Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ 01feec08

History | View | Annotate | Download (85 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21
#include "host-utils.h"
22
#include "helper.h"
23

    
24
#include "helper_regs.h"
25

    
26
//#define DEBUG_OP
27
//#define DEBUG_EXCEPTIONS
28
//#define DEBUG_SOFTWARE_TLB
29

    
30
/*****************************************************************************/
31
/* Exceptions processing helpers */
32

    
33
void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
34
{
35
#if 0
36
    printf("Raise exception %3x code : %d\n", exception, error_code);
37
#endif
38
    env->exception_index = exception;
39
    env->error_code = error_code;
40
    cpu_loop_exit();
41
}
42

    
43
void helper_raise_exception (uint32_t exception)
44
{
45
    helper_raise_exception_err(exception, 0);
46
}
47

    
48
/*****************************************************************************/
49
/* Registers load and stores */
50
target_ulong helper_load_cr (void)
51
{
52
    return (env->crf[0] << 28) |
53
           (env->crf[1] << 24) |
54
           (env->crf[2] << 20) |
55
           (env->crf[3] << 16) |
56
           (env->crf[4] << 12) |
57
           (env->crf[5] << 8) |
58
           (env->crf[6] << 4) |
59
           (env->crf[7] << 0);
60
}
61

    
62
void helper_store_cr (target_ulong val, uint32_t mask)
63
{
64
    int i, sh;
65

    
66
    for (i = 0, sh = 7; i < 8; i++, sh--) {
67
        if (mask & (1 << sh))
68
            env->crf[i] = (val >> (sh * 4)) & 0xFUL;
69
    }
70
}
71

    
72
/*****************************************************************************/
73
/* SPR accesses */
74
void helper_load_dump_spr (uint32_t sprn)
75
{
76
    if (loglevel != 0) {
77
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
78
                sprn, sprn, env->spr[sprn]);
79
    }
80
}
81

    
82
void helper_store_dump_spr (uint32_t sprn)
83
{
84
    if (loglevel != 0) {
85
        fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
86
                sprn, sprn, env->spr[sprn]);
87
    }
88
}
89

    
90
target_ulong helper_load_tbl (void)
91
{
92
    return cpu_ppc_load_tbl(env);
93
}
94

    
95
target_ulong helper_load_tbu (void)
96
{
97
    return cpu_ppc_load_tbu(env);
98
}
99

    
100
target_ulong helper_load_atbl (void)
101
{
102
    return cpu_ppc_load_atbl(env);
103
}
104

    
105
target_ulong helper_load_atbu (void)
106
{
107
    return cpu_ppc_load_atbu(env);
108
}
109

    
110
target_ulong helper_load_601_rtcl (void)
111
{
112
    return cpu_ppc601_load_rtcl(env);
113
}
114

    
115
target_ulong helper_load_601_rtcu (void)
116
{
117
    return cpu_ppc601_load_rtcu(env);
118
}
119

    
120
#if !defined(CONFIG_USER_ONLY)
121
#if defined (TARGET_PPC64)
122
void helper_store_asr (target_ulong val)
123
{
124
    ppc_store_asr(env, val);
125
}
126
#endif
127

    
128
void helper_store_sdr1 (target_ulong val)
129
{
130
    ppc_store_sdr1(env, val);
131
}
132

    
133
void helper_store_tbl (target_ulong val)
134
{
135
    cpu_ppc_store_tbl(env, val);
136
}
137

    
138
void helper_store_tbu (target_ulong val)
139
{
140
    cpu_ppc_store_tbu(env, val);
141
}
142

    
143
void helper_store_atbl (target_ulong val)
144
{
145
    cpu_ppc_store_atbl(env, val);
146
}
147

    
148
void helper_store_atbu (target_ulong val)
149
{
150
    cpu_ppc_store_atbu(env, val);
151
}
152

    
153
void helper_store_601_rtcl (target_ulong val)
154
{
155
    cpu_ppc601_store_rtcl(env, val);
156
}
157

    
158
void helper_store_601_rtcu (target_ulong val)
159
{
160
    cpu_ppc601_store_rtcu(env, val);
161
}
162

    
163
target_ulong helper_load_decr (void)
164
{
165
    return cpu_ppc_load_decr(env);
166
}
167

    
168
void helper_store_decr (target_ulong val)
169
{
170
    cpu_ppc_store_decr(env, val);
171
}
172

    
173
void helper_store_hid0_601 (target_ulong val)
174
{
175
    target_ulong hid0;
176

    
177
    hid0 = env->spr[SPR_HID0];
178
    if ((val ^ hid0) & 0x00000008) {
179
        /* Change current endianness */
180
        env->hflags &= ~(1 << MSR_LE);
181
        env->hflags_nmsr &= ~(1 << MSR_LE);
182
        env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
183
        env->hflags |= env->hflags_nmsr;
184
        if (loglevel != 0) {
185
            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
186
                    __func__, val & 0x8 ? 'l' : 'b', env->hflags);
187
        }
188
    }
189
    env->spr[SPR_HID0] = (uint32_t)val;
190
}
191

    
192
void helper_store_403_pbr (uint32_t num, target_ulong value)
193
{
194
    if (likely(env->pb[num] != value)) {
195
        env->pb[num] = value;
196
        /* Should be optimized */
197
        tlb_flush(env, 1);
198
    }
199
}
200

    
201
target_ulong helper_load_40x_pit (void)
202
{
203
    return load_40x_pit(env);
204
}
205

    
206
void helper_store_40x_pit (target_ulong val)
207
{
208
    store_40x_pit(env, val);
209
}
210

    
211
void helper_store_40x_dbcr0 (target_ulong val)
212
{
213
    store_40x_dbcr0(env, val);
214
}
215

    
216
void helper_store_40x_sler (target_ulong val)
217
{
218
    store_40x_sler(env, val);
219
}
220

    
221
void helper_store_booke_tcr (target_ulong val)
222
{
223
    store_booke_tcr(env, val);
224
}
225

    
226
void helper_store_booke_tsr (target_ulong val)
227
{
228
    store_booke_tsr(env, val);
229
}
230

    
231
void helper_store_ibatu (uint32_t nr, target_ulong val)
232
{
233
    ppc_store_ibatu(env, nr, val);
234
}
235

    
236
void helper_store_ibatl (uint32_t nr, target_ulong val)
237
{
238
    ppc_store_ibatl(env, nr, val);
239
}
240

    
241
void helper_store_dbatu (uint32_t nr, target_ulong val)
242
{
243
    ppc_store_dbatu(env, nr, val);
244
}
245

    
246
void helper_store_dbatl (uint32_t nr, target_ulong val)
247
{
248
    ppc_store_dbatl(env, nr, val);
249
}
250

    
251
void helper_store_601_batl (uint32_t nr, target_ulong val)
252
{
253
    ppc_store_ibatl_601(env, nr, val);
254
}
255

    
256
void helper_store_601_batu (uint32_t nr, target_ulong val)
257
{
258
    ppc_store_ibatu_601(env, nr, val);
259
}
260
#endif
261

    
262
/*****************************************************************************/
263
/* Memory load and stores */
264

    
265
static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
266
{
267
#if defined(TARGET_PPC64)
268
        if (!msr_sf)
269
            return (uint32_t)(addr + arg);
270
        else
271
#endif
272
            return addr + arg;
273
}
274

    
275
void helper_lmw (target_ulong addr, uint32_t reg)
276
{
277
    for (; reg < 32; reg++) {
278
        if (msr_le)
279
            env->gpr[reg] = bswap32(ldl(addr));
280
        else
281
            env->gpr[reg] = ldl(addr);
282
        addr = addr_add(addr, 4);
283
    }
284
}
285

    
286
void helper_stmw (target_ulong addr, uint32_t reg)
287
{
288
    for (; reg < 32; reg++) {
289
        if (msr_le)
290
            stl(addr, bswap32((uint32_t)env->gpr[reg]));
291
        else
292
            stl(addr, (uint32_t)env->gpr[reg]);
293
        addr = addr_add(addr, 4);
294
    }
295
}
296

    
297
void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
298
{
299
    int sh;
300
    for (; nb > 3; nb -= 4) {
301
        env->gpr[reg] = ldl(addr);
302
        reg = (reg + 1) % 32;
303
        addr = addr_add(addr, 4);
304
    }
305
    if (unlikely(nb > 0)) {
306
        env->gpr[reg] = 0;
307
        for (sh = 24; nb > 0; nb--, sh -= 8) {
308
            env->gpr[reg] |= ldub(addr) << sh;
309
            addr = addr_add(addr, 1);
310
        }
311
    }
312
}
313
/* PPC32 specification says we must generate an exception if
314
 * rA is in the range of registers to be loaded.
315
 * In an other hand, IBM says this is valid, but rA won't be loaded.
316
 * For now, I'll follow the spec...
317
 */
318
void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
319
{
320
    if (likely(xer_bc != 0)) {
321
        if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
322
                     (reg < rb && (reg + xer_bc) > rb))) {
323
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
324
                                       POWERPC_EXCP_INVAL |
325
                                       POWERPC_EXCP_INVAL_LSWX);
326
        } else {
327
            helper_lsw(addr, xer_bc, reg);
328
        }
329
    }
330
}
331

    
332
void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
333
{
334
    int sh;
335
    for (; nb > 3; nb -= 4) {
336
        stl(addr, env->gpr[reg]);
337
        reg = (reg + 1) % 32;
338
        addr = addr_add(addr, 4);
339
    }
340
    if (unlikely(nb > 0)) {
341
        for (sh = 24; nb > 0; nb--, sh -= 8)
342
            stb(addr, (env->gpr[reg] >> sh) & 0xFF);
343
            addr = addr_add(addr, 1);
344
    }
345
}
346

    
347
static void do_dcbz(target_ulong addr, int dcache_line_size)
348
{
349
    addr &= ~(dcache_line_size - 1);
350
    int i;
351
    for (i = 0 ; i < dcache_line_size ; i += 4) {
352
        stl(addr + i , 0);
353
    }
354
    if (env->reserve == addr)
355
        env->reserve = (target_ulong)-1ULL;
356
}
357

    
358
void helper_dcbz(target_ulong addr)
359
{
360
    do_dcbz(addr, env->dcache_line_size);
361
}
362

    
363
void helper_dcbz_970(target_ulong addr)
364
{
365
    if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
366
        do_dcbz(addr, 32);
367
    else
368
        do_dcbz(addr, env->dcache_line_size);
369
}
370

    
371
void helper_icbi(target_ulong addr)
372
{
373
    uint32_t tmp;
374

    
375
    addr &= ~(env->dcache_line_size - 1);
376
    /* Invalidate one cache line :
377
     * PowerPC specification says this is to be treated like a load
378
     * (not a fetch) by the MMU. To be sure it will be so,
379
     * do the load "by hand".
380
     */
381
    tmp = ldl(addr);
382
    tb_invalidate_page_range(addr, addr + env->icache_line_size);
383
}
384

    
385
// XXX: to be tested
386
target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
387
{
388
    int i, c, d;
389
    d = 24;
390
    for (i = 0; i < xer_bc; i++) {
391
        c = ldub(addr);
392
        addr = addr_add(addr, 1);
393
        /* ra (if not 0) and rb are never modified */
394
        if (likely(reg != rb && (ra == 0 || reg != ra))) {
395
            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
396
        }
397
        if (unlikely(c == xer_cmp))
398
            break;
399
        if (likely(d != 0)) {
400
            d -= 8;
401
        } else {
402
            d = 24;
403
            reg++;
404
            reg = reg & 0x1F;
405
        }
406
    }
407
    return i;
408
}
409

    
410
/*****************************************************************************/
411
/* Fixed point operations helpers */
412
#if defined(TARGET_PPC64)
413

    
414
/* multiply high word */
415
uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
416
{
417
    uint64_t tl, th;
418

    
419
    muls64(&tl, &th, arg1, arg2);
420
    return th;
421
}
422

    
423
/* multiply high word unsigned */
424
uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
425
{
426
    uint64_t tl, th;
427

    
428
    mulu64(&tl, &th, arg1, arg2);
429
    return th;
430
}
431

    
432
uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
433
{
434
    int64_t th;
435
    uint64_t tl;
436

