Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 067d01de

History | View | Annotate | Download (21.5 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "isa.h"
29
#include "hpet_emul.h"
30

    
31
//#define DEBUG_CMOS
32

    
33
#define RTC_SECONDS             0
34
#define RTC_SECONDS_ALARM       1
35
#define RTC_MINUTES             2
36
#define RTC_MINUTES_ALARM       3
37
#define RTC_HOURS               4
38
#define RTC_HOURS_ALARM         5
39
#define RTC_ALARM_DONT_CARE    0xC0
40

    
41
#define RTC_DAY_OF_WEEK         6
42
#define RTC_DAY_OF_MONTH        7
43
#define RTC_MONTH               8
44
#define RTC_YEAR                9
45

    
46
#define RTC_REG_A               10
47
#define RTC_REG_B               11
48
#define RTC_REG_C               12
49
#define RTC_REG_D               13
50

    
51
#define REG_A_UIP 0x80
52

    
53
#define REG_B_SET  0x80
54
#define REG_B_PIE  0x40
55
#define REG_B_AIE  0x20
56
#define REG_B_UIE  0x10
57
#define REG_B_SQWE 0x08
58
#define REG_B_DM   0x04
59

    
60
#define REG_C_UF   0x10
61
#define REG_C_IRQF 0x80
62
#define REG_C_PF   0x40
63
#define REG_C_AF   0x20
64

    
65
struct RTCState {
66
    ISADevice dev;
67
    uint8_t cmos_data[128];
68
    uint8_t cmos_index;
69
    struct tm current_tm;
70
    int32_t base_year;
71
    qemu_irq irq;
72
    qemu_irq sqw_irq;
73
    int it_shift;
74
    /* periodic timer */
75
    QEMUTimer *periodic_timer;
76
    int64_t next_periodic_time;
77
    /* second update */
78
    int64_t next_second_time;
79
#ifdef TARGET_I386
80
    uint32_t irq_coalesced;
81
    uint32_t period;
82
    QEMUTimer *coalesced_timer;
83
#endif
84
    QEMUTimer *second_timer;
85
    QEMUTimer *second_timer2;
86
};
87

    
88
static void rtc_irq_raise(qemu_irq irq) {
89
    /* When HPET is operating in legacy mode, RTC interrupts are disabled
90
     * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
91
     * mode is established while interrupt is raised. We want it to
92
     * be lowered in any case
93
     */
94
#if defined TARGET_I386 || defined TARGET_X86_64
95
    if (!hpet_in_legacy_mode())
96
#endif
97
        qemu_irq_raise(irq);
98
}
99

    
100
static void rtc_set_time(RTCState *s);
101
static void rtc_copy_date(RTCState *s);
102

    
103
#ifdef TARGET_I386
104
static void rtc_coalesced_timer_update(RTCState *s)
105
{
106
    if (s->irq_coalesced == 0) {
107
        qemu_del_timer(s->coalesced_timer);
108
    } else {
109
        /* divide each RTC interval to 2 - 8 smaller intervals */
110
        int c = MIN(s->irq_coalesced, 7) + 1; 
111
        int64_t next_clock = qemu_get_clock(vm_clock) +
112
                muldiv64(s->period / c, get_ticks_per_sec(), 32768);
113
        qemu_mod_timer(s->coalesced_timer, next_clock);
114
    }
115
}
116

    
117
static void rtc_coalesced_timer(void *opaque)
118
{
119
    RTCState *s = opaque;
120

    
121
    if (s->irq_coalesced != 0) {
122
        apic_reset_irq_delivered();
123
        s->cmos_data[RTC_REG_C] |= 0xc0;
124
        rtc_irq_raise(s->irq);
125
        if (apic_get_irq_delivered()) {
126
            s->irq_coalesced--;
127
        }
128
    }
129

    
130
    rtc_coalesced_timer_update(s);
131
}
132
#endif
133

    
134
static void rtc_timer_update(RTCState *s, int64_t current_time)
135
{
136
    int period_code, period;
137
    int64_t cur_clock, next_irq_clock;
138
    int enable_pie;
139

