Statistics
| Branch: | Revision:

root / kvm-all.c @ 07b6c13b

History | View | Annotate | Download (36 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29
#include "bswap.h"
30

    
31
/* This check must be after config-host.h is included */
32
#ifdef CONFIG_EVENTFD
33
#include <sys/eventfd.h>
34
#endif
35

    
36
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37
#define PAGE_SIZE TARGET_PAGE_SIZE
38

    
39
//#define DEBUG_KVM
40

    
41
#ifdef DEBUG_KVM
42
#define DPRINTF(fmt, ...) \
43
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44
#else
45
#define DPRINTF(fmt, ...) \
46
    do { } while (0)
47
#endif
48

    
49
typedef struct KVMSlot
50
{
51
    target_phys_addr_t start_addr;
52
    ram_addr_t memory_size;
53
    ram_addr_t phys_offset;
54
    int slot;
55
    int flags;
56
} KVMSlot;
57

    
58
typedef struct kvm_dirty_log KVMDirtyLog;
59

    
60
struct KVMState
61
{
62
    KVMSlot slots[32];
63
    int fd;
64
    int vmfd;
65
    int coalesced_mmio;
66
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67
    int broken_set_mem_region;
68
    int migration_log;
69
    int vcpu_events;
70
    int robust_singlestep;
71
    int debugregs;
72
#ifdef KVM_CAP_SET_GUEST_DEBUG
73
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74
#endif
75
    int irqchip_in_kernel;
76
    int pit_in_kernel;
77
    int xsave, xcrs;
78
    int many_ioeventfds;
79
};
80

    
81
KVMState *kvm_state;
82

    
83
static const KVMCapabilityInfo kvm_required_capabilites[] = {
84
    KVM_CAP_INFO(USER_MEMORY),
85
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86
    KVM_CAP_LAST_INFO
87
};
88

    
89
static KVMSlot *kvm_alloc_slot(KVMState *s)
90
{
91
    int i;
92

    
93
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94
        if (s->slots[i].memory_size == 0) {
95
            return &s->slots[i];
96
        }
97
    }
98

    
99
    fprintf(stderr, "%s: no free slot available\n", __func__);
100
    abort();
101
}
102

    
103
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104
                                         target_phys_addr_t start_addr,
105
                                         target_phys_addr_t end_addr)
106
{
107
    int i;
108

    
109
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110
        KVMSlot *mem = &s->slots[i];
111

    
112
        if (start_addr == mem->start_addr &&
113
            end_addr == mem->start_addr + mem->memory_size) {
114
            return mem;
115
        }
116
    }
117

    
118
    return NULL;
119
}
120

    
121
/*
122
 * Find overlapping slot with lowest start address
123
 */
124
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125
                                            target_phys_addr_t start_addr,
126
                                            target_phys_addr_t end_addr)
127
{
128
    KVMSlot *found = NULL;
129
    int i;
130

    
131
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132
        KVMSlot *mem = &s->slots[i];
133

    
134
        if (mem->memory_size == 0 ||
135
            (found && found->start_addr < mem->start_addr)) {
136
            continue;
137
        }
138

    
139
        if (end_addr > mem->start_addr &&
140
            start_addr < mem->start_addr + mem->memory_size) {
141
            found = mem;
142
        }
143
    }
144

    
145
    return found;
146
}
147

    
148
int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149
                                      target_phys_addr_t *phys_addr)
150
{
151
    int i;
152

    
153
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154
        KVMSlot *mem = &s->slots[i];
155

    
156
        if (ram_addr >= mem->phys_offset &&
157
            ram_addr < mem->phys_offset + mem->memory_size) {
158
            *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159
            return 1;
160
        }
161
    }
162

    
163
    return 0;
164
}
165

    
166
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167
{
168
    struct kvm_userspace_memory_region mem;
169