    
437
    muls64(&tl, (uint64_t *)&th, arg1, arg2);
438
    /* If th != 0 && th != -1, then we had an overflow */
439
    if (likely((uint64_t)(th + 1) <= 1)) {
440
        env->xer &= ~(1 << XER_OV);
441
    } else {
442
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
443
    }
444
    return (int64_t)tl;
445
}
446
#endif
447

    
448
target_ulong helper_cntlzw (target_ulong t)
449
{
450
    return clz32(t);
451
}
452

    
453
#if defined(TARGET_PPC64)
454
target_ulong helper_cntlzd (target_ulong t)
455
{
456
    return clz64(t);
457
}
458
#endif
459

    
460
/* shift right arithmetic helper */
461
target_ulong helper_sraw (target_ulong value, target_ulong shift)
462
{
463
    int32_t ret;
464

    
465
    if (likely(!(shift & 0x20))) {
466
        if (likely((uint32_t)shift != 0)) {
467
            shift &= 0x1f;
468
            ret = (int32_t)value >> shift;
469
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
470
                env->xer &= ~(1 << XER_CA);
471
            } else {
472
                env->xer |= (1 << XER_CA);
473
            }
474
        } else {
475
            ret = (int32_t)value;
476
            env->xer &= ~(1 << XER_CA);
477
        }
478
    } else {
479
        ret = (int32_t)value >> 31;
480
        if (ret) {
481
            env->xer |= (1 << XER_CA);
482
        } else {
483
            env->xer &= ~(1 << XER_CA);
484
        }
485
    }
486
    return (target_long)ret;
487
}
488

    
489
#if defined(TARGET_PPC64)
490
target_ulong helper_srad (target_ulong value, target_ulong shift)
491
{
492
    int64_t ret;
493

    
494
    if (likely(!(shift & 0x40))) {
495
        if (likely((uint64_t)shift != 0)) {
496
            shift &= 0x3f;
497
            ret = (int64_t)value >> shift;
498
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
499
                env->xer &= ~(1 << XER_CA);
500
            } else {
501
                env->xer |= (1 << XER_CA);
502
            }
503
        } else {
504
            ret = (int64_t)value;
505
            env->xer &= ~(1 << XER_CA);
506
        }
507
    } else {
508
        ret = (int64_t)value >> 63;
509
        if (ret) {
510
            env->xer |= (1 << XER_CA);
511
        } else {
512
            env->xer &= ~(1 << XER_CA);
513
        }
514
    }
515
    return ret;
516
}
517
#endif
518

    
519
target_ulong helper_popcntb (target_ulong val)
520
{
521
    val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
522
    val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
523
    val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
524
    return val;
525
}
526

    
527
#if defined(TARGET_PPC64)
528
target_ulong helper_popcntb_64 (target_ulong val)
529
{
530
    val = (val & 0x5555555555555555ULL) + ((val >>  1) & 0x5555555555555555ULL);
531
    val = (val & 0x3333333333333333ULL) + ((val >>  2) & 0x3333333333333333ULL);
532
    val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & 0x0f0f0f0f0f0f0f0fULL);
533
    return val;
534
}
535
#endif
536

    
537
/*****************************************************************************/
538
/* Floating point operations helpers */
539
uint64_t helper_float32_to_float64(uint32_t arg)
540
{
541
    CPU_FloatU f;
542
    CPU_DoubleU d;
543
    f.l = arg;
544
    d.d = float32_to_float64(f.f, &env->fp_status);
545
    return d.ll;
546
}
547

    
548
uint32_t helper_float64_to_float32(uint64_t arg)
549
{
550
    CPU_FloatU f;
551
    CPU_DoubleU d;
552
    d.ll = arg;
553
    f.f = float64_to_float32(d.d, &env->fp_status);
554
    return f.l;
555
}
556

    
557
static always_inline int isden (float64 d)
558
{
559
    CPU_DoubleU u;
560

    
561
    u.d = d;
562

    
563
    return ((u.ll >> 52) & 0x7FF) == 0;
564
}
565

    
566
#ifdef CONFIG_SOFTFLOAT
567
static always_inline int isnormal (float64 d)
568
{
569
    CPU_DoubleU u;
570

    
571
    u.d = d;
572

    
573
    uint32_t exp = (u.ll >> 52) & 0x7FF;
574
    return ((0 < exp) && (exp < 0x7FF));
575
}
576
#endif
577

    
578
uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
579
{
580
    CPU_DoubleU farg;
581
    int isneg;
582
    int ret;
583
    farg.ll = arg;
584
    isneg = float64_is_neg(farg.d);
585
    if (unlikely(float64_is_nan(farg.d))) {
586
        if (float64_is_signaling_nan(farg.d)) {
587
            /* Signaling NaN: flags are undefined */
588
            ret = 0x00;
589
        } else {
590
            /* Quiet NaN */
591
            ret = 0x11;
592
        }
593
    } else if (unlikely(float64_is_infinity(farg.d))) {
594
        /* +/- infinity */
595
        if (isneg)
596
            ret = 0x09;
597
        else
598
            ret = 0x05;
599
    } else {
600
        if (float64_is_zero(farg.d)) {
601
            /* +/- zero */
602
            if (isneg)
603
                ret = 0x12;
604
            else
605
                ret = 0x02;
606
        } else {
607
            if (isden(farg.d)) {
608
                /* Denormalized numbers */
609
                ret = 0x10;
610
            } else {
611
                /* Normalized numbers */
612
                ret = 0x00;
613
            }
614
            if (isneg) {
615
                ret |= 0x08;
616
            } else {
617
                ret |= 0x04;
618
            }
619
        }
620
    }
621
    if (set_fprf) {
622
        /* We update FPSCR_FPRF */
623
        env->fpscr &= ~(0x1F << FPSCR_FPRF);
624
        env->fpscr |= ret << FPSCR_FPRF;
625
    }
626
    /* We just need fpcc to update Rc1 */
627
    return ret & 0xF;
628
}
629

    
630
/* Floating-point invalid operations exception */
631
static always_inline uint64_t fload_invalid_op_excp (int op)
632
{
633
    uint64_t ret = 0;
634
    int ve;
635

    
636
    ve = fpscr_ve;
637
    switch (op) {
638
    case POWERPC_EXCP_FP_VXSNAN:
639
        env->fpscr |= 1 << FPSCR_VXSNAN;
640
        break;
641
    case POWERPC_EXCP_FP_VXSOFT:
642
        env->fpscr |= 1 << FPSCR_VXSOFT;
643
        break;
644
    case POWERPC_EXCP_FP_VXISI:
645
        /* Magnitude subtraction of infinities */
646
        env->fpscr |= 1 << FPSCR_VXISI;
647
        goto update_arith;
648
    case POWERPC_EXCP_FP_VXIDI:
649
        /* Division of infinity by infinity */
650
        env->fpscr |= 1 << FPSCR_VXIDI;
651
        goto update_arith;
652
    case POWERPC_EXCP_FP_VXZDZ:
653
        /* Division of zero by zero */
654
        env->fpscr |= 1 << FPSCR_VXZDZ;
655
        goto update_arith;
656
    case POWERPC_EXCP_FP_VXIMZ:
657
        /* Multiplication of zero by infinity */
658
        env->fpscr |= 1 << FPSCR_VXIMZ;
659
        goto update_arith;
660
    case POWERPC_EXCP_FP_VXVC:
661
        /* Ordered comparison of NaN */
662
        env->fpscr |= 1 << FPSCR_VXVC;
663
        env->fpscr &= ~(0xF << FPSCR_FPCC);
664
        env->fpscr |= 0x11 << FPSCR_FPCC;
665
        /* We must update the target FPR before raising the exception */
666
        if (ve != 0) {
667
            env->exception_index = POWERPC_EXCP_PROGRAM;
668
            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
669
            /* Update the floating-point enabled exception summary */
670
            env->fpscr |= 1 << FPSCR_FEX;
671
            /* Exception is differed */
672
            ve = 0;
673
        }
674
        break;
675
    case POWERPC_EXCP_FP_VXSQRT:
676
        /* Square root of a negative number */
677
        env->fpscr |= 1 << FPSCR_VXSQRT;
678
    update_arith:
679
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
680
        if (ve == 0) {
681
            /* Set the result to quiet NaN */
682
            ret = 0xFFF8000000000000ULL;
683
            env->fpscr &= ~(0xF << FPSCR_FPCC);
684
            env->fpscr |= 0x11 << FPSCR_FPCC;
685
        }
686
        break;
687
    case POWERPC_EXCP_FP_VXCVI:
688
        /* Invalid conversion */
689
        env->fpscr |= 1 << FPSCR_VXCVI;
690
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
691
        if (ve == 0) {
692
            /* Set the result to quiet NaN */
693
            ret = 0xFFF8000000000000ULL;
694
            env->fpscr &= ~(0xF << FPSCR_FPCC);
695
            env->fpscr |= 0x11 << FPSCR_FPCC;
696
        }
697
        break;
698
    }
699
    /* Update the floating-point invalid operation summary */
700
    env->fpscr |= 1 << FPSCR_VX;
701
    /* Update the floating-point exception summary */
702
    env->fpscr |= 1 << FPSCR_FX;
703
    if (ve != 0) {
704
        /* Update the floating-point enabled exception summary */
705
        env->fpscr |= 1 << FPSCR_FEX;
706
        if (msr_fe0 != 0 || msr_fe1 != 0)
707
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
708
    }
709
    return ret;
710
}
711

    
712
static always_inline uint64_t float_zero_divide_excp (uint64_t arg1, uint64_t arg2)
713
{
714
    env->fpscr |= 1 << FPSCR_ZX;
715
    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
716
    /* Update the floating-point exception summary */
717
    env->fpscr |= 1 << FPSCR_FX;
718
    if (fpscr_ze != 0) {
719
        /* Update the floating-point enabled exception summary */
720
        env->fpscr |= 1 << FPSCR_FEX;
721
        if (msr_fe0 != 0 || msr_fe1 != 0) {
722
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
723
                                       POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
724
        }
725
    } else {
726
        /* Set the result to infinity */
727
        arg1 = ((arg1 ^ arg2) & 0x8000000000000000ULL);
728
        arg1 |= 0x7FFULL << 52;
729
    }
730
    return arg1;
731
}
732

    
733
static always_inline void float_overflow_excp (void)
734
{
735
    env->fpscr |= 1 << FPSCR_OX;
736
    /* Update the floating-point exception summary */
737
    env->fpscr |= 1 << FPSCR_FX;
738
    if (fpscr_oe != 0) {
739
        /* XXX: should adjust the result */
740
        /* Update the floating-point enabled exception summary */
741
        env->fpscr |= 1 << FPSCR_FEX;
742
        /* We must update the target FPR before raising the exception */
743
        env->exception_index = POWERPC_EXCP_PROGRAM;
744
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
745
    } else {
746
        env->fpscr |= 1 << FPSCR_XX;
747
        env->fpscr |= 1 << FPSCR_FI;
748
    }
749
}
750

    
751
static always_inline void float_underflow_excp (void)
752
{
753
    env->fpscr |= 1 << FPSCR_UX;
754
    /* Update the floating-point exception summary */
755
    env->fpscr |= 1 << FPSCR_FX;
756
    if (fpscr_ue != 0) {
757
        /* XXX: should adjust the result */
758
        /* Update the floating-point enabled exception summary */
759
        env->fpscr |= 1 << FPSCR_FEX;
760
        /* We must update the target FPR before raising the exception */
761
        env->exception_index = POWERPC_EXCP_PROGRAM;
762
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
763
    }
764
}
765

    
766
static always_inline void float_inexact_excp (void)
767
{
768
    env->fpscr |= 1 << FPSCR_XX;
769
    /* Update the floating-point exception summary */
770
    env->fpscr |= 1 << FPSCR_FX;
771
    if (fpscr_xe != 0) {
772
        /* Update the floating-point enabled exception summary */
773
        env->fpscr |= 1 << FPSCR_FEX;
774
        /* We must update the target FPR before raising the exception */
775
        env->exception_index = POWERPC_EXCP_PROGRAM;
776
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
777
    }
778
}
779

    
780
static always_inline void fpscr_set_rounding_mode (void)
781
{
782
    int rnd_type;
783