    
140
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
141
#if defined TARGET_I386 || defined TARGET_X86_64
142
    /* disable periodic timer if hpet is in legacy mode, since interrupts are
143
     * disabled anyway.
144
     */
145
    enable_pie = !hpet_in_legacy_mode();
146
#else
147
    enable_pie = 1;
148
#endif
149
    if (period_code != 0
150
        && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
151
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
152
        if (period_code <= 2)
153
            period_code += 7;
154
        /* period in 32 Khz cycles */
155
        period = 1 << (period_code - 1);
156
#ifdef TARGET_I386
157
        if(period != s->period)
158
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
159
        s->period = period;
160
#endif
161
        /* compute 32 khz clock */
162
        cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
163
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
164
        s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
165
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
166
    } else {
167
#ifdef TARGET_I386
168
        s->irq_coalesced = 0;
169
#endif
170
        qemu_del_timer(s->periodic_timer);
171
    }
172
}
173

    
174
static void rtc_periodic_timer(void *opaque)
175
{
176
    RTCState *s = opaque;
177

    
178
    rtc_timer_update(s, s->next_periodic_time);
179
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
180
        s->cmos_data[RTC_REG_C] |= 0xc0;
181
#ifdef TARGET_I386
182
        if(rtc_td_hack) {
183
            apic_reset_irq_delivered();
184
            rtc_irq_raise(s->irq);
185
            if (!apic_get_irq_delivered()) {
186
                s->irq_coalesced++;
187
                rtc_coalesced_timer_update(s);
188
            }
189
        } else
190
#endif
191
        rtc_irq_raise(s->irq);
192
    }
193
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
194
        /* Not square wave at all but we don't want 2048Hz interrupts!
195
           Must be seen as a pulse.  */
196
        qemu_irq_raise(s->sqw_irq);
197
    }
198
}
199

    
200
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
201
{
202
    RTCState *s = opaque;
203

    
204
    if ((addr & 1) == 0) {
205
        s->cmos_index = data & 0x7f;
206
    } else {
207
#ifdef DEBUG_CMOS
208
        printf("cmos: write index=0x%02x val=0x%02x\n",
209
               s->cmos_index, data);
210
#endif
211
        switch(s->cmos_index) {
212
        case RTC_SECONDS_ALARM:
213
        case RTC_MINUTES_ALARM:
214
        case RTC_HOURS_ALARM:
215
            /* XXX: not supported */
216
            s->cmos_data[s->cmos_index] = data;
217
            break;
218
        case RTC_SECONDS:
219
        case RTC_MINUTES:
220
        case RTC_HOURS:
221
        case RTC_DAY_OF_WEEK:
222
        case RTC_DAY_OF_MONTH:
223
        case RTC_MONTH:
224
        case RTC_YEAR:
225
            s->cmos_data[s->cmos_index] = data;
226
            /* if in set mode, do not update the time */
227
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
228
                rtc_set_time(s);
229
            }
230
            break;
231
        case RTC_REG_A:
232
            /* UIP bit is read only */
233
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
234
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
235
            rtc_timer_update(s, qemu_get_clock(vm_clock));
236
            break;
237
        case RTC_REG_B:
238
            if (data & REG_B_SET) {
239
                /* set mode: reset UIP mode */
240
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
241
                data &= ~REG_B_UIE;
242
            } else {
243
                /* if disabling set mode, update the time */
244
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
245
                    rtc_set_time(s);
246
                }
247
            }
248
            s->cmos_data[RTC_REG_B] = data;
249
            rtc_timer_update(s, qemu_get_clock(vm_clock));
250
            break;
251
        case RTC_REG_C:
252
        case RTC_REG_D:
253
            /* cannot write to them */
254
            break;
255
        default:
256
            s->cmos_data[s->cmos_index] = data;
257
            break;
258
        }
259
    }
260
}
261