    
170
    mem.slot = slot->slot;
171
    mem.guest_phys_addr = slot->start_addr;
172
    mem.memory_size = slot->memory_size;
173
    mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174
    mem.flags = slot->flags;
175
    if (s->migration_log) {
176
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177
    }
178
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179
}
180

    
181
static void kvm_reset_vcpu(void *opaque)
182
{
183
    CPUState *env = opaque;
184

    
185
    kvm_arch_reset_vcpu(env);
186
}
187

    
188
int kvm_irqchip_in_kernel(void)
189
{
190
    return kvm_state->irqchip_in_kernel;
191
}
192

    
193
int kvm_pit_in_kernel(void)
194
{
195
    return kvm_state->pit_in_kernel;
196
}
197

    
198
int kvm_init_vcpu(CPUState *env)
199
{
200
    KVMState *s = kvm_state;
201
    long mmap_size;
202
    int ret;
203

    
204
    DPRINTF("kvm_init_vcpu\n");
205

    
206
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
207
    if (ret < 0) {
208
        DPRINTF("kvm_create_vcpu failed\n");
209
        goto err;
210
    }
211

    
212
    env->kvm_fd = ret;
213
    env->kvm_state = s;
214
    env->kvm_vcpu_dirty = 1;
215

    
216
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217
    if (mmap_size < 0) {
218
        ret = mmap_size;
219
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
220
        goto err;
221
    }
222

    
223
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224
                        env->kvm_fd, 0);
225
    if (env->kvm_run == MAP_FAILED) {
226
        ret = -errno;
227
        DPRINTF("mmap'ing vcpu state failed\n");
228
        goto err;
229
    }
230

    
231
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232
        s->coalesced_mmio_ring =
233
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234
    }
235

    
236
    ret = kvm_arch_init_vcpu(env);
237
    if (ret == 0) {
238
        qemu_register_reset(kvm_reset_vcpu, env);
239
        kvm_arch_reset_vcpu(env);
240
    }
241
err:
242
    return ret;
243
}
244

    
245
/*
246
 * dirty pages logging control
247
 */
248

    
249
static int kvm_mem_flags(KVMState *s, bool log_dirty)
250
{
251
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
252
}
253

    
254
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
255
{
256
    KVMState *s = kvm_state;
257
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
258
    int old_flags;
259

    
260
    old_flags = mem->flags;
261

    
262
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
263
    mem->flags = flags;
264

    
265
    /* If nothing changed effectively, no need to issue ioctl */
266
    if (s->migration_log) {
267
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
268
    }
269

    
270
    if (flags == old_flags) {
271
        return 0;
272
    }
273

    
274
    return kvm_set_user_memory_region(s, mem);
275
}
276

    
277
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
278
                                      ram_addr_t size, bool log_dirty)
279
{
280
    KVMState *s = kvm_state;
281
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
282

    
283
    if (mem == NULL)  {
284
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
285
                TARGET_FMT_plx "\n", __func__, phys_addr,
286
                (target_phys_addr_t)(phys_addr + size - 1));
287
        return -EINVAL;
288
    }
289
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
290
}
291

    
292
static int kvm_log_start(CPUPhysMemoryClient *client,
293
                         target_phys_addr_t phys_addr, ram_addr_t size)
294
{
295
    return kvm_dirty_pages_log_change(phys_addr, size, true);
296
}
297

    
298
static int kvm_log_stop(CPUPhysMemoryClient *client,
299
                        target_phys_addr_t phys_addr, ram_addr_t size)
300
{
301
    return kvm_dirty_pages_log_change(phys_addr, size, false);
302
}
303

    
304
static int kvm_set_migration_log(int enable)
305
{
306
    KVMState *s = kvm_state;
307
    KVMSlot *mem;
308
    int i, err;
309

    
310
    s->migration_log = enable;
311

    
312
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
313
        mem = &s->slots[i];
314

    
315
        if (!mem->memory_size) {
316
            continue;
317
        }
318
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
319
            continue;
320
        }
321
        err = kvm_set_user_memory_region(s, mem);
322
        if (err) {
323
            return err;
324
        }
325
    }
326
    return 0;
327
}
328