    
784
    /* Set rounding mode */
785
    switch (fpscr_rn) {
786
    case 0:
787
        /* Best approximation (round to nearest) */
788
        rnd_type = float_round_nearest_even;
789
        break;
790
    case 1:
791
        /* Smaller magnitude (round toward zero) */
792
        rnd_type = float_round_to_zero;
793
        break;
794
    case 2:
795
        /* Round toward +infinite */
796
        rnd_type = float_round_up;
797
        break;
798
    default:
799
    case 3:
800
        /* Round toward -infinite */
801
        rnd_type = float_round_down;
802
        break;
803
    }
804
    set_float_rounding_mode(rnd_type, &env->fp_status);
805
}
806

    
807
void helper_fpscr_clrbit (uint32_t bit)
808
{
809
    int prev;
810

    
811
    prev = (env->fpscr >> bit) & 1;
812
    env->fpscr &= ~(1 << bit);
813
    if (prev == 1) {
814
        switch (bit) {
815
        case FPSCR_RN1:
816
        case FPSCR_RN:
817
            fpscr_set_rounding_mode();
818
            break;
819
        default:
820
            break;
821
        }
822
    }
823
}
824

    
825
void helper_fpscr_setbit (uint32_t bit)
826
{
827
    int prev;
828

    
829
    prev = (env->fpscr >> bit) & 1;
830
    env->fpscr |= 1 << bit;
831
    if (prev == 0) {
832
        switch (bit) {
833
        case FPSCR_VX:
834
            env->fpscr |= 1 << FPSCR_FX;
835
            if (fpscr_ve)
836
                goto raise_ve;
837
        case FPSCR_OX:
838
            env->fpscr |= 1 << FPSCR_FX;
839
            if (fpscr_oe)
840
                goto raise_oe;
841
            break;
842
        case FPSCR_UX:
843
            env->fpscr |= 1 << FPSCR_FX;
844
            if (fpscr_ue)
845
                goto raise_ue;
846
            break;
847
        case FPSCR_ZX:
848
            env->fpscr |= 1 << FPSCR_FX;
849
            if (fpscr_ze)
850
                goto raise_ze;
851
            break;
852
        case FPSCR_XX:
853
            env->fpscr |= 1 << FPSCR_FX;
854
            if (fpscr_xe)
855
                goto raise_xe;
856
            break;
857
        case FPSCR_VXSNAN:
858
        case FPSCR_VXISI:
859
        case FPSCR_VXIDI:
860
        case FPSCR_VXZDZ:
861
        case FPSCR_VXIMZ:
862
        case FPSCR_VXVC:
863
        case FPSCR_VXSOFT:
864
        case FPSCR_VXSQRT:
865
        case FPSCR_VXCVI:
866
            env->fpscr |= 1 << FPSCR_VX;
867
            env->fpscr |= 1 << FPSCR_FX;
868
            if (fpscr_ve != 0)
869
                goto raise_ve;
870
            break;
871
        case FPSCR_VE:
872
            if (fpscr_vx != 0) {
873
            raise_ve:
874
                env->error_code = POWERPC_EXCP_FP;
875
                if (fpscr_vxsnan)
876
                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
877
                if (fpscr_vxisi)
878
                    env->error_code |= POWERPC_EXCP_FP_VXISI;
879
                if (fpscr_vxidi)
880
                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
881
                if (fpscr_vxzdz)
882
                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
883
                if (fpscr_vximz)
884
                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
885
                if (fpscr_vxvc)
886
                    env->error_code |= POWERPC_EXCP_FP_VXVC;
887
                if (fpscr_vxsoft)
888
                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
889
                if (fpscr_vxsqrt)
890
                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
891
                if (fpscr_vxcvi)
892
                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
893
                goto raise_excp;
894
            }
895
            break;
896
        case FPSCR_OE:
897
            if (fpscr_ox != 0) {
898
            raise_oe:
899
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
900
                goto raise_excp;
901
            }
902
            break;
903
        case FPSCR_UE:
904
            if (fpscr_ux != 0) {
905
            raise_ue:
906
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
907
                goto raise_excp;
908
            }
909
            break;
910
        case FPSCR_ZE:
911
            if (fpscr_zx != 0) {
912
            raise_ze:
913
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
914
                goto raise_excp;
915
            }
916
            break;
917
        case FPSCR_XE:
918
            if (fpscr_xx != 0) {
919
            raise_xe:
920
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
921
                goto raise_excp;
922
            }
923
            break;
924
        case FPSCR_RN1:
925
        case FPSCR_RN:
926
            fpscr_set_rounding_mode();
927
            break;
928
        default:
929
            break;
930
        raise_excp:
931
            /* Update the floating-point enabled exception summary */
932
            env->fpscr |= 1 << FPSCR_FEX;
933
                /* We have to update Rc1 before raising the exception */
934
            env->exception_index = POWERPC_EXCP_PROGRAM;
935
            break;
936
        }
937
    }
938
}
939

    
940
void helper_store_fpscr (uint64_t arg, uint32_t mask)
941
{
942
    /*
943
     * We use only the 32 LSB of the incoming fpr
944
     */
945
    uint32_t prev, new;
946
    int i;
947

    
948
    prev = env->fpscr;
949
    new = (uint32_t)arg;
950
    new &= ~0x60000000;
951
    new |= prev & 0x60000000;
952
    for (i = 0; i < 8; i++) {
953
        if (mask & (1 << i)) {
954
            env->fpscr &= ~(0xF << (4 * i));
955
            env->fpscr |= new & (0xF << (4 * i));
956
        }
957
    }
958
    /* Update VX and FEX */
959
    if (fpscr_ix != 0)
960
        env->fpscr |= 1 << FPSCR_VX;
961
    else
962
        env->fpscr &= ~(1 << FPSCR_VX);
963
    if ((fpscr_ex & fpscr_eex) != 0) {
964
        env->fpscr |= 1 << FPSCR_FEX;
965
        env->exception_index = POWERPC_EXCP_PROGRAM;
966
        /* XXX: we should compute it properly */
967
        env->error_code = POWERPC_EXCP_FP;
968
    }
969
    else
970
        env->fpscr &= ~(1 << FPSCR_FEX);
971
    fpscr_set_rounding_mode();
972
}
973

    
974
void helper_float_check_status (void)
975
{
976
#ifdef CONFIG_SOFTFLOAT
977
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
978
        (env->error_code & POWERPC_EXCP_FP)) {
979
        /* Differred floating-point exception after target FPR update */
980
        if (msr_fe0 != 0 || msr_fe1 != 0)
981
            helper_raise_exception_err(env->exception_index, env->error_code);
982
    } else {
983
        int status = get_float_exception_flags(&env->fp_status);
984
        if (status & float_flag_overflow) {
985
            float_overflow_excp();
986
        } else if (status & float_flag_underflow) {
987
            float_underflow_excp();
988
        } else if (status & float_flag_inexact) {
989
            float_inexact_excp();
990
        }
991
    }
992
#else
993
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
994
        (env->error_code & POWERPC_EXCP_FP)) {
995
        /* Differred floating-point exception after target FPR update */
996
        if (msr_fe0 != 0 || msr_fe1 != 0)
997
            helper_raise_exception_err(env->exception_index, env->error_code);
998
    }
999
#endif
1000
}
1001

    
1002
#ifdef CONFIG_SOFTFLOAT
1003
void helper_reset_fpstatus (void)
1004
{
1005
    set_float_exception_flags(0, &env->fp_status);
1006
}
1007
#endif
1008

    
1009
/* fadd - fadd. */
1010
uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
1011
{
1012
    CPU_DoubleU farg1, farg2;
1013

    
1014
    farg1.ll = arg1;
1015
    farg2.ll = arg2;
1016
#if USE_PRECISE_EMULATION
1017
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1018
                 float64_is_signaling_nan(farg2.d))) {
1019
        /* sNaN addition */
1020
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1021
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1022
                      float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1023
        /* Magnitude subtraction of infinities */
1024
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1025
    } else {
1026
        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1027
    }
1028
#else
1029
    farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1030
#endif
1031
    return farg1.ll;
1032
}
1033

    
1034
/* fsub - fsub. */
1035
uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1036
{
1037
    CPU_DoubleU farg1, farg2;
1038

    
1039
    farg1.ll = arg1;
1040
    farg2.ll = arg2;
1041
#if USE_PRECISE_EMULATION
1042
{
1043
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1044
                 float64_is_signaling_nan(farg2.d))) {
1045
        /* sNaN subtraction */
1046
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1047
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1048
                      float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1049
        /* Magnitude subtraction of infinities */
1050
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1051
    } else {
1052
        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1053
    }
1054
}
1055
#else
1056
    farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1057
#endif
1058
    return farg1.ll;
1059
}
1060

    
1061
/* fmul - fmul. */
1062
uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1063
{
1064
    CPU_DoubleU farg1, farg2;
1065

    
1066
    farg1.ll = arg1;
1067
    farg2.ll = arg2;
1068
#if USE_PRECISE_EMULATION
1069
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1070
                 float64_is_signaling_nan(farg2.d))) {
1071
        /* sNaN multiplication */
1072
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1073
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1074
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1075
        /* Multiplication of zero by infinity */
1076
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1077
    } else {
1078
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1079
    }
1080
#else
1081
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1082
#endif
1083
    return farg1.ll;
1084
}
1085

    
1086
/* fdiv - fdiv. */
1087
uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1088
{
1089
    CPU_DoubleU farg1, farg2;
1090

    
1091
    farg1.ll = arg1;
1092
    farg2.ll = arg2;
1093
#if USE_PRECISE_EMULATION
1094
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1095
                 float64_is_signaling_nan(farg2.d))) {
1096
        /* sNaN division */
1097
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1098
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1099
        /* Division of infinity by infinity */
1100
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1101
    } else if (unlikely(!float64_is_nan(farg1.d) && float64_is_zero(farg2.d))) {
1102
        if (float64_is_zero(farg1.d)) {
1103
            /* Division of zero by zero */
1104
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1105
        } else {
1106
            /* Division by zero */
1107
            farg1.ll = float_zero_divide_excp(farg1.d, farg2.d);
1108
        }
1109
    } else {
1110
        farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1111
    }
1112
#else
1113
    farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1114
#endif
1115
    return farg1.ll;
1116
}
1117

    
1118
/* fabs */
1119
uint64_t helper_fabs (uint64_t arg)
1120
{
1121
    CPU_DoubleU farg;
1122

    
1123
    farg.ll = arg;
1124
    farg.d = float64_abs(farg.d);
1125
    return farg.ll;
1126
}
1127

    
1128
/* fnabs */
1129
uint64_t helper_fnabs (uint64_t arg)
1130
{
1131
    CPU_DoubleU farg;
1132

    
1133
    farg.ll = arg;
1134
    farg.d = float64_abs(farg.d);
1135
    farg.d = float64_chs(farg.d);
1136
    return farg.ll;
1137
}
1138

    
1139
/* fneg */
1140
uint64_t helper_fneg (uint64_t arg)
1141
{
1142
    CPU_DoubleU farg;
1143

    
1144
    farg.ll = arg;
1145
    farg.d = float64_chs(farg.d);
1146
    return farg.ll;
1147
}
1148

    
1149
/* fctiw - fctiw. */
1150
uint64_t helper_fctiw (uint64_t arg)
1151
{
1152
    CPU_DoubleU farg;
1153
    farg.ll = arg;
1154

    
1155
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1156
        /* sNaN conversion */
1157
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1158
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1159
        /* qNan / infinity conversion */
1160
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1161
    } else {
1162
        farg.ll = float64_to_int32(farg.d, &env->fp_status);
1163
#if USE_PRECISE_EMULATION
1164
        /* XXX: higher bits are not supposed to be significant.
1165
         *     to make tests easier, return the same as a real PowerPC 750
1166
         */
1167
        farg.ll |= 0xFFF80000ULL << 32;
1168
#endif
1169
    }
1170
    return farg.ll;
1171
}
1172

    
1173
/* fctiwz - fctiwz. */
1174
uint64_t helper_fctiwz (uint64_t arg)
1175
{
1176
    CPU_DoubleU farg;
1177
    farg.ll = arg;
1178