    
262
static inline int to_bcd(RTCState *s, int a)
263
{
264
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
265
        return a;
266
    } else {
267
        return ((a / 10) << 4) | (a % 10);
268
    }
269
}
270

    
271
static inline int from_bcd(RTCState *s, int a)
272
{
273
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
274
        return a;
275
    } else {
276
        return ((a >> 4) * 10) + (a & 0x0f);
277
    }
278
}
279

    
280
static void rtc_set_time(RTCState *s)
281
{
282
    struct tm *tm = &s->current_tm;
283

    
284
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
285
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
286
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
287
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
288
        (s->cmos_data[RTC_HOURS] & 0x80)) {
289
        tm->tm_hour += 12;
290
    }
291
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
292
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
293
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
294
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
295
}
296

    
297
static void rtc_copy_date(RTCState *s)
298
{
299
    const struct tm *tm = &s->current_tm;
300
    int year;
301

    
302
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
303
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
304
    if (s->cmos_data[RTC_REG_B] & 0x02) {
305
        /* 24 hour format */
306
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
307
    } else {
308
        /* 12 hour format */
309
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
310
        if (tm->tm_hour >= 12)
311
            s->cmos_data[RTC_HOURS] |= 0x80;
312
    }
313
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
314
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
315
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
316
    year = (tm->tm_year - s->base_year) % 100;
317
    if (year < 0)
318
        year += 100;
319
    s->cmos_data[RTC_YEAR] = to_bcd(s, year);
320
}
321

    
322
/* month is between 0 and 11. */
323
static int get_days_in_month(int month, int year)
324
{
325
    static const int days_tab[12] = {
326
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
327
    };
328
    int d;
329
    if ((unsigned )month >= 12)
330
        return 31;
331
    d = days_tab[month];
332
    if (month == 1) {
333
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
334
            d++;
335
    }
336
    return d;
337
}
338

    
339
/* update 'tm' to the next second */
340
static void rtc_next_second(struct tm *tm)
341
{
342
    int days_in_month;
343

    
344
    tm->tm_sec++;
345
    if ((unsigned)tm->tm_sec >= 60) {
346
        tm->tm_sec = 0;
347
        tm->tm_min++;
348
        if ((unsigned)tm->tm_min >= 60) {
349
            tm->tm_min = 0;
350
            tm->tm_hour++;
351
            if ((unsigned)tm->tm_hour >= 24) {
352
                tm->tm_hour = 0;
353
                /* next day */
354
                tm->tm_wday++;
355
                if ((unsigned)tm->tm_wday >= 7)
356
                    tm->tm_wday = 0;
357
                days_in_month = get_days_in_month(tm->tm_mon,
358
                                                  tm->tm_year + 1900);
359
                tm->tm_mday++;
360
                if (tm->tm_mday < 1) {
361
                    tm->tm_mday = 1;
362
                } else if (tm->tm_mday > days_in_month) {
363
                    tm->tm_mday = 1;
364
                    tm->tm_mon++;
365
                    if (tm->tm_mon >= 12) {
366
                        tm->tm_mon = 0;
367
                        tm->tm_year++;
368
                    }
369
                }
370
            }
371
        }
372
    }
373
}
374

    
375

    
376
static void rtc_update_second(void *opaque)
377
{
378
    RTCState *s = opaque;
379
    int64_t delay;
380

    
381
    /* if the oscillator is not in normal operation, we do not update */
382
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
383
        s->next_second_time += get_ticks_per_sec();
384
        qemu_mod_timer(s->second_timer, s->next_second_time);
385
    } else {
386
        rtc_next_second(&s->current_tm);
387

    
388
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
389
            /* update in progress bit */
390
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
391
        }
392
        /* should be 244 us = 8 / 32768 seconds, but currently the
393
           timers do not have the necessary resolution. */
394
        delay = (get_ticks_per_sec() * 1) / 100;
395
        if (delay < 1)
396
            delay = 1;
397
        qemu_mod_timer(s->second_timer2,
398
                       s->next_second_time + delay);
399
    }
400
}
401