    
329
/* get kvm's dirty pages bitmap and update qemu's */
330
static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
331
                                         unsigned long *bitmap,
332
                                         unsigned long offset,
333
                                         unsigned long mem_size)
334
{
335
    unsigned int i, j;
336
    unsigned long page_number, addr, addr1, c;
337
    ram_addr_t ram_addr;
338
    unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
339
        HOST_LONG_BITS;
340

    
341
    /*
342
     * bitmap-traveling is faster than memory-traveling (for addr...)
343
     * especially when most of the memory is not dirty.
344
     */
345
    for (i = 0; i < len; i++) {
346
        if (bitmap[i] != 0) {
347
            c = leul_to_cpu(bitmap[i]);
348
            do {
349
                j = ffsl(c) - 1;
350
                c &= ~(1ul << j);
351
                page_number = i * HOST_LONG_BITS + j;
352
                addr1 = page_number * TARGET_PAGE_SIZE;
353
                addr = offset + addr1;
354
                ram_addr = cpu_get_physical_page_desc(addr);
355
                cpu_physical_memory_set_dirty(ram_addr);
356
            } while (c != 0);
357
        }
358
    }
359
    return 0;
360
}
361

    
362
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
363

    
364
/**
365
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
366
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
367
 * This means all bits are set to dirty.
368
 *
369
 * @start_add: start of logged region.
370
 * @end_addr: end of logged region.
371
 */
372
static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
373
                                          target_phys_addr_t end_addr)
374
{
375
    KVMState *s = kvm_state;
376
    unsigned long size, allocated_size = 0;
377
    KVMDirtyLog d;
378
    KVMSlot *mem;
379
    int ret = 0;
380

    
381
    d.dirty_bitmap = NULL;
382
    while (start_addr < end_addr) {
383
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
384
        if (mem == NULL) {
385
            break;
386
        }
387

    
388
        /* XXX bad kernel interface alert
389
         * For dirty bitmap, kernel allocates array of size aligned to
390
         * bits-per-long.  But for case when the kernel is 64bits and
391
         * the userspace is 32bits, userspace can't align to the same
392
         * bits-per-long, since sizeof(long) is different between kernel
393
         * and user space.  This way, userspace will provide buffer which
394
         * may be 4 bytes less than the kernel will use, resulting in
395
         * userspace memory corruption (which is not detectable by valgrind
396
         * too, in most cases).
397
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
398
         * a hope that sizeof(long) wont become >8 any time soon.
399
         */
400
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
401
                     /*HOST_LONG_BITS*/ 64) / 8;
402
        if (!d.dirty_bitmap) {
403
            d.dirty_bitmap = qemu_malloc(size);
404
        } else if (size > allocated_size) {
405
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
406
        }
407
        allocated_size = size;
408
        memset(d.dirty_bitmap, 0, allocated_size);
409

    
410
        d.slot = mem->slot;
411

    
412
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
413
            DPRINTF("ioctl failed %d\n", errno);
414
            ret = -1;
415
            break;
416
        }
417

    
418
        kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
419
                                      mem->start_addr, mem->memory_size);
420
        start_addr = mem->start_addr + mem->memory_size;
421
    }
422
    qemu_free(d.dirty_bitmap);
423

    
424
    return ret;
425
}
426

    
427
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
428
{
429
    int ret = -ENOSYS;
430
    KVMState *s = kvm_state;
431

    
432
    if (s->coalesced_mmio) {
433
        struct kvm_coalesced_mmio_zone zone;
434

    
435
        zone.addr = start;
436
        zone.size = size;
437

    
438
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
439
    }
440

    
441
    return ret;
442
}
443

    
444
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
445
{
446
    int ret = -ENOSYS;
447
    KVMState *s = kvm_state;
448

    
449
    if (s->coalesced_mmio) {
450
        struct kvm_coalesced_mmio_zone zone;
451