    
1179
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1180
        /* sNaN conversion */
1181
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1182
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1183
        /* qNan / infinity conversion */
1184
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1185
    } else {
1186
        farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1187
#if USE_PRECISE_EMULATION
1188
        /* XXX: higher bits are not supposed to be significant.
1189
         *     to make tests easier, return the same as a real PowerPC 750
1190
         */
1191
        farg.ll |= 0xFFF80000ULL << 32;
1192
#endif
1193
    }
1194
    return farg.ll;
1195
}
1196

    
1197
#if defined(TARGET_PPC64)
1198
/* fcfid - fcfid. */
1199
uint64_t helper_fcfid (uint64_t arg)
1200
{
1201
    CPU_DoubleU farg;
1202
    farg.d = int64_to_float64(arg, &env->fp_status);
1203
    return farg.ll;
1204
}
1205

    
1206
/* fctid - fctid. */
1207
uint64_t helper_fctid (uint64_t arg)
1208
{
1209
    CPU_DoubleU farg;
1210
    farg.ll = arg;
1211

    
1212
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1213
        /* sNaN conversion */
1214
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1215
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1216
        /* qNan / infinity conversion */
1217
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1218
    } else {
1219
        farg.ll = float64_to_int64(farg.d, &env->fp_status);
1220
    }
1221
    return farg.ll;
1222
}
1223

    
1224
/* fctidz - fctidz. */
1225
uint64_t helper_fctidz (uint64_t arg)
1226
{
1227
    CPU_DoubleU farg;
1228
    farg.ll = arg;
1229

    
1230
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1231
        /* sNaN conversion */
1232
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1233
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1234
        /* qNan / infinity conversion */
1235
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1236
    } else {
1237
        farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1238
    }
1239
    return farg.ll;
1240
}
1241

    
1242
#endif
1243

    
1244
static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1245
{
1246
    CPU_DoubleU farg;
1247
    farg.ll = arg;
1248

    
1249
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1250
        /* sNaN round */
1251
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1252
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1253
        /* qNan / infinity round */
1254
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1255
    } else {
1256
        set_float_rounding_mode(rounding_mode, &env->fp_status);
1257
        farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1258
        /* Restore rounding mode from FPSCR */
1259
        fpscr_set_rounding_mode();
1260
    }
1261
    return farg.ll;
1262
}
1263

    
1264
uint64_t helper_frin (uint64_t arg)
1265
{
1266
    return do_fri(arg, float_round_nearest_even);
1267
}
1268

    
1269
uint64_t helper_friz (uint64_t arg)
1270
{
1271
    return do_fri(arg, float_round_to_zero);
1272
}
1273

    
1274
uint64_t helper_frip (uint64_t arg)
1275
{
1276
    return do_fri(arg, float_round_up);
1277
}
1278

    
1279
uint64_t helper_frim (uint64_t arg)
1280
{
1281
    return do_fri(arg, float_round_down);
1282
}
1283

    
1284
/* fmadd - fmadd. */
1285
uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1286
{
1287
    CPU_DoubleU farg1, farg2, farg3;
1288

    
1289
    farg1.ll = arg1;
1290
    farg2.ll = arg2;
1291
    farg3.ll = arg3;
1292
#if USE_PRECISE_EMULATION
1293
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1294
                 float64_is_signaling_nan(farg2.d) ||
1295
                 float64_is_signaling_nan(farg3.d))) {
1296
        /* sNaN operation */
1297
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1298
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1299
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1300
        /* Multiplication of zero by infinity */
1301
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1302
    } else {
1303
#ifdef FLOAT128
1304
        /* This is the way the PowerPC specification defines it */
1305
        float128 ft0_128, ft1_128;
1306

    
1307
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1308
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1309
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1310
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1311
                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1312
            /* Magnitude subtraction of infinities */
1313
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1314
        } else {
1315
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1316
            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1317
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1318
        }
1319
#else
1320
        /* This is OK on x86 hosts */
1321
        farg1.d = (farg1.d * farg2.d) + farg3.d;
1322
#endif
1323
    }
1324
#else
1325
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1326
    farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1327
#endif
1328
    return farg1.ll;
1329
}
1330

    
1331
/* fmsub - fmsub. */
1332
uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1333
{
1334
    CPU_DoubleU farg1, farg2, farg3;
1335

    
1336
    farg1.ll = arg1;
1337
    farg2.ll = arg2;
1338
    farg3.ll = arg3;
1339
#if USE_PRECISE_EMULATION
1340
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1341
                 float64_is_signaling_nan(farg2.d) ||
1342
                 float64_is_signaling_nan(farg3.d))) {
1343
        /* sNaN operation */
1344
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1345
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1346
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1347
        /* Multiplication of zero by infinity */
1348
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1349
    } else {
1350
#ifdef FLOAT128
1351
        /* This is the way the PowerPC specification defines it */
1352
        float128 ft0_128, ft1_128;
1353

    
1354
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1355
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1356
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1357
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1358
                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1359
            /* Magnitude subtraction of infinities */
1360
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1361
        } else {
1362
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1363
            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1364
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1365
        }
1366
#else
1367
        /* This is OK on x86 hosts */
1368
        farg1.d = (farg1.d * farg2.d) - farg3.d;
1369
#endif
1370
    }
1371
#else
1372
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1373
    farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1374
#endif
1375
    return farg1.ll;
1376
}
1377

    
1378
/* fnmadd - fnmadd. */
1379
uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1380
{
1381
    CPU_DoubleU farg1, farg2, farg3;
1382

    
1383
    farg1.ll = arg1;
1384
    farg2.ll = arg2;
1385
    farg3.ll = arg3;
1386

    
1387
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1388
                 float64_is_signaling_nan(farg2.d) ||
1389
                 float64_is_signaling_nan(farg3.d))) {
1390
        /* sNaN operation */
1391
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1392
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1393
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1394
        /* Multiplication of zero by infinity */
1395
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1396
    } else {
1397
#if USE_PRECISE_EMULATION
1398
#ifdef FLOAT128
1399
        /* This is the way the PowerPC specification defines it */
1400
        float128 ft0_128, ft1_128;
1401

    
1402
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1403
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1404
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1405
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1406
                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1407
            /* Magnitude subtraction of infinities */
1408
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1409
        } else {
1410
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1411
            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1412
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1413
        }
1414
#else
1415
        /* This is OK on x86 hosts */
1416
        farg1.d = (farg1.d * farg2.d) + farg3.d;
1417
#endif
1418
#else
1419
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1420
        farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1421
#endif
1422
        if (likely(!float64_is_nan(farg1.d)))
1423
            farg1.d = float64_chs(farg1.d);
1424
    }
1425
    return farg1.ll;
1426
}
1427

    
1428
/* fnmsub - fnmsub. */
1429
uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1430
{
1431
    CPU_DoubleU farg1, farg2, farg3;
1432

    
1433
    farg1.ll = arg1;
1434
    farg2.ll = arg2;
1435
    farg3.ll = arg3;
1436

    
1437
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1438
                 float64_is_signaling_nan(farg2.d) ||
1439
                 float64_is_signaling_nan(farg3.d))) {
1440
        /* sNaN operation */
1441
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1442
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1443
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1444
        /* Multiplication of zero by infinity */
1445
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1446
    } else {
1447
#if USE_PRECISE_EMULATION
1448
#ifdef FLOAT128
1449
        /* This is the way the PowerPC specification defines it */
1450
        float128 ft0_128, ft1_128;
1451

    
1452
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1453
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1454
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1455
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1456
                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1457
            /* Magnitude subtraction of infinities */
1458
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1459
        } else {
1460
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1461
            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1462
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1463
        }
1464
#else
1465
        /* This is OK on x86 hosts */
1466
        farg1.d = (farg1.d * farg2.d) - farg3.d;
1467
#endif
1468
#else
1469
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1470
        farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1471
#endif
1472
        if (likely(!float64_is_nan(farg1.d)))
1473
            farg1.d = float64_chs(farg1.d);
1474
    }
1475
    return farg1.ll;
1476
}
1477

    
1478
/* frsp - frsp. */
1479
uint64_t helper_frsp (uint64_t arg)
1480
{
1481
    CPU_DoubleU farg;
1482
    float32 f32;
1483
    farg.ll = arg;
1484

    
1485
#if USE_PRECISE_EMULATION
1486
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1487
        /* sNaN square root */
1488
       farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1489
    } else {
1490
       f32 = float64_to_float32(farg.d, &env->fp_status);
1491
       farg.d = float32_to_float64(f32, &env->fp_status);
1492
    }
1493
#else
1494
    f32 = float64_to_float32(farg.d, &env->fp_status);
1495
    farg.d = float32_to_float64(f32, &env->fp_status);
1496
#endif
1497
    return farg.ll;
1498
}
1499

    
1500
/* fsqrt - fsqrt. */
1501
uint64_t helper_fsqrt (uint64_t arg)
1502
{
1503
    CPU_DoubleU farg;
1504
    farg.ll = arg;
1505

    
1506
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1507
        /* sNaN square root */
1508
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1509
    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1510
        /* Square root of a negative nonzero number */
1511
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1512
    } else {
1513
        farg.d = float64_sqrt(farg.d, &env->fp_status);
1514
    }
1515
    return farg.ll;
1516
}
1517

    
1518
/* fre - fre. */
1519
uint64_t helper_fre (uint64_t arg)
1520
{
1521
    CPU_DoubleU fone, farg;
1522
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1523
    farg.ll = arg;
1524

    
1525
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1526
        /* sNaN reciprocal */
1527
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1528
    } else if (unlikely(float64_is_zero(farg.d))) {
1529
        /* Zero reciprocal */
1530
        farg.ll = float_zero_divide_excp(fone.d, farg.d);
1531
    } else if (likely(isnormal(farg.d))) {
1532
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1533
    } else {
1534
        if (farg.ll == 0x8000000000000000ULL) {
1535
            farg.ll = 0xFFF0000000000000ULL;
1536
        } else if (farg.ll == 0x0000000000000000ULL) {
1537
            farg.ll = 0x7FF0000000000000ULL;
1538
        } else if (float64_is_nan(farg.d)) {
1539
            farg.ll = 0x7FF8000000000000ULL;
1540
        } else if (float64_is_neg(farg.d)) {
1541
            farg.ll = 0x8000000000000000ULL;
1542
        } else {
1543
            farg.ll = 0x0000000000000000ULL;
1544
        }
1545
    }
1546
    return farg.d;
1547
}
1548

    
1549
/* fres - fres. */
1550
uint64_t helper_fres (uint64_t arg)
1551
{
1552
    CPU_DoubleU fone, farg;
1553
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1554
    farg.ll = arg;
1555

    
1556
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1557
        /* sNaN reciprocal */
1558
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1559
    } else if (unlikely(float64_is_zero(farg.d))) {
1560
        /* Zero reciprocal */
1561
        farg.ll = float_zero_divide_excp(fone.d, farg.d);
1562
    } else if (likely(isnormal(farg.d))) {
1563
#if USE_PRECISE_EMULATION
1564
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1565
        farg.d = float64_to_float32(farg.d, &env->fp_status);
1566
#else
1567
        farg.d = float32_div(fone.d, farg.d, &env->fp_status);
1568
#endif
1569
    } else {
1570
        if (farg.ll == 0x8000000000000000ULL) {
1571
            farg.ll = 0xFFF0000000000000ULL;
1572
        } else if (farg.ll == 0x0000000000000000ULL) {
1573
            farg.ll = 0x7FF0000000000000ULL;
1574
        } else if (float64_is_nan(farg.d)) {
1575
            farg.ll = 0x7FF8000000000000ULL;
1576
        } else if (float64_is_neg(farg.d)) {
1577
            farg.ll = 0x8000000000000000ULL;
1578
        } else {
1579
            farg.ll = 0x0000000000000000ULL;
1580
        }
1581
    }
1582
    return farg.ll;
1583
}
1584

    
1585
/* frsqrte  - frsqrte. */
1586
uint64_t helper_frsqrte (uint64_t arg)
1587
{
1588
    CPU_DoubleU fone, farg;
1589
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1590
    farg.ll = arg;
1591

