151
typedef struct TranslationBlock {
152
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
153
    target_ulong cs_base; /* CS base for this block */
154
    uint64_t flags; /* flags defining in which context the code was generated */
155
    uint16_t size;      /* size of target code for this block (1 <=
156
                           size <= TARGET_PAGE_SIZE) */
157
    uint16_t cflags;    /* compile flags */
158
#define CF_CODE_COPY   0x0001 /* block was generated in code copy mode */
159
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
160
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
161
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
162

    
163
    uint8_t *tc_ptr;    /* pointer to the translated code */
164
    /* next matching tb for physical address. */
165
    struct TranslationBlock *phys_hash_next;
166
    /* first and second physical page containing code. The lower bit
167
       of the pointer tells the index in page_next[] */
168
    struct TranslationBlock *page_next[2];
169
    target_ulong page_addr[2];
170

    
171
    /* the following data are used to directly call another TB from
172
       the code of this one. */
173
    uint16_t tb_next_offset[2]; /* offset of original jump target */
174
#ifdef USE_DIRECT_JUMP
175
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
176
#else
177
    unsigned long tb_next[2]; /* address of jump generated code */
178
#endif
179
    /* list of TBs jumping to this one. This is a circular list using
180
       the two least significant bits of the pointers to tell what is
181
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
182
       jmp_first */
183
    struct TranslationBlock *jmp_next[2];
184
    struct TranslationBlock *jmp_first;
185
} TranslationBlock;
186

    
187
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
188
{
189
    target_ulong tmp;
190
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
191
    return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
192
}
193

    
194
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
195
{
196
    target_ulong tmp;
197
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
198
    return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
199
            (tmp & TB_JMP_ADDR_MASK));
200
}
201

    
202
static inline unsigned int tb_phys_hash_func(unsigned long pc)
203
{
204
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
205
}
206

    
207
TranslationBlock *tb_alloc(target_ulong pc);
208
void tb_flush(CPUState *env);
209
void tb_link_phys(TranslationBlock *tb,
210
                  target_ulong phys_pc, target_ulong phys_page2);
211

    
212
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
213

    
214
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
215
extern uint8_t *code_gen_ptr;
216

    
217
#if defined(USE_DIRECT_JUMP)
218

    
219
#if defined(__powerpc__)
220
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
221
{
222
    uint32_t val, *ptr;
223

    
224
    /* patch the branch destination */
225
    ptr = (uint32_t *)jmp_addr;
226
    val = *ptr;
227
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
228
    *ptr = val;
229
    /* flush icache */
230
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
231
    asm volatile ("sync" : : : "memory");
232
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
233
    asm volatile ("sync" : : : "memory");
234
    asm volatile ("isync" : : : "memory");
235
}
236
#elif defined(__i386__) || defined(__x86_64__)
237
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
238
{
239
    /* patch the branch destination */
240
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
241
    /* no need to flush icache explicitely */
242
}
243
#endif
244

    
245
static inline void tb_set_jmp_target(TranslationBlock *tb,
246
                                     int n, unsigned long addr)
247
{
248
    unsigned long offset;
249

    
250
    offset = tb->tb_jmp_offset[n];
251
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
252
    offset = tb->tb_jmp_offset[n + 2];
253
    if (offset != 0xffff)
254
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
255
}
256

    
257
#else
258

    
259
/* set the jump target */
260
static inline void tb_set_jmp_target(TranslationBlock *tb,
261
                                     int n, unsigned long addr)
262
{
263
    tb->tb_next[n] = addr;
264
}
265

    
266
#endif
267

    
268
static inline void tb_add_jump(TranslationBlock *tb, int n,
269
                               TranslationBlock *tb_next)
270
{
271
    /* NOTE: this test is only needed for thread safety */
272
    if (!tb->jmp_next[n]) {
273
        /* patch the native jump address */
274
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
275

    
276
        /* add in TB jmp circular list */
277
        tb->jmp_next[n] = tb_next->jmp_first;
278
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
279
    }
280
}
281

    
282
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
283

    
284
#ifndef offsetof
285
#define offsetof(type, field) ((size_t) &((type *)0)->field)
286
#endif
287

    
288
#if defined(_WIN32)
289
#define ASM_DATA_SECTION ".section \".data\"\n"
290
#define ASM_PREVIOUS_SECTION ".section .text\n"
291
#elif defined(__APPLE__)
292
#define ASM_DATA_SECTION ".data\n"
293
#define ASM_PREVIOUS_SECTION ".text\n"
294
#else
295
#define ASM_DATA_SECTION ".section \".data\"\n"
296
#define ASM_PREVIOUS_SECTION ".previous\n"
297
#endif
298