    
452
        zone.addr = start;
453
        zone.size = size;
454

    
455
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
456
    }
457

    
458
    return ret;
459
}
460

    
461
int kvm_check_extension(KVMState *s, unsigned int extension)
462
{
463
    int ret;
464

    
465
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
466
    if (ret < 0) {
467
        ret = 0;
468
    }
469

    
470
    return ret;
471
}
472

    
473
static int kvm_check_many_ioeventfds(void)
474
{
475
    /* Userspace can use ioeventfd for io notification.  This requires a host
476
     * that supports eventfd(2) and an I/O thread; since eventfd does not
477
     * support SIGIO it cannot interrupt the vcpu.
478
     *
479
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
480
     * can avoid creating too many ioeventfds.
481
     */
482
#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
483
    int ioeventfds[7];
484
    int i, ret = 0;
485
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
486
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
487
        if (ioeventfds[i] < 0) {
488
            break;
489
        }
490
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
491
        if (ret < 0) {
492
            close(ioeventfds[i]);
493
            break;
494
        }
495
    }
496

    
497
    /* Decide whether many devices are supported or not */
498
    ret = i == ARRAY_SIZE(ioeventfds);
499

    
500
    while (i-- > 0) {
501
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
502
        close(ioeventfds[i]);
503
    }
504
    return ret;
505
#else
506
    return 0;
507
#endif
508
}
509

    
510
static const KVMCapabilityInfo *
511
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
512
{
513
    while (list->name) {
514
        if (!kvm_check_extension(s, list->value)) {
515
            return list;
516
        }
517
        list++;
518
    }
519
    return NULL;
520
}
521

    
522
static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
523
                             ram_addr_t phys_offset, bool log_dirty)
524
{
525
    KVMState *s = kvm_state;
526
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
527
    KVMSlot *mem, old;
528
    int err;
529

    
530
    /* kvm works in page size chunks, but the function may be called
531
       with sub-page size and unaligned start address. */
532
    size = TARGET_PAGE_ALIGN(size);
533
    start_addr = TARGET_PAGE_ALIGN(start_addr);
534

    
535
    /* KVM does not support read-only slots */
536
    phys_offset &= ~IO_MEM_ROM;
537

    
538
    while (1) {
539
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
540
        if (!mem) {
541
            break;
542
        }
543

    
544
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
545
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
546
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
547
            /* The new slot fits into the existing one and comes with
548
             * identical parameters - update flags and done. */
549
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
550
            return;
551
        }
552

    
553
        old = *mem;
554

    
555
        /* unregister the overlapping slot */
556
        mem->memory_size = 0;
557
        err = kvm_set_user_memory_region(s, mem);
558
        if (err) {
559
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
560
                    __func__, strerror(-err));
561
            abort();
562
        }
563

    
564
        /* Workaround for older KVM versions: we can't join slots, even not by
565
         * unregistering the previous ones and then registering the larger
566
         * slot. We have to maintain the existing fragmentation. Sigh.
567
         *
568
         * This workaround assumes that the new slot starts at the same
569
         * address as the first existing one. If not or if some overlapping
570
         * slot comes around later, we will fail (not seen in practice so far)
571
         * - and actually require a recent KVM version. */
572
        if (s->broken_set_mem_region &&
573
            old.start_addr == start_addr && old.memory_size < size &&
574
            flags < IO_MEM_UNASSIGNED) {
575
            mem = kvm_alloc_slot(s);
576
            mem->memory_size = old.memory_size;
577
            mem->start_addr = old.start_addr;
578
            mem->phys_offset = old.phys_offset;
579
            mem->flags = kvm_mem_flags(s, log_dirty);
580

    
581
            err = kvm_set_user_memory_region(s, mem);
582
            if (err) {
583
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
584
                        strerror(-err));
585
                abort();
586
            }
587

    
588
            start_addr += old.memory_size;
589
            phys_offset += old.memory_size;
590
            size -= old.memory_size;
591
            continue;
592
        }
593