    
1592
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1593
        /* sNaN reciprocal square root */
1594
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1595
    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1596
        /* Reciprocal square root of a negative nonzero number */
1597
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1598
    } else if (likely(isnormal(farg.d))) {
1599
        farg.d = float64_sqrt(farg.d, &env->fp_status);
1600
        farg.d = float32_div(fone.d, farg.d, &env->fp_status);
1601
    } else {
1602
        if (farg.ll == 0x8000000000000000ULL) {
1603
            farg.ll = 0xFFF0000000000000ULL;
1604
        } else if (farg.ll == 0x0000000000000000ULL) {
1605
            farg.ll = 0x7FF0000000000000ULL;
1606
        } else if (float64_is_nan(farg.d)) {
1607
            farg.ll |= 0x000FFFFFFFFFFFFFULL;
1608
        } else if (float64_is_neg(farg.d)) {
1609
            farg.ll = 0x7FF8000000000000ULL;
1610
        } else {
1611
            farg.ll = 0x0000000000000000ULL;
1612
        }
1613
    }
1614
    return farg.ll;
1615
}
1616

    
1617
/* fsel - fsel. */
1618
uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1619
{
1620
    CPU_DoubleU farg1;
1621

    
1622
    farg1.ll = arg1;
1623

    
1624
    if (!float64_is_neg(farg1.d) || float64_is_zero(farg1.d))
1625
        return arg2;
1626
    else
1627
        return arg3;
1628
}
1629

    
1630
void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1631
{
1632
    CPU_DoubleU farg1, farg2;
1633
    uint32_t ret = 0;
1634
    farg1.ll = arg1;
1635
    farg2.ll = arg2;
1636

    
1637
    if (unlikely(float64_is_nan(farg1.d) ||
1638
                 float64_is_nan(farg2.d))) {
1639
        ret = 0x01UL;
1640
    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1641
        ret = 0x08UL;
1642
    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1643
        ret = 0x04UL;
1644
    } else {
1645
        ret = 0x02UL;
1646
    }
1647

    
1648
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1649
    env->fpscr |= ret << FPSCR_FPRF;
1650
    env->crf[crfD] = ret;
1651
    if (unlikely(ret == 0x01UL
1652
                 && (float64_is_signaling_nan(farg1.d) ||
1653
                     float64_is_signaling_nan(farg2.d)))) {
1654
        /* sNaN comparison */
1655
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1656
    }
1657
}
1658

    
1659
void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1660
{
1661
    CPU_DoubleU farg1, farg2;
1662
    uint32_t ret = 0;
1663
    farg1.ll = arg1;
1664
    farg2.ll = arg2;
1665

    
1666
    if (unlikely(float64_is_nan(farg1.d) ||
1667
                 float64_is_nan(farg2.d))) {
1668
        ret = 0x01UL;
1669
    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1670
        ret = 0x08UL;
1671
    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1672
        ret = 0x04UL;
1673
    } else {
1674
        ret = 0x02UL;
1675
    }
1676

    
1677
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1678
    env->fpscr |= ret << FPSCR_FPRF;
1679
    env->crf[crfD] = ret;
1680
    if (unlikely (ret == 0x01UL)) {
1681
        if (float64_is_signaling_nan(farg1.d) ||
1682
            float64_is_signaling_nan(farg2.d)) {
1683
            /* sNaN comparison */
1684
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1685
                                  POWERPC_EXCP_FP_VXVC);
1686
        } else {
1687
            /* qNaN comparison */
1688
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1689
        }
1690
    }
1691
}
1692

    
1693
#if !defined (CONFIG_USER_ONLY)
1694
void helper_store_msr (target_ulong val)
1695
{
1696
    val = hreg_store_msr(env, val, 0);
1697
    if (val != 0) {
1698
        env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1699
        helper_raise_exception(val);
1700
    }
1701
}
1702

    
1703
static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1704
                                    target_ulong msrm, int keep_msrh)
1705
{
1706
#if defined(TARGET_PPC64)
1707
    if (msr & (1ULL << MSR_SF)) {
1708
        nip = (uint64_t)nip;
1709
        msr &= (uint64_t)msrm;
1710
    } else {
1711
        nip = (uint32_t)nip;
1712
        msr = (uint32_t)(msr & msrm);
1713
        if (keep_msrh)
1714
            msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1715
    }
1716
#else
1717
    nip = (uint32_t)nip;
1718
    msr &= (uint32_t)msrm;
1719
#endif
1720
    /* XXX: beware: this is false if VLE is supported */
1721
    env->nip = nip & ~((target_ulong)0x00000003);
1722
    hreg_store_msr(env, msr, 1);
1723
#if defined (DEBUG_OP)
1724
    cpu_dump_rfi(env->nip, env->msr);
1725
#endif
1726
    /* No need to raise an exception here,
1727
     * as rfi is always the last insn of a TB
1728
     */
1729
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1730
}
1731

    
1732
void helper_rfi (void)
1733
{
1734
    do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1735
           ~((target_ulong)0xFFFF0000), 1);
1736
}
1737

    
1738
#if defined(TARGET_PPC64)
1739
void helper_rfid (void)
1740
{
1741
    do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1742
           ~((target_ulong)0xFFFF0000), 0);
1743
}
1744

    
1745
void helper_hrfid (void)
1746
{
1747
    do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1748
           ~((target_ulong)0xFFFF0000), 0);
1749
}
1750
#endif
1751
#endif
1752

    
1753
void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1754
{
1755
    if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1756
                  ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1757
                  ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1758
                  ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1759
                  ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1760
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1761
    }
1762
}
1763

    
1764
#if defined(TARGET_PPC64)
1765
void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1766
{
1767
    if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1768
                  ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1769
                  ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1770
                  ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1771
                  ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1772
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1773
}
1774
#endif
1775

    
1776
/*****************************************************************************/
1777
/* PowerPC 601 specific instructions (POWER bridge) */
1778

    
1779
target_ulong helper_clcs (uint32_t arg)
1780
{
1781
    switch (arg) {
1782
    case 0x0CUL:
1783
        /* Instruction cache line size */
1784
        return env->icache_line_size;
1785
        break;
1786
    case 0x0DUL:
1787
        /* Data cache line size */
1788
        return env->dcache_line_size;
1789
        break;
1790
    case 0x0EUL:
1791
        /* Minimum cache line size */
1792
        return (env->icache_line_size < env->dcache_line_size) ?
1793
                env->icache_line_size : env->dcache_line_size;
1794
        break;
1795
    case 0x0FUL:
1796
        /* Maximum cache line size */
1797
        return (env->icache_line_size > env->dcache_line_size) ?
1798
                env->icache_line_size : env->dcache_line_size;
1799
        break;
1800
    default:
1801
        /* Undefined */
1802
        return 0;
1803
        break;
1804
    }
1805
}
1806

    
1807
target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1808
{
1809
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1810

    
1811
    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1812
        (int32_t)arg2 == 0) {
1813
        env->spr[SPR_MQ] = 0;
1814
        return INT32_MIN;
1815
    } else {
1816
        env->spr[SPR_MQ] = tmp % arg2;
1817
        return  tmp / (int32_t)arg2;
1818
    }
1819
}
1820

    
1821
target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1822
{
1823
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1824

    
1825
    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1826
        (int32_t)arg2 == 0) {
1827
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1828
        env->spr[SPR_MQ] = 0;
1829
        return INT32_MIN;
1830
    } else {
1831
        env->spr[SPR_MQ] = tmp % arg2;
1832
        tmp /= (int32_t)arg2;
1833
        if ((int32_t)tmp != tmp) {
1834
            env->xer |= (1 << XER_OV) | (1 << XER_SO);
1835
        } else {
1836
            env->xer &= ~(1 << XER_OV);
1837
        }
1838
        return tmp;
1839
    }
1840
}
1841

    
1842
target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1843
{
1844
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1845
        (int32_t)arg2 == 0) {
1846
        env->spr[SPR_MQ] = 0;
1847
        return INT32_MIN;
1848
    } else {
1849
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1850
        return (int32_t)arg1 / (int32_t)arg2;
1851
    }
1852
}
1853

    
1854
target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1855
{
1856
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1857
        (int32_t)arg2 == 0) {
1858
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1859
        env->spr[SPR_MQ] = 0;
1860
        return INT32_MIN;
1861
    } else {
1862
        env->xer &= ~(1 << XER_OV);
1863
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1864
        return (int32_t)arg1 / (int32_t)arg2;
1865
    }
1866
}
1867

    
1868
#if !defined (CONFIG_USER_ONLY)
1869
target_ulong helper_rac (target_ulong addr)
1870
{
1871
    mmu_ctx_t ctx;
1872
    int nb_BATs;
1873
    target_ulong ret = 0;
1874

    
1875
    /* We don't have to generate many instances of this instruction,
1876
     * as rac is supervisor only.
1877
     */
1878
    /* XXX: FIX THIS: Pretend we have no BAT */
1879
    nb_BATs = env->nb_BATs;
1880
    env->nb_BATs = 0;
1881
    if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1882
        ret = ctx.raddr;
1883
    env->nb_BATs = nb_BATs;
1884
    return ret;
1885
}
1886

    
1887
void helper_rfsvc (void)
1888
{
1889
    do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1890
}
1891
#endif
1892

    
1893
/*****************************************************************************/
1894
/* 602 specific instructions */
1895
/* mfrom is the most crazy instruction ever seen, imho ! */
1896
/* Real implementation uses a ROM table. Do the same */
1897
/* Extremly decomposed:
1898
 *                      -arg / 256
1899
 * return 256 * log10(10           + 1.0) + 0.5
1900
 */
1901
#if !defined (CONFIG_USER_ONLY)
1902
target_ulong helper_602_mfrom (target_ulong arg)
1903
{
1904
    if (likely(arg < 602)) {
1905
#include "mfrom_table.c"
1906
        return mfrom_ROM_table[arg];
1907
    } else {
1908
        return 0;
1909
    }
1910
}
1911
#endif
1912

    
1913
/*****************************************************************************/
1914
/* Embedded PowerPC specific helpers */
1915

    
1916
/* XXX: to be improved to check access rights when in user-mode */
1917
target_ulong helper_load_dcr (target_ulong dcrn)
1918
{
1919
    target_ulong val = 0;
1920

    
1921
    if (unlikely(env->dcr_env == NULL)) {
1922
        if (loglevel != 0) {
1923
            fprintf(logfile, "No DCR environment\n");
1924
        }
1925
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1926
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1927
    } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1928
        if (loglevel != 0) {
1929
            fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1930
        }
1931
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1932
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1933
    }
1934
    return val;
1935
}
1936

    
1937
void helper_store_dcr (target_ulong dcrn, target_ulong val)
1938
{
1939
    if (unlikely(env->dcr_env == NULL)) {
1940
        if (loglevel != 0) {
1941
            fprintf(logfile, "No DCR environment\n");
1942
        }
1943
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1944
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1945
    } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1946
        if (loglevel != 0) {
1947
            fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1948
        }
1949
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1950
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1951
    }
1952
}
1953

    
1954
#if !defined(CONFIG_USER_ONLY)
1955
void helper_40x_rfci (void)
1956
{
1957
    do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1958
           ~((target_ulong)0xFFFF0000), 0);
1959
}
1960

    
1961
void helper_rfci (void)
1962
{
1963
    do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1964
           ~((target_ulong)0x3FFF0000), 0);
1965
}
1966

    
1967
void helper_rfdi (void)
1968
{
1969
    do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1970
           ~((target_ulong)0x3FFF0000), 0);
1971
}
1972

    
1973
void helper_rfmci (void)
1974
{
1975
    do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1976
           ~((target_ulong)0x3FFF0000), 0);
1977
}
1978
#endif
1979

    
1980
/* 440 specific */
1981
target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1982
{
1983
    target_ulong mask;
1984
    int i;
1985

    
1986
    i = 1;
1987
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1988
        if ((high & mask) == 0) {
1989
            if (update_Rc) {
1990
                env->crf[0] = 0x4;
1991
            }
1992
            goto done;
1993
        }
1994
        i++;
1995
    }
1996
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1997
        if ((low & mask) == 0) {
1998
            if (update_Rc) {
1999
                env->crf[0] = 0x8;
2000
            }
2001
            goto done;
2002
        }
2003
        i++;
2004
    }
2005
    if (update_Rc) {
2006
        env->crf[0] = 0x2;
2007
    }
2008
 done:
2009
    env->xer = (env->xer & ~0x7F) | i;
2010
    if (update_Rc) {
2011
        env->crf[0] |= xer_so;
2012
    }
2013
    return i;
2014
}
2015