    
299
#define ASM_OP_LABEL_NAME(n, opname) \
300
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
301

    
302
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
303
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
304
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
305

    
306
#if defined(__hppa__)
307

    
308
typedef int spinlock_t[4];
309

    
310
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
311

    
312
static inline void resetlock (spinlock_t *p)
313
{
314
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
315
}
316

    
317
#else
318

    
319
typedef int spinlock_t;
320

    
321
#define SPIN_LOCK_UNLOCKED 0
322

    
323
static inline void resetlock (spinlock_t *p)
324
{
325
    *p = SPIN_LOCK_UNLOCKED;
326
}
327

    
328
#endif
329

    
330
#if defined(__powerpc__)
331
static inline int testandset (int *p)
332
{
333
    int ret;
334
    __asm__ __volatile__ (
335
                          "0:    lwarx %0,0,%1\n"
336
                          "      xor. %0,%3,%0\n"
337
                          "      bne 1f\n"
338
                          "      stwcx. %2,0,%1\n"
339
                          "      bne- 0b\n"
340
                          "1:    "
341
                          : "=&r" (ret)
342
                          : "r" (p), "r" (1), "r" (0)
343
                          : "cr0", "memory");
344
    return ret;
345
}
346
#elif defined(__i386__)
347
static inline int testandset (int *p)
348
{
349
    long int readval = 0;
350

    
351
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
352
                          : "+m" (*p), "+a" (readval)
353
                          : "r" (1)
354
                          : "cc");
355
    return readval;
356
}
357
#elif defined(__x86_64__)
358
static inline int testandset (int *p)
359
{
360
    long int readval = 0;
361

    
362
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
363
                          : "+m" (*p), "+a" (readval)
364
                          : "r" (1)
365
                          : "cc");
366
    return readval;
367
}
368
#elif defined(__s390__)
369
static inline int testandset (int *p)
370
{
371
    int ret;
372

    
373
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
374
                          "   jl    0b"
375
                          : "=&d" (ret)
376
                          : "r" (1), "a" (p), "0" (*p)
377
                          : "cc", "memory" );
378
    return ret;
379
}
380
#elif defined(__alpha__)
381
static inline int testandset (int *p)
382
{
383
    int ret;
384
    unsigned long one;
385

    
386
    __asm__ __volatile__ ("0:        mov 1,%2\n"
387
                          "        ldl_l %0,%1\n"
388
                          "        stl_c %2,%1\n"
389
                          "        beq %2,1f\n"
390
                          ".subsection 2\n"
391
                          "1:        br 0b\n"
392
                          ".previous"
393
                          : "=r" (ret), "=m" (*p), "=r" (one)
394
                          : "m" (*p));
395
    return ret;
396
}
397
#elif defined(__sparc__)
398
static inline int testandset (int *p)
399
{
400
        int ret;
401

    
402
        __asm__ __volatile__("ldstub        [%1], %0"
403
                             : "=r" (ret)
404
                             : "r" (p)
405
                             : "memory");
406

    
407
        return (ret ? 1 : 0);
408
}
409
#elif defined(__arm__)
410
static inline int testandset (int *spinlock)
411
{
412
    register unsigned int ret;
413
    __asm__ __volatile__("swp %0, %1, [%2]"
414
                         : "=r"(ret)
415
                         : "0"(1), "r"(spinlock));
416

    
417
    return ret;
418
}
419
#elif defined(__mc68000)
420
static inline int testandset (int *p)
421
{
422
    char ret;
423
    __asm__ __volatile__("tas %1; sne %0"
424
                         : "=r" (ret)
425
                         : "m" (p)
426
                         : "cc","memory");
427
    return ret;
428
}
429
#elif defined(__hppa__)
430

    
431
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
432
   and GCC only guarantees 8-byte alignment for stack locals, we can't
433
   be assured of 16-byte alignment for atomic lock data even if we
434
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
435
   we use a struct containing an array of four ints for the atomic lock
436
   type and dynamically select the 16-byte aligned int from the array
437
   for the semaphore.  */
438
#define __PA_LDCW_ALIGNMENT 16
439
static inline void *ldcw_align (void *p) {
440
    unsigned long a = (unsigned long)p;
441
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
442
    return (void *)a;
443
}
444