    
594
        /* register prefix slot */
595
        if (old.start_addr < start_addr) {
596
            mem = kvm_alloc_slot(s);
597
            mem->memory_size = start_addr - old.start_addr;
598
            mem->start_addr = old.start_addr;
599
            mem->phys_offset = old.phys_offset;
600
            mem->flags =  kvm_mem_flags(s, log_dirty);
601

    
602
            err = kvm_set_user_memory_region(s, mem);
603
            if (err) {
604
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
605
                        __func__, strerror(-err));
606
#ifdef TARGET_PPC
607
                fprintf(stderr, "%s: This is probably because your kernel's " \
608
                                "PAGE_SIZE is too big. Please try to use 4k " \
609
                                "PAGE_SIZE!\n", __func__);
610
#endif
611
                abort();
612
            }
613
        }
614

    
615
        /* register suffix slot */
616
        if (old.start_addr + old.memory_size > start_addr + size) {
617
            ram_addr_t size_delta;
618

    
619
            mem = kvm_alloc_slot(s);
620
            mem->start_addr = start_addr + size;
621
            size_delta = mem->start_addr - old.start_addr;
622
            mem->memory_size = old.memory_size - size_delta;
623
            mem->phys_offset = old.phys_offset + size_delta;
624
            mem->flags = kvm_mem_flags(s, log_dirty);
625

    
626
            err = kvm_set_user_memory_region(s, mem);
627
            if (err) {
628
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
629
                        __func__, strerror(-err));
630
                abort();
631
            }
632
        }
633
    }
634

    
635
    /* in case the KVM bug workaround already "consumed" the new slot */
636
    if (!size) {
637
        return;
638
    }
639
    /* KVM does not need to know about this memory */
640
    if (flags >= IO_MEM_UNASSIGNED) {
641
        return;
642
    }
643
    mem = kvm_alloc_slot(s);
644
    mem->memory_size = size;
645
    mem->start_addr = start_addr;
646
    mem->phys_offset = phys_offset;
647
    mem->flags = kvm_mem_flags(s, log_dirty);
648

    
649
    err = kvm_set_user_memory_region(s, mem);
650
    if (err) {
651
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
652
                strerror(-err));
653
        abort();
654
    }
655
}
656

    
657
static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
658
                                  target_phys_addr_t start_addr,
659
                                  ram_addr_t size, ram_addr_t phys_offset,
660
                                  bool log_dirty)
661
{
662
    kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
663
}
664

    
665
static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
666
                                        target_phys_addr_t start_addr,
667
                                        target_phys_addr_t end_addr)
668
{
669
    return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
670
}
671

    
672
static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
673
                                    int enable)
674
{
675
    return kvm_set_migration_log(enable);
676
}
677

    
678
static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
679
    .set_memory = kvm_client_set_memory,
680
    .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
681
    .migration_log = kvm_client_migration_log,
682
    .log_start = kvm_log_start,
683
    .log_stop = kvm_log_stop,
684
};
685

    
686
static void kvm_handle_interrupt(CPUState *env, int mask)
687
{
688
    env->interrupt_request |= mask;
689

    
690
    if (!qemu_cpu_is_self(env)) {
691
        qemu_cpu_kick(env);
692
    }
693
}
694

    
695
int kvm_init(void)
696
{
697
    static const char upgrade_note[] =
698
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
699
        "(see http://sourceforge.net/projects/kvm).\n";
700
    KVMState *s;
701
    const KVMCapabilityInfo *missing_cap;
702
    int ret;
703
    int i;
704

    
705
    s = qemu_mallocz(sizeof(KVMState));
706

    
707
#ifdef KVM_CAP_SET_GUEST_DEBUG
708
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
709
#endif
710
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
711
        s->slots[i].slot = i;
712
    }
713
    s->vmfd = -1;
714
    s->fd = qemu_open("/dev/kvm", O_RDWR);
715
    if (s->fd == -1) {
716
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
717
        ret = -errno;
718
        goto err;
719
    }
720