    
2016
/*****************************************************************************/
2017
/* SPE extension helpers */
2018
/* Use a table to make this quicker */
2019
static uint8_t hbrev[16] = {
2020
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2021
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2022
};
2023

    
2024
static always_inline uint8_t byte_reverse (uint8_t val)
2025
{
2026
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2027
}
2028

    
2029
static always_inline uint32_t word_reverse (uint32_t val)
2030
{
2031
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2032
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2033
}
2034

    
2035
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2036
target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2037
{
2038
    uint32_t a, b, d, mask;
2039

    
2040
    mask = UINT32_MAX >> (32 - MASKBITS);
2041
    a = arg1 & mask;
2042
    b = arg2 & mask;
2043
    d = word_reverse(1 + word_reverse(a | ~b));
2044
    return (arg1 & ~mask) | (d & b);
2045
}
2046

    
2047
uint32_t helper_cntlsw32 (uint32_t val)
2048
{
2049
    if (val & 0x80000000)
2050
        return clz32(~val);
2051
    else
2052
        return clz32(val);
2053
}
2054

    
2055
uint32_t helper_cntlzw32 (uint32_t val)
2056
{
2057
    return clz32(val);
2058
}
2059

    
2060
/* Single-precision floating-point conversions */
2061
static always_inline uint32_t efscfsi (uint32_t val)
2062
{
2063
    CPU_FloatU u;
2064

    
2065
    u.f = int32_to_float32(val, &env->spe_status);
2066

    
2067
    return u.l;
2068
}
2069

    
2070
static always_inline uint32_t efscfui (uint32_t val)
2071
{
2072
    CPU_FloatU u;
2073

    
2074
    u.f = uint32_to_float32(val, &env->spe_status);
2075

    
2076
    return u.l;
2077
}
2078

    
2079
static always_inline int32_t efsctsi (uint32_t val)
2080
{
2081
    CPU_FloatU u;
2082

    
2083
    u.l = val;
2084
    /* NaN are not treated the same way IEEE 754 does */
2085
    if (unlikely(float32_is_nan(u.f)))
2086
        return 0;
2087

    
2088
    return float32_to_int32(u.f, &env->spe_status);
2089
}
2090

    
2091
static always_inline uint32_t efsctui (uint32_t val)
2092
{
2093
    CPU_FloatU u;
2094

    
2095
    u.l = val;
2096
    /* NaN are not treated the same way IEEE 754 does */
2097
    if (unlikely(float32_is_nan(u.f)))
2098
        return 0;
2099

    
2100
    return float32_to_uint32(u.f, &env->spe_status);
2101
}
2102

    
2103
static always_inline uint32_t efsctsiz (uint32_t val)
2104
{
2105
    CPU_FloatU u;
2106

    
2107
    u.l = val;
2108
    /* NaN are not treated the same way IEEE 754 does */
2109
    if (unlikely(float32_is_nan(u.f)))
2110
        return 0;
2111

    
2112
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2113
}
2114

    
2115
static always_inline uint32_t efsctuiz (uint32_t val)
2116
{
2117
    CPU_FloatU u;
2118

    
2119
    u.l = val;
2120
    /* NaN are not treated the same way IEEE 754 does */
2121
    if (unlikely(float32_is_nan(u.f)))
2122
        return 0;
2123

    
2124
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2125
}
2126

    
2127
static always_inline uint32_t efscfsf (uint32_t val)
2128
{
2129
    CPU_FloatU u;
2130
    float32 tmp;
2131

    
2132
    u.f = int32_to_float32(val, &env->spe_status);
2133
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2134
    u.f = float32_div(u.f, tmp, &env->spe_status);
2135

    
2136
    return u.l;
2137
}
2138

    
2139
static always_inline uint32_t efscfuf (uint32_t val)
2140
{
2141
    CPU_FloatU u;
2142
    float32 tmp;
2143

    
2144
    u.f = uint32_to_float32(val, &env->spe_status);
2145
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2146
    u.f = float32_div(u.f, tmp, &env->spe_status);
2147

    
2148
    return u.l;
2149
}
2150

    
2151
static always_inline uint32_t efsctsf (uint32_t val)
2152
{
2153
    CPU_FloatU u;
2154
    float32 tmp;
2155

    
2156
    u.l = val;
2157
    /* NaN are not treated the same way IEEE 754 does */
2158
    if (unlikely(float32_is_nan(u.f)))
2159
        return 0;
2160
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2161
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2162

    
2163
    return float32_to_int32(u.f, &env->spe_status);
2164
}
2165

    
2166
static always_inline uint32_t efsctuf (uint32_t val)
2167
{
2168
    CPU_FloatU u;
2169
    float32 tmp;
2170

    
2171
    u.l = val;
2172
    /* NaN are not treated the same way IEEE 754 does */
2173
    if (unlikely(float32_is_nan(u.f)))
2174
        return 0;
2175
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2176
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2177

    
2178
    return float32_to_uint32(u.f, &env->spe_status);
2179
}
2180

    
2181
#define HELPER_SPE_SINGLE_CONV(name)                                          \
2182
uint32_t helper_e##name (uint32_t val)                                        \
2183
{                                                                             \
2184
    return e##name(val);                                                      \
2185
}
2186
/* efscfsi */
2187
HELPER_SPE_SINGLE_CONV(fscfsi);
2188
/* efscfui */
2189
HELPER_SPE_SINGLE_CONV(fscfui);
2190
/* efscfuf */
2191
HELPER_SPE_SINGLE_CONV(fscfuf);
2192
/* efscfsf */
2193
HELPER_SPE_SINGLE_CONV(fscfsf);
2194
/* efsctsi */
2195
HELPER_SPE_SINGLE_CONV(fsctsi);
2196
/* efsctui */
2197
HELPER_SPE_SINGLE_CONV(fsctui);
2198
/* efsctsiz */
2199
HELPER_SPE_SINGLE_CONV(fsctsiz);
2200
/* efsctuiz */
2201
HELPER_SPE_SINGLE_CONV(fsctuiz);
2202
/* efsctsf */
2203
HELPER_SPE_SINGLE_CONV(fsctsf);
2204
/* efsctuf */
2205
HELPER_SPE_SINGLE_CONV(fsctuf);
2206

    
2207
#define HELPER_SPE_VECTOR_CONV(name)                                          \
2208
uint64_t helper_ev##name (uint64_t val)                                       \
2209
{                                                                             \
2210
    return ((uint64_t)e##name(val >> 32) << 32) |                             \
2211
            (uint64_t)e##name(val);                                           \
2212
}
2213
/* evfscfsi */
2214
HELPER_SPE_VECTOR_CONV(fscfsi);
2215
/* evfscfui */
2216
HELPER_SPE_VECTOR_CONV(fscfui);
2217
/* evfscfuf */
2218
HELPER_SPE_VECTOR_CONV(fscfuf);
2219
/* evfscfsf */
2220
HELPER_SPE_VECTOR_CONV(fscfsf);
2221
/* evfsctsi */
2222
HELPER_SPE_VECTOR_CONV(fsctsi);
2223
/* evfsctui */
2224
HELPER_SPE_VECTOR_CONV(fsctui);
2225
/* evfsctsiz */
2226
HELPER_SPE_VECTOR_CONV(fsctsiz);
2227
/* evfsctuiz */
2228
HELPER_SPE_VECTOR_CONV(fsctuiz);
2229
/* evfsctsf */
2230
HELPER_SPE_VECTOR_CONV(fsctsf);
2231
/* evfsctuf */
2232
HELPER_SPE_VECTOR_CONV(fsctuf);
2233

    
2234
/* Single-precision floating-point arithmetic */
2235
static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
2236
{
2237
    CPU_FloatU u1, u2;
2238
    u1.l = op1;
2239
    u2.l = op2;
2240
    u1.f = float32_add(u1.f, u2.f, &env->spe_status);
2241
    return u1.l;
2242
}
2243

    
2244
static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
2245
{
2246
    CPU_FloatU u1, u2;
2247
    u1.l = op1;
2248
    u2.l = op2;
2249
    u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
2250
    return u1.l;
2251
}
2252

    
2253
static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
2254
{
2255
    CPU_FloatU u1, u2;
2256
    u1.l = op1;
2257
    u2.l = op2;
2258
    u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
2259
    return u1.l;
2260
}
2261

    
2262
static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
2263
{
2264
    CPU_FloatU u1, u2;
2265
    u1.l = op1;
2266
    u2.l = op2;
2267
    u1.f = float32_div(u1.f, u2.f, &env->spe_status);
2268
    return u1.l;
2269
}
2270

    
2271
#define HELPER_SPE_SINGLE_ARITH(name)                                         \
2272
uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
2273
{                                                                             \
2274
    return e##name(op1, op2);                                                 \
2275
}
2276
/* efsadd */
2277
HELPER_SPE_SINGLE_ARITH(fsadd);
2278
/* efssub */
2279
HELPER_SPE_SINGLE_ARITH(fssub);
2280
/* efsmul */
2281
HELPER_SPE_SINGLE_ARITH(fsmul);
2282
/* efsdiv */
2283
HELPER_SPE_SINGLE_ARITH(fsdiv);
2284

    
2285
#define HELPER_SPE_VECTOR_ARITH(name)                                         \
2286
uint64_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
2287
{                                                                             \
2288
    return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) |                  \
2289
            (uint64_t)e##name(op1, op2);                                      \
2290
}
2291
/* evfsadd */
2292
HELPER_SPE_VECTOR_ARITH(fsadd);
2293
/* evfssub */
2294
HELPER_SPE_VECTOR_ARITH(fssub);
2295
/* evfsmul */
2296
HELPER_SPE_VECTOR_ARITH(fsmul);
2297
/* evfsdiv */
2298
HELPER_SPE_VECTOR_ARITH(fsdiv);
2299

    
2300
/* Single-precision floating-point comparisons */
2301
static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
2302
{
2303
    CPU_FloatU u1, u2;
2304
    u1.l = op1;
2305
    u2.l = op2;
2306
    return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2307
}
2308

    
2309
static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
2310
{
2311
    CPU_FloatU u1, u2;
2312
    u1.l = op1;
2313
    u2.l = op2;
2314
    return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
2315
}
2316

    
2317
static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
2318
{
2319
    CPU_FloatU u1, u2;
2320
    u1.l = op1;
2321
    u2.l = op2;
2322
    return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2323
}
2324

    
2325
static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
2326
{
2327
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2328
    return efststlt(op1, op2);
2329
}
2330

    
2331
static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
2332
{
2333
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2334
    return efststgt(op1, op2);
2335
}
2336

    
2337
static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
2338
{
2339
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2340
    return efststeq(op1, op2);
2341
}
2342

    
2343
#define HELPER_SINGLE_SPE_CMP(name)                                           \
2344
uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
2345
{                                                                             \
2346
    return e##name(op1, op2) << 2;                                            \
2347
}
2348
/* efststlt */
2349
HELPER_SINGLE_SPE_CMP(fststlt);
2350
/* efststgt */
2351
HELPER_SINGLE_SPE_CMP(fststgt);
2352
/* efststeq */
2353
HELPER_SINGLE_SPE_CMP(fststeq);
2354
/* efscmplt */
2355
HELPER_SINGLE_SPE_CMP(fscmplt);
2356
/* efscmpgt */
2357
HELPER_SINGLE_SPE_CMP(fscmpgt);
2358
/* efscmpeq */
2359
HELPER_SINGLE_SPE_CMP(fscmpeq);
2360

    
2361
static always_inline uint32_t evcmp_merge (int t0, int t1)
2362
{
2363
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2364
}
2365

    
2366
#define HELPER_VECTOR_SPE_CMP(name)                                           \
2367
uint32_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
2368
{                                                                             \
2369
    return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2));     \
2370
}
2371
/* evfststlt */
2372
HELPER_VECTOR_SPE_CMP(fststlt);
2373
/* evfststgt */
2374
HELPER_VECTOR_SPE_CMP(fststgt);
2375
/* evfststeq */
2376
HELPER_VECTOR_SPE_CMP(fststeq);
2377
/* evfscmplt */
2378
HELPER_VECTOR_SPE_CMP(fscmplt);
2379
/* evfscmpgt */
2380
HELPER_VECTOR_SPE_CMP(fscmpgt);
2381
/* evfscmpeq */
2382
HELPER_VECTOR_SPE_CMP(fscmpeq);
2383