    
402
static void rtc_update_second2(void *opaque)
403
{
404
    RTCState *s = opaque;
405

    
406
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
407
        rtc_copy_date(s);
408
    }
409

    
410
    /* check alarm */
411
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
412
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
413
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
414
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
415
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
416
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
417
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
418

    
419
            s->cmos_data[RTC_REG_C] |= 0xa0;
420
            rtc_irq_raise(s->irq);
421
        }
422
    }
423

    
424
    /* update ended interrupt */
425
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
426
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
427
      s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
428
      rtc_irq_raise(s->irq);
429
    }
430

    
431
    /* clear update in progress bit */
432
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
433

    
434
    s->next_second_time += get_ticks_per_sec();
435
    qemu_mod_timer(s->second_timer, s->next_second_time);
436
}
437

    
438
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
439
{
440
    RTCState *s = opaque;
441
    int ret;
442
    if ((addr & 1) == 0) {
443
        return 0xff;
444
    } else {
445
        switch(s->cmos_index) {
446
        case RTC_SECONDS:
447
        case RTC_MINUTES:
448
        case RTC_HOURS:
449
        case RTC_DAY_OF_WEEK:
450
        case RTC_DAY_OF_MONTH:
451
        case RTC_MONTH:
452
        case RTC_YEAR:
453
            ret = s->cmos_data[s->cmos_index];
454
            break;
455
        case RTC_REG_A:
456
            ret = s->cmos_data[s->cmos_index];
457
            break;
458
        case RTC_REG_C:
459
            ret = s->cmos_data[s->cmos_index];
460
            qemu_irq_lower(s->irq);
461
            s->cmos_data[RTC_REG_C] = 0x00;
462
            break;
463
        default:
464
            ret = s->cmos_data[s->cmos_index];
465
            break;
466
        }
467
#ifdef DEBUG_CMOS
468
        printf("cmos: read index=0x%02x val=0x%02x\n",
469
               s->cmos_index, ret);
470
#endif
471
        return ret;
472
    }
473
}
474

    
475
void rtc_set_memory(RTCState *s, int addr, int val)
476
{
477
    if (addr >= 0 && addr <= 127)
478
        s->cmos_data[addr] = val;
479
}
480

    
481
void rtc_set_date(RTCState *s, const struct tm *tm)
482
{
483
    s->current_tm = *tm;
484
    rtc_copy_date(s);
485
}
486

    
487
/* PC cmos mappings */
488
#define REG_IBM_CENTURY_BYTE        0x32
489
#define REG_IBM_PS2_CENTURY_BYTE    0x37
490

    
491
static void rtc_set_date_from_host(RTCState *s)
492
{
493
    struct tm tm;
494
    int val;
495

    
496
    /* set the CMOS date */
497
    qemu_get_timedate(&tm, 0);
498
    rtc_set_date(s, &tm);
499

    
500
    val = to_bcd(s, (tm.tm_year / 100) + 19);
501
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
502
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
503
}
504

    
505
static void rtc_save(QEMUFile *f, void *opaque)
506
{
507
    RTCState *s = opaque;
508

    
509
    qemu_put_buffer(f, s->cmos_data, 128);
510
    qemu_put_8s(f, &s->cmos_index);
511

    
512
    qemu_put_be32(f, s->current_tm.tm_sec);
513
    qemu_put_be32(f, s->current_tm.tm_min);
514
    qemu_put_be32(f, s->current_tm.tm_hour);
515
    qemu_put_be32(f, s->current_tm.tm_wday);
516
    qemu_put_be32(f, s->current_tm.tm_mday);
517
    qemu_put_be32(f, s->current_tm.tm_mon);
518
    qemu_put_be32(f, s->current_tm.tm_year);
519

    
520
    qemu_put_timer(f, s->periodic_timer);
521
    qemu_put_be64(f, s->next_periodic_time);
522