    
445
static inline int testandset (spinlock_t *p)
446
{
447
    unsigned int ret;
448
    p = ldcw_align(p);
449
    __asm__ __volatile__("ldcw 0(%1),%0"
450
                         : "=r" (ret)
451
                         : "r" (p)
452
                         : "memory" );
453
    return !ret;
454
}
455

    
456
#elif defined(__ia64)
457

    
458
#include <ia64intrin.h>
459

    
460
static inline int testandset (int *p)
461
{
462
    return __sync_lock_test_and_set (p, 1);
463
}
464
#elif defined(__mips__)
465
static inline int testandset (int *p)
466
{
467
    int ret;
468

    
469
    __asm__ __volatile__ (
470
        "        .set push                \n"
471
        "        .set noat                \n"
472
        "        .set mips2                \n"
473
        "1:        li        $1, 1                \n"
474
        "        ll        %0, %1                \n"
475
        "        sc        $1, %1                \n"
476
        "        beqz        $1, 1b                \n"
477
        "        .set pop                "
478
        : "=r" (ret), "+R" (*p)
479
        :
480
        : "memory");
481

    
482
    return ret;
483
}
484
#else
485
#error unimplemented CPU support
486
#endif
487

    
488
#if defined(CONFIG_USER_ONLY)
489
static inline void spin_lock(spinlock_t *lock)
490
{
491
    while (testandset(lock));
492
}
493

    
494
static inline void spin_unlock(spinlock_t *lock)
495
{
496
    resetlock(lock);
497
}
498

    
499
static inline int spin_trylock(spinlock_t *lock)
500
{
501
    return !testandset(lock);
502
}
503
#else
504
static inline void spin_lock(spinlock_t *lock)
505
{
506
}
507

    
508
static inline void spin_unlock(spinlock_t *lock)
509
{
510
}
511

    
512
static inline int spin_trylock(spinlock_t *lock)
513
{
514
    return 1;
515
}
516
#endif
517

    
518
extern spinlock_t tb_lock;
519

    
520
extern int tb_invalidated_flag;
521

    
522
#if !defined(CONFIG_USER_ONLY)
523

    
524
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
525
              void *retaddr);
526

    
527
#define ACCESS_TYPE (NB_MMU_MODES + 1)
528
#define MEMSUFFIX _code
529
#define env cpu_single_env
530

    
531
#define DATA_SIZE 1
532
#include "softmmu_header.h"
533

    
534
#define DATA_SIZE 2
535
#include "softmmu_header.h"
536

    
537
#define DATA_SIZE 4
538
#include "softmmu_header.h"
539

    
540
#define DATA_SIZE 8
541
#include "softmmu_header.h"
542

    
543
#undef ACCESS_TYPE
544
#undef MEMSUFFIX
545
#undef env
546

    
547
#endif
548

    
549
#if defined(CONFIG_USER_ONLY)
550
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
551
{
552
    return addr;
553
}
554
#else
555
/* NOTE: this function can trigger an exception */
556
/* NOTE2: the returned address is not exactly the physical address: it
557
   is the offset relative to phys_ram_base */
558
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
559
{
560
    int mmu_idx, index, pd;
561

    
562
    index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
563
    mmu_idx = cpu_mmu_index(env);
564
    if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
565
                         (addr & TARGET_PAGE_MASK), 0)) {
566
        ldub_code(addr);
567
    }
568
    pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
569
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
570
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
571
        do_unassigned_access(addr, 0, 1, 0);
572
#else
573
        cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
574
#endif
575
    }
576
    return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
577
}
578
#endif
579

    
580
#ifdef USE_KQEMU
581
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
582

    
583
int kqemu_init(CPUState *env);
584
int kqemu_cpu_exec(CPUState *env);
585
void kqemu_flush_page(CPUState *env, target_ulong addr);
586
void kqemu_flush(CPUState *env, int global);
587
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
588
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
589
void kqemu_cpu_interrupt(CPUState *env);
590
void kqemu_record_dump(void);
591

    
592
static inline int kqemu_is_ok(CPUState *env)
593
{
594
    return(env->kqemu_enabled &&
595
           (env->cr[0] & CR0_PE_MASK) &&
596
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
597
           (env->eflags & IF_MASK) &&
598
           !(env->eflags & VM_MASK) &&
599
           (env->kqemu_enabled == 2 ||
600
            ((env->hflags & HF_CPL_MASK) == 3 &&
601
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
602
}
603

    
604
#endif