    
2384
/* Double-precision floating-point conversion */
2385
uint64_t helper_efdcfsi (uint32_t val)
2386
{
2387
    CPU_DoubleU u;
2388

    
2389
    u.d = int32_to_float64(val, &env->spe_status);
2390

    
2391
    return u.ll;
2392
}
2393

    
2394
uint64_t helper_efdcfsid (uint64_t val)
2395
{
2396
    CPU_DoubleU u;
2397

    
2398
    u.d = int64_to_float64(val, &env->spe_status);
2399

    
2400
    return u.ll;
2401
}
2402

    
2403
uint64_t helper_efdcfui (uint32_t val)
2404
{
2405
    CPU_DoubleU u;
2406

    
2407
    u.d = uint32_to_float64(val, &env->spe_status);
2408

    
2409
    return u.ll;
2410
}
2411

    
2412
uint64_t helper_efdcfuid (uint64_t val)
2413
{
2414
    CPU_DoubleU u;
2415

    
2416
    u.d = uint64_to_float64(val, &env->spe_status);
2417

    
2418
    return u.ll;
2419
}
2420

    
2421
uint32_t helper_efdctsi (uint64_t val)
2422
{
2423
    CPU_DoubleU u;
2424

    
2425
    u.ll = val;
2426
    /* NaN are not treated the same way IEEE 754 does */
2427
    if (unlikely(float64_is_nan(u.d)))
2428
        return 0;
2429

    
2430
    return float64_to_int32(u.d, &env->spe_status);
2431
}
2432

    
2433
uint32_t helper_efdctui (uint64_t val)
2434
{
2435
    CPU_DoubleU u;
2436

    
2437
    u.ll = val;
2438
    /* NaN are not treated the same way IEEE 754 does */
2439
    if (unlikely(float64_is_nan(u.d)))
2440
        return 0;
2441

    
2442
    return float64_to_uint32(u.d, &env->spe_status);
2443
}
2444

    
2445
uint32_t helper_efdctsiz (uint64_t val)
2446
{
2447
    CPU_DoubleU u;
2448

    
2449
    u.ll = val;
2450
    /* NaN are not treated the same way IEEE 754 does */
2451
    if (unlikely(float64_is_nan(u.d)))
2452
        return 0;
2453

    
2454
    return float64_to_int32_round_to_zero(u.d, &env->spe_status);
2455
}
2456

    
2457
uint64_t helper_efdctsidz (uint64_t val)
2458
{
2459
    CPU_DoubleU u;
2460

    
2461
    u.ll = val;
2462
    /* NaN are not treated the same way IEEE 754 does */
2463
    if (unlikely(float64_is_nan(u.d)))
2464
        return 0;
2465

    
2466
    return float64_to_int64_round_to_zero(u.d, &env->spe_status);
2467
}
2468

    
2469
uint32_t helper_efdctuiz (uint64_t val)
2470
{
2471
    CPU_DoubleU u;
2472

    
2473
    u.ll = val;
2474
    /* NaN are not treated the same way IEEE 754 does */
2475
    if (unlikely(float64_is_nan(u.d)))
2476
        return 0;
2477

    
2478
    return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
2479
}
2480

    
2481
uint64_t helper_efdctuidz (uint64_t val)
2482
{
2483
    CPU_DoubleU u;
2484

    
2485
    u.ll = val;
2486
    /* NaN are not treated the same way IEEE 754 does */
2487
    if (unlikely(float64_is_nan(u.d)))
2488
        return 0;
2489

    
2490
    return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
2491
}
2492

    
2493
uint64_t helper_efdcfsf (uint32_t val)
2494
{
2495
    CPU_DoubleU u;
2496
    float64 tmp;
2497

    
2498
    u.d = int32_to_float64(val, &env->spe_status);
2499
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2500
    u.d = float64_div(u.d, tmp, &env->spe_status);
2501

    
2502
    return u.ll;
2503
}
2504

    
2505
uint64_t helper_efdcfuf (uint32_t val)
2506
{
2507
    CPU_DoubleU u;
2508
    float64 tmp;
2509

    
2510
    u.d = uint32_to_float64(val, &env->spe_status);
2511
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2512
    u.d = float64_div(u.d, tmp, &env->spe_status);
2513

    
2514
    return u.ll;
2515
}
2516

    
2517
uint32_t helper_efdctsf (uint64_t val)
2518
{
2519
    CPU_DoubleU u;
2520
    float64 tmp;
2521

    
2522
    u.ll = val;
2523
    /* NaN are not treated the same way IEEE 754 does */
2524
    if (unlikely(float64_is_nan(u.d)))
2525
        return 0;
2526
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2527
    u.d = float64_mul(u.d, tmp, &env->spe_status);
2528

    
2529
    return float64_to_int32(u.d, &env->spe_status);
2530
}
2531

    
2532
uint32_t helper_efdctuf (uint64_t val)
2533
{
2534
    CPU_DoubleU u;
2535
    float64 tmp;
2536

    
2537
    u.ll = val;
2538
    /* NaN are not treated the same way IEEE 754 does */
2539
    if (unlikely(float64_is_nan(u.d)))
2540
        return 0;
2541
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2542
    u.d = float64_mul(u.d, tmp, &env->spe_status);
2543

    
2544
    return float64_to_uint32(u.d, &env->spe_status);
2545
}
2546

    
2547
uint32_t helper_efscfd (uint64_t val)
2548
{
2549
    CPU_DoubleU u1;
2550
    CPU_FloatU u2;
2551

    
2552
    u1.ll = val;
2553
    u2.f = float64_to_float32(u1.d, &env->spe_status);
2554

    
2555
    return u2.l;
2556
}
2557

    
2558
uint64_t helper_efdcfs (uint32_t val)
2559
{
2560
    CPU_DoubleU u2;
2561
    CPU_FloatU u1;
2562

    
2563
    u1.l = val;
2564
    u2.d = float32_to_float64(u1.f, &env->spe_status);
2565

    
2566
    return u2.ll;
2567
}
2568

    
2569
/* Double precision fixed-point arithmetic */
2570
uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
2571
{
2572
    CPU_DoubleU u1, u2;
2573
    u1.ll = op1;
2574
    u2.ll = op2;
2575
    u1.d = float64_add(u1.d, u2.d, &env->spe_status);
2576
    return u1.ll;
2577
}
2578

    
2579
uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
2580
{
2581
    CPU_DoubleU u1, u2;
2582
    u1.ll = op1;
2583
    u2.ll = op2;
2584
    u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
2585
    return u1.ll;
2586
}
2587

    
2588
uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
2589
{
2590
    CPU_DoubleU u1, u2;
2591
    u1.ll = op1;
2592
    u2.ll = op2;
2593
    u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
2594
    return u1.ll;
2595
}
2596

    
2597
uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
2598
{
2599
    CPU_DoubleU u1, u2;
2600
    u1.ll = op1;
2601
    u2.ll = op2;
2602
    u1.d = float64_div(u1.d, u2.d, &env->spe_status);
2603
    return u1.ll;
2604
}
2605

    
2606
/* Double precision floating point helpers */
2607
uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
2608
{
2609
    CPU_DoubleU u1, u2;
2610
    u1.ll = op1;
2611
    u2.ll = op2;
2612
    return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2613
}
2614

    
2615
uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
2616
{
2617
    CPU_DoubleU u1, u2;
2618
    u1.ll = op1;
2619
    u2.ll = op2;
2620
    return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
2621
}
2622

    
2623
uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
2624
{
2625
    CPU_DoubleU u1, u2;
2626
    u1.ll = op1;
2627
    u2.ll = op2;
2628
    return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2629
}
2630

    
2631
uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
2632
{
2633
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2634
    return helper_efdtstlt(op1, op2);
2635
}
2636

    
2637
uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
2638
{
2639
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2640
    return helper_efdtstgt(op1, op2);
2641
}
2642

    
2643
uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
2644
{
2645
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2646
    return helper_efdtsteq(op1, op2);
2647
}
2648

    
2649
/*****************************************************************************/
2650
/* Softmmu support */
2651
#if !defined (CONFIG_USER_ONLY)
2652

    
2653
#define MMUSUFFIX _mmu
2654

    
2655
#define SHIFT 0
2656
#include "softmmu_template.h"
2657

    
2658
#define SHIFT 1
2659
#include "softmmu_template.h"
2660

    
2661
#define SHIFT 2
2662
#include "softmmu_template.h"
2663

    
2664
#define SHIFT 3
2665
#include "softmmu_template.h"
2666

    
2667
/* try to fill the TLB and return an exception if error. If retaddr is
2668
   NULL, it means that the function was called in C code (i.e. not
2669
   from generated code or from helper.c) */
2670
/* XXX: fix it to restore all registers */
2671
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2672
{
2673
    TranslationBlock *tb;
2674
    CPUState *saved_env;
2675
    unsigned long pc;
2676
    int ret;
2677

    
2678
    /* XXX: hack to restore env in all cases, even if not called from
2679
       generated code */
2680
    saved_env = env;
2681
    env = cpu_single_env;
2682
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2683
    if (unlikely(ret != 0)) {
2684
        if (likely(retaddr)) {
2685
            /* now we have a real cpu fault */
2686
            pc = (unsigned long)retaddr;
2687
            tb = tb_find_pc(pc);
2688
            if (likely(tb)) {
2689
                /* the PC is inside the translated code. It means that we have
2690
                   a virtual CPU fault */
2691
                cpu_restore_state(tb, env, pc, NULL);
2692
            }
2693
        }
2694
        helper_raise_exception_err(env->exception_index, env->error_code);
2695
    }
2696
    env = saved_env;
2697
}
2698

    
2699
/* Segment registers load and store */
2700
target_ulong helper_load_sr (target_ulong sr_num)
2701
{
2702
    return env->sr[sr_num];
2703
}
2704

    
2705
void helper_store_sr (target_ulong sr_num, target_ulong val)
2706
{
2707
    ppc_store_sr(env, sr_num, val);
2708
}
2709

    
2710
/* SLB management */
2711
#if defined(TARGET_PPC64)
2712
target_ulong helper_load_slb (target_ulong slb_nr)
2713
{
2714
    return ppc_load_slb(env, slb_nr);
2715
}
2716

    
2717
void helper_store_slb (target_ulong slb_nr, target_ulong rs)
2718
{
2719
    ppc_store_slb(env, slb_nr, rs);
2720
}
2721

    
2722
void helper_slbia (void)
2723
{
2724
    ppc_slb_invalidate_all(env);
2725
}
2726

    
2727
void helper_slbie (target_ulong addr)
2728
{
2729
    ppc_slb_invalidate_one(env, addr);
2730
}
2731

    
2732
#endif /* defined(TARGET_PPC64) */
2733

    
2734
/* TLB management */
2735
void helper_tlbia (void)
2736
{
2737
    ppc_tlb_invalidate_all(env);
2738
}
2739

    
2740
void helper_tlbie (target_ulong addr)
2741
{
2742
    ppc_tlb_invalidate_one(env, addr);
2743
}
2744

    
2745
/* Software driven TLBs management */
2746
/* PowerPC 602/603 software TLB load instructions helpers */
2747
static void do_6xx_tlb (target_ulong new_EPN, int is_code)
2748
{
2749
    target_ulong RPN, CMP, EPN;
2750
    int way;
2751

    
2752
    RPN = env->spr[SPR_RPA];
2753
    if (is_code) {
2754
        CMP = env->spr[SPR_ICMP];
2755
        EPN = env->spr[SPR_IMISS];
2756
    } else {
2757
        CMP = env->spr[SPR_DCMP];
2758
        EPN = env->spr[SPR_DMISS];
2759
    }
2760
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2761
#if defined (DEBUG_SOFTWARE_TLB)
2762
    if (loglevel != 0) {
2763
        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2764
                " PTE1 " ADDRX " way %d\n",
2765
                __func__, new_EPN, EPN, CMP, RPN, way);
2766
    }
2767
#endif
2768
    /* Store this TLB */
2769
    ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2770
                     way, is_code, CMP, RPN);
2771
}
2772