    
523
    qemu_put_be64(f, s->next_second_time);
524
    qemu_put_timer(f, s->second_timer);
525
    qemu_put_timer(f, s->second_timer2);
526
}
527

    
528
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
529
{
530
    RTCState *s = opaque;
531

    
532
    if (version_id != 1)
533
        return -EINVAL;
534

    
535
    qemu_get_buffer(f, s->cmos_data, 128);
536
    qemu_get_8s(f, &s->cmos_index);
537

    
538
    s->current_tm.tm_sec=qemu_get_be32(f);
539
    s->current_tm.tm_min=qemu_get_be32(f);
540
    s->current_tm.tm_hour=qemu_get_be32(f);
541
    s->current_tm.tm_wday=qemu_get_be32(f);
542
    s->current_tm.tm_mday=qemu_get_be32(f);
543
    s->current_tm.tm_mon=qemu_get_be32(f);
544
    s->current_tm.tm_year=qemu_get_be32(f);
545

    
546
    qemu_get_timer(f, s->periodic_timer);
547
    s->next_periodic_time=qemu_get_be64(f);
548

    
549
    s->next_second_time=qemu_get_be64(f);
550
    qemu_get_timer(f, s->second_timer);
551
    qemu_get_timer(f, s->second_timer2);
552
    return 0;
553
}
554

    
555
#ifdef TARGET_I386
556
static void rtc_save_td(QEMUFile *f, void *opaque)
557
{
558
    RTCState *s = opaque;
559

    
560
    qemu_put_be32(f, s->irq_coalesced);
561
    qemu_put_be32(f, s->period);
562
}
563

    
564
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
565
{
566
    RTCState *s = opaque;
567

    
568
    if (version_id != 1)
569
        return -EINVAL;
570

    
571
    s->irq_coalesced = qemu_get_be32(f);
572
    s->period = qemu_get_be32(f);
573
    rtc_coalesced_timer_update(s);
574
    return 0;
575
}
576
#endif
577

    
578
static void rtc_reset(void *opaque)
579
{
580
    RTCState *s = opaque;
581

    
582
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
583
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
584

    
585
    qemu_irq_lower(s->irq);
586

    
587
#ifdef TARGET_I386
588
    if (rtc_td_hack)
589
            s->irq_coalesced = 0;
590
#endif
591
}
592

    
593
static int rtc_initfn(ISADevice *dev)
594
{
595
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
596
    int base = 0x70;
597
    int isairq = 8;
598

    
599
    isa_init_irq(dev, &s->irq, isairq);
600

    
601
    s->cmos_data[RTC_REG_A] = 0x26;
602
    s->cmos_data[RTC_REG_B] = 0x02;
603
    s->cmos_data[RTC_REG_C] = 0x00;
604
    s->cmos_data[RTC_REG_D] = 0x80;
605

    
606
    rtc_set_date_from_host(s);
607

    
608
    s->periodic_timer = qemu_new_timer(vm_clock,
609
                                       rtc_periodic_timer, s);
610
#ifdef TARGET_I386
611
    if (rtc_td_hack)
612
        s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
613
#endif
614
    s->second_timer = qemu_new_timer(vm_clock,
615
                                     rtc_update_second, s);
616
    s->second_timer2 = qemu_new_timer(vm_clock,
617
                                      rtc_update_second2, s);
618

    
619
    s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100;
620
    qemu_mod_timer(s->second_timer2, s->next_second_time);
621

    
622
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
623
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
624

    
625
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
626
#ifdef TARGET_I386
627
    if (rtc_td_hack)
628
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
629
#endif
630
    qemu_register_reset(rtc_reset, s);
631
    return 0;
632
}
633

    
634
RTCState *rtc_init(int base_year)
635
{
636
    ISADevice *dev;
637

    
638
    dev = isa_create("mc146818rtc");
639
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
640
    qdev_init(&dev->qdev);
641
    return DO_UPCAST(RTCState, dev, dev);
642
}
643