    
721
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
722
    if (ret < KVM_API_VERSION) {
723
        if (ret > 0) {
724
            ret = -EINVAL;
725
        }
726
        fprintf(stderr, "kvm version too old\n");
727
        goto err;
728
    }
729

    
730
    if (ret > KVM_API_VERSION) {
731
        ret = -EINVAL;
732
        fprintf(stderr, "kvm version not supported\n");
733
        goto err;
734
    }
735

    
736
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
737
    if (s->vmfd < 0) {
738
#ifdef TARGET_S390X
739
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
740
                        "your host kernel command line\n");
741
#endif
742
        goto err;
743
    }
744

    
745
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
746
    if (!missing_cap) {
747
        missing_cap =
748
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
749
    }
750
    if (missing_cap) {
751
        ret = -EINVAL;
752
        fprintf(stderr, "kvm does not support %s\n%s",
753
                missing_cap->name, upgrade_note);
754
        goto err;
755
    }
756

    
757
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
758

    
759
    s->broken_set_mem_region = 1;
760
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
761
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
762
    if (ret > 0) {
763
        s->broken_set_mem_region = 0;
764
    }
765
#endif
766

    
767
    s->vcpu_events = 0;
768
#ifdef KVM_CAP_VCPU_EVENTS
769
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
770
#endif
771

    
772
    s->robust_singlestep = 0;
773
#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
774
    s->robust_singlestep =
775
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
776
#endif
777

    
778
    s->debugregs = 0;
779
#ifdef KVM_CAP_DEBUGREGS
780
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
781
#endif
782

    
783
    s->xsave = 0;
784
#ifdef KVM_CAP_XSAVE
785
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
786
#endif
787

    
788
    s->xcrs = 0;
789
#ifdef KVM_CAP_XCRS
790
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
791
#endif
792

    
793
    ret = kvm_arch_init(s);
794
    if (ret < 0) {
795
        goto err;
796
    }
797

    
798
    kvm_state = s;
799
    cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
800

    
801
    s->many_ioeventfds = kvm_check_many_ioeventfds();
802

    
803
    cpu_interrupt_handler = kvm_handle_interrupt;
804

    
805
    return 0;
806

    
807
err:
808
    if (s) {
809
        if (s->vmfd != -1) {
810
            close(s->vmfd);
811
        }
812
        if (s->fd != -1) {
813
            close(s->fd);
814
        }
815
    }
816
    qemu_free(s);
817

    
818
    return ret;
819
}
820

    
821
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
822
                          uint32_t count)
823
{
824
    int i;
825
    uint8_t *ptr = data;
826

    
827
    for (i = 0; i < count; i++) {
828
        if (direction == KVM_EXIT_IO_IN) {
829
            switch (size) {
830
            case 1:
831
                stb_p(ptr, cpu_inb(port));
832
                break;
833
            case 2:
834
                stw_p(ptr, cpu_inw(port));
835
                break;
836
            case 4:
837
                stl_p(ptr, cpu_inl(port));
838
                break;
839
            }
840
        } else {
841
            switch (size) {
842
            case 1:
843
                cpu_outb(port, ldub_p(ptr));
844
                break;
845
            case 2:
846
                cpu_outw(port, lduw_p(ptr));
847
                break;
848
            case 4:
849
                cpu_outl(port, ldl_p(ptr));
850
                break;
851
            }
852
        }
853

    
854
        ptr += size;
855
    }
856
}
857

    
858
#ifdef KVM_CAP_INTERNAL_ERROR_DATA
859
static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
860
{
861
    fprintf(stderr, "KVM internal error.");
862
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
863
        int i;
864