    
2773
void helper_6xx_tlbd (target_ulong EPN)
2774
{
2775
    do_6xx_tlb(EPN, 0);
2776
}
2777

    
2778
void helper_6xx_tlbi (target_ulong EPN)
2779
{
2780
    do_6xx_tlb(EPN, 1);
2781
}
2782

    
2783
/* PowerPC 74xx software TLB load instructions helpers */
2784
static void do_74xx_tlb (target_ulong new_EPN, int is_code)
2785
{
2786
    target_ulong RPN, CMP, EPN;
2787
    int way;
2788

    
2789
    RPN = env->spr[SPR_PTELO];
2790
    CMP = env->spr[SPR_PTEHI];
2791
    EPN = env->spr[SPR_TLBMISS] & ~0x3;
2792
    way = env->spr[SPR_TLBMISS] & 0x3;
2793
#if defined (DEBUG_SOFTWARE_TLB)
2794
    if (loglevel != 0) {
2795
        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2796
                " PTE1 " ADDRX " way %d\n",
2797
                __func__, new_EPN, EPN, CMP, RPN, way);
2798
    }
2799
#endif
2800
    /* Store this TLB */
2801
    ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2802
                     way, is_code, CMP, RPN);
2803
}
2804

    
2805
void helper_74xx_tlbd (target_ulong EPN)
2806
{
2807
    do_74xx_tlb(EPN, 0);
2808
}
2809

    
2810
void helper_74xx_tlbi (target_ulong EPN)
2811
{
2812
    do_74xx_tlb(EPN, 1);
2813
}
2814

    
2815
static always_inline target_ulong booke_tlb_to_page_size (int size)
2816
{
2817
    return 1024 << (2 * size);
2818
}
2819

    
2820
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2821
{
2822
    int size;
2823

    
2824
    switch (page_size) {
2825
    case 0x00000400UL:
2826
        size = 0x0;
2827
        break;
2828
    case 0x00001000UL:
2829
        size = 0x1;
2830
        break;
2831
    case 0x00004000UL:
2832
        size = 0x2;
2833
        break;
2834
    case 0x00010000UL:
2835
        size = 0x3;
2836
        break;
2837
    case 0x00040000UL:
2838
        size = 0x4;
2839
        break;
2840
    case 0x00100000UL:
2841
        size = 0x5;
2842
        break;
2843
    case 0x00400000UL:
2844
        size = 0x6;
2845
        break;
2846
    case 0x01000000UL:
2847
        size = 0x7;
2848
        break;
2849
    case 0x04000000UL:
2850
        size = 0x8;
2851
        break;
2852
    case 0x10000000UL:
2853
        size = 0x9;
2854
        break;
2855
    case 0x40000000UL:
2856
        size = 0xA;
2857
        break;
2858
#if defined (TARGET_PPC64)
2859
    case 0x000100000000ULL:
2860
        size = 0xB;
2861
        break;
2862
    case 0x000400000000ULL:
2863
        size = 0xC;
2864
        break;
2865
    case 0x001000000000ULL:
2866
        size = 0xD;
2867
        break;
2868
    case 0x004000000000ULL:
2869
        size = 0xE;
2870
        break;
2871
    case 0x010000000000ULL:
2872
        size = 0xF;
2873
        break;
2874
#endif
2875
    default:
2876
        size = -1;
2877
        break;
2878
    }
2879

    
2880
    return size;
2881
}
2882

    
2883
/* Helpers for 4xx TLB management */
2884
target_ulong helper_4xx_tlbre_lo (target_ulong entry)
2885
{
2886
    ppcemb_tlb_t *tlb;
2887
    target_ulong ret;
2888
    int size;
2889

    
2890
    entry &= 0x3F;
2891
    tlb = &env->tlb[entry].tlbe;
2892
    ret = tlb->EPN;
2893
    if (tlb->prot & PAGE_VALID)
2894
        ret |= 0x400;
2895
    size = booke_page_size_to_tlb(tlb->size);
2896
    if (size < 0 || size > 0x7)
2897
        size = 1;
2898
    ret |= size << 7;
2899
    env->spr[SPR_40x_PID] = tlb->PID;
2900
    return ret;
2901
}
2902

    
2903
target_ulong helper_4xx_tlbre_hi (target_ulong entry)
2904
{
2905
    ppcemb_tlb_t *tlb;
2906
    target_ulong ret;
2907

    
2908
    entry &= 0x3F;
2909
    tlb = &env->tlb[entry].tlbe;
2910
    ret = tlb->RPN;
2911
    if (tlb->prot & PAGE_EXEC)
2912
        ret |= 0x200;
2913
    if (tlb->prot & PAGE_WRITE)
2914
        ret |= 0x100;
2915
    return ret;
2916
}
2917

    
2918
void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
2919
{
2920
    ppcemb_tlb_t *tlb;
2921
    target_ulong page, end;
2922

    
2923
#if defined (DEBUG_SOFTWARE_TLB)
2924
    if (loglevel != 0) {
2925
        fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
2926
    }
2927
#endif
2928
    entry &= 0x3F;
2929
    tlb = &env->tlb[entry].tlbe;
2930
    /* Invalidate previous TLB (if it's valid) */
2931
    if (tlb->prot & PAGE_VALID) {
2932
        end = tlb->EPN + tlb->size;
2933
#if defined (DEBUG_SOFTWARE_TLB)
2934
        if (loglevel != 0) {
2935
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2936
                    " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
2937
        }
2938
#endif
2939
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2940
            tlb_flush_page(env, page);
2941
    }
2942
    tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
2943
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2944
     * If this ever occurs, one should use the ppcemb target instead
2945
     * of the ppc or ppc64 one
2946
     */
2947
    if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2948
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2949
                  "are not supported (%d)\n",
2950
                  tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
2951
    }
2952
    tlb->EPN = val & ~(tlb->size - 1);
2953
    if (val & 0x40)
2954
        tlb->prot |= PAGE_VALID;
2955
    else
2956
        tlb->prot &= ~PAGE_VALID;
2957
    if (val & 0x20) {
2958
        /* XXX: TO BE FIXED */
2959
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2960
    }
2961
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2962
    tlb->attr = val & 0xFF;
2963
#if defined (DEBUG_SOFTWARE_TLB)
2964
    if (loglevel != 0) {
2965
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2966
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2967
                (int)entry, tlb->RPN, tlb->EPN, tlb->size,
2968
                tlb->prot & PAGE_READ ? 'r' : '-',
2969
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2970
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2971
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2972
    }
2973
#endif
2974
    /* Invalidate new TLB (if valid) */
2975
    if (tlb->prot & PAGE_VALID) {
2976
        end = tlb->EPN + tlb->size;
2977
#if defined (DEBUG_SOFTWARE_TLB)
2978
        if (loglevel != 0) {
2979
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2980
                    " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
2981
        }
2982
#endif
2983
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2984
            tlb_flush_page(env, page);
2985
    }
2986
}
2987

    
2988
void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
2989
{
2990
    ppcemb_tlb_t *tlb;
2991

    
2992
#if defined (DEBUG_SOFTWARE_TLB)
2993
    if (loglevel != 0) {
2994
        fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
2995
    }
2996
#endif
2997
    entry &= 0x3F;
2998
    tlb = &env->tlb[entry].tlbe;
2999
    tlb->RPN = val & 0xFFFFFC00;
3000
    tlb->prot = PAGE_READ;
3001
    if (val & 0x200)
3002
        tlb->prot |= PAGE_EXEC;
3003
    if (val & 0x100)
3004
        tlb->prot |= PAGE_WRITE;
3005
#if defined (DEBUG_SOFTWARE_TLB)
3006
    if (loglevel != 0) {
3007
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3008
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3009
                (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3010
                tlb->prot & PAGE_READ ? 'r' : '-',
3011
                tlb->prot & PAGE_WRITE ? 'w' : '-',
3012
                tlb->prot & PAGE_EXEC ? 'x' : '-',
3013
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3014
    }
3015
#endif
3016
}
3017

    
3018
target_ulong helper_4xx_tlbsx (target_ulong address)
3019
{
3020
    return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3021
}
3022

    
3023
/* PowerPC 440 TLB management */
3024
void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3025
{
3026
    ppcemb_tlb_t *tlb;
3027
    target_ulong EPN, RPN, size;
3028
    int do_flush_tlbs;
3029

    
3030
#if defined (DEBUG_SOFTWARE_TLB)
3031
    if (loglevel != 0) {
3032
        fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
3033
                __func__, word, (int)entry, value);
3034
    }
3035
#endif
3036
    do_flush_tlbs = 0;
3037
    entry &= 0x3F;
3038
    tlb = &env->tlb[entry].tlbe;
3039
    switch (word) {
3040
    default:
3041
        /* Just here to please gcc */
3042
    case 0:
3043
        EPN = value & 0xFFFFFC00;
3044
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3045
            do_flush_tlbs = 1;
3046
        tlb->EPN = EPN;
3047
        size = booke_tlb_to_page_size((value >> 4) & 0xF);
3048
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3049
            do_flush_tlbs = 1;
3050
        tlb->size = size;
3051
        tlb->attr &= ~0x1;
3052
        tlb->attr |= (value >> 8) & 1;
3053
        if (value & 0x200) {
3054
            tlb->prot |= PAGE_VALID;
3055
        } else {
3056
            if (tlb->prot & PAGE_VALID) {
3057
                tlb->prot &= ~PAGE_VALID;
3058
                do_flush_tlbs = 1;
3059
            }
3060
        }
3061
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3062
        if (do_flush_tlbs)
3063
            tlb_flush(env, 1);
3064
        break;
3065
    case 1:
3066
        RPN = value & 0xFFFFFC0F;
3067
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3068
            tlb_flush(env, 1);
3069
        tlb->RPN = RPN;
3070
        break;
3071
    case 2:
3072
        tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3073
        tlb->prot = tlb->prot & PAGE_VALID;
3074
        if (value & 0x1)
3075
            tlb->prot |= PAGE_READ << 4;
3076
        if (value & 0x2)
3077
            tlb->prot |= PAGE_WRITE << 4;
3078
        if (value & 0x4)
3079
            tlb->prot |= PAGE_EXEC << 4;
3080
        if (value & 0x8)
3081
            tlb->prot |= PAGE_READ;
3082
        if (value & 0x10)
3083
            tlb->prot |= PAGE_WRITE;
3084
        if (value & 0x20)
3085
            tlb->prot |= PAGE_EXEC;
3086
        break;
3087
    }
3088
}
3089

    
3090
target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3091
{
3092
    ppcemb_tlb_t *tlb;
3093
    target_ulong ret;
3094
    int size;
3095

    
3096
    entry &= 0x3F;
3097
    tlb = &env->tlb[entry].tlbe;
3098
    switch (word) {
3099
    default:
3100
        /* Just here to please gcc */
3101
    case 0:
3102
        ret = tlb->EPN;
3103
        size = booke_page_size_to_tlb(tlb->size);
3104
        if (size < 0 || size > 0xF)
3105
            size = 1;
3106
        ret |= size << 4;
3107
        if (tlb->attr & 0x1)
3108
            ret |= 0x100;
3109
        if (tlb->prot & PAGE_VALID)
3110
            ret |= 0x200;
3111
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3112
        env->spr[SPR_440_MMUCR] |= tlb->PID;
3113
        break;
3114
    case 1:
3115
        ret = tlb->RPN;
3116
        break;
3117
    case 2:
3118
        ret = tlb->attr & ~0x1;
3119
        if (tlb->prot & (PAGE_READ << 4))
3120
            ret |= 0x1;
3121
        if (tlb->prot & (PAGE_WRITE << 4))
3122
            ret |= 0x2;
3123
        if (tlb->prot & (PAGE_EXEC << 4))
3124
            ret |= 0x4;
3125
        if (tlb->prot & PAGE_READ)
3126
            ret |= 0x8;
3127
        if (tlb->prot & PAGE_WRITE)
3128
            ret |= 0x10;
3129
        if (tlb->prot & PAGE_EXEC)
3130
            ret |= 0x20;
3131
        break;
3132
    }
3133
    return ret;
3134
}
3135

    
3136
target_ulong helper_440_tlbsx (target_ulong address)
3137
{
3138
    return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3139
}
3140

    
3141
#endif /* !CONFIG_USER_ONLY */