    
644
static ISADeviceInfo mc146818rtc_info = {
645
    .qdev.name     = "mc146818rtc",
646
    .qdev.size     = sizeof(RTCState),
647
    .qdev.no_user  = 1,
648
    .init          = rtc_initfn,
649
    .qdev.props    = (Property[]) {
650
        DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
651
        DEFINE_PROP_END_OF_LIST(),
652
    }
653
};
654

    
655
static void mc146818rtc_register(void)
656
{
657
    isa_qdev_register(&mc146818rtc_info);
658
}
659
device_init(mc146818rtc_register)
660

    
661
/* Memory mapped interface */
662
static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
663
{
664
    RTCState *s = opaque;
665

    
666
    return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
667
}
668

    
669
static void cmos_mm_writeb (void *opaque,
670
                            target_phys_addr_t addr, uint32_t value)
671
{
672
    RTCState *s = opaque;
673

    
674
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
675
}
676

    
677
static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
678
{
679
    RTCState *s = opaque;
680
    uint32_t val;
681

    
682
    val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
683
#ifdef TARGET_WORDS_BIGENDIAN
684
    val = bswap16(val);
685
#endif
686
    return val;
687
}
688

    
689
static void cmos_mm_writew (void *opaque,
690
                            target_phys_addr_t addr, uint32_t value)
691
{
692
    RTCState *s = opaque;
693
#ifdef TARGET_WORDS_BIGENDIAN
694
    value = bswap16(value);
695
#endif
696
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
697
}
698

    
699
static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
700
{
701
    RTCState *s = opaque;
702
    uint32_t val;
703

    
704
    val = cmos_ioport_read(s, addr >> s->it_shift);
705
#ifdef TARGET_WORDS_BIGENDIAN
706
    val = bswap32(val);
707
#endif
708
    return val;
709
}
710

    
711
static void cmos_mm_writel (void *opaque,
712
                            target_phys_addr_t addr, uint32_t value)
713
{
714
    RTCState *s = opaque;
715
#ifdef TARGET_WORDS_BIGENDIAN
716
    value = bswap32(value);
717
#endif
718
    cmos_ioport_write(s, addr >> s->it_shift, value);
719
}
720

    
721
static CPUReadMemoryFunc * const rtc_mm_read[] = {
722
    &cmos_mm_readb,
723
    &cmos_mm_readw,
724
    &cmos_mm_readl,
725
};
726

    
727
static CPUWriteMemoryFunc * const rtc_mm_write[] = {
728
    &cmos_mm_writeb,
729
    &cmos_mm_writew,
730
    &cmos_mm_writel,
731
};
732

    
733
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
734
                      int base_year)
735
{
736
    RTCState *s;
737
    int io_memory;
738

    
739
    s = qemu_mallocz(sizeof(RTCState));
740

    
741
    s->irq = irq;
742
    s->cmos_data[RTC_REG_A] = 0x26;
743
    s->cmos_data[RTC_REG_B] = 0x02;
744
    s->cmos_data[RTC_REG_C] = 0x00;
745
    s->cmos_data[RTC_REG_D] = 0x80;
746

    
747
    s->base_year = base_year;
748
    rtc_set_date_from_host(s);
749

    
750
    s->periodic_timer = qemu_new_timer(vm_clock,
751
                                       rtc_periodic_timer, s);
752
    s->second_timer = qemu_new_timer(vm_clock,
753
                                     rtc_update_second, s);
754
    s->second_timer2 = qemu_new_timer(vm_clock,
755
                                      rtc_update_second2, s);
756

    
757
    s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100;
758
    qemu_mod_timer(s->second_timer2, s->next_second_time);
759

    
760
    io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
761
    cpu_register_physical_memory(base, 2 << it_shift, io_memory);
762

    
763
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
764
#ifdef TARGET_I386
765
    if (rtc_td_hack)
766
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
767
#endif
768
    qemu_register_reset(rtc_reset, s);
769
    return s;
770
}