    
865
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
866
        for (i = 0; i < run->internal.ndata; ++i) {
867
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
868
                    i, (uint64_t)run->internal.data[i]);
869
        }
870
    } else {
871
        fprintf(stderr, "\n");
872
    }
873
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
874
        fprintf(stderr, "emulation failure\n");
875
        if (!kvm_arch_stop_on_emulation_error(env)) {
876
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
877
            return EXCP_INTERRUPT;
878
        }
879
    }
880
    /* FIXME: Should trigger a qmp message to let management know
881
     * something went wrong.
882
     */
883
    return -1;
884
}
885
#endif
886

    
887
void kvm_flush_coalesced_mmio_buffer(void)
888
{
889
    KVMState *s = kvm_state;
890
    if (s->coalesced_mmio_ring) {
891
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
892
        while (ring->first != ring->last) {
893
            struct kvm_coalesced_mmio *ent;
894

    
895
            ent = &ring->coalesced_mmio[ring->first];
896

    
897
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
898
            smp_wmb();
899
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
900
        }
901
    }
902
}
903

    
904
static void do_kvm_cpu_synchronize_state(void *_env)
905
{
906
    CPUState *env = _env;
907

    
908
    if (!env->kvm_vcpu_dirty) {
909
        kvm_arch_get_registers(env);
910
        env->kvm_vcpu_dirty = 1;
911
    }
912
}
913

    
914
void kvm_cpu_synchronize_state(CPUState *env)
915
{
916
    if (!env->kvm_vcpu_dirty) {
917
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
918
    }
919
}
920

    
921
void kvm_cpu_synchronize_post_reset(CPUState *env)
922
{
923
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
924
    env->kvm_vcpu_dirty = 0;
925
}
926

    
927
void kvm_cpu_synchronize_post_init(CPUState *env)
928
{
929
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
930
    env->kvm_vcpu_dirty = 0;
931
}
932

    
933
int kvm_cpu_exec(CPUState *env)
934
{
935
    struct kvm_run *run = env->kvm_run;
936
    int ret, run_ret;
937

    
938
    DPRINTF("kvm_cpu_exec()\n");
939

    
940
    if (kvm_arch_process_async_events(env)) {
941
        env->exit_request = 0;
942
        return EXCP_HLT;
943
    }
944

    
945
    cpu_single_env = env;
946

    
947
    do {
948
        if (env->kvm_vcpu_dirty) {
949
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
950
            env->kvm_vcpu_dirty = 0;
951
        }
952

    
953
        kvm_arch_pre_run(env, run);
954
        if (env->exit_request) {
955
            DPRINTF("interrupt exit requested\n");
956
            /*
957
             * KVM requires us to reenter the kernel after IO exits to complete
958
             * instruction emulation. This self-signal will ensure that we
959
             * leave ASAP again.
960
             */
961
            qemu_cpu_kick_self();
962
        }
963
        cpu_single_env = NULL;
964
        qemu_mutex_unlock_iothread();
965

    
966
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
967

    
968
        qemu_mutex_lock_iothread();
969
        cpu_single_env = env;
970
        kvm_arch_post_run(env, run);
971

    
972
        kvm_flush_coalesced_mmio_buffer();
973

    
974
        if (run_ret < 0) {
975
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
976
                DPRINTF("io window exit\n");
977
                ret = EXCP_INTERRUPT;
978
                break;
979
            }
980
            DPRINTF("kvm run failed %s\n", strerror(-run_ret));
981
            abort();
982
        }
983

    
984
        switch (run->exit_reason) {
985
        case KVM_EXIT_IO:
986
            DPRINTF("handle_io\n");
987
            kvm_handle_io(run->io.port,
988
                          (uint8_t *)run + run->io.data_offset,
989
                          run->io.direction,
990
                          run->io.size,
991
                          run->io.count);
992
            ret = 0;
993
            break;
994
        case KVM_EXIT_MMIO:
995
            DPRINTF("handle_mmio\n");
996
            cpu_physical_memory_rw(run->mmio.phys_addr,
997
                                   run->mmio.data,
998
                                   run->mmio.len,
999
                                   run->mmio.is_write);
1000
            ret = 0;
1001
            break;
1002
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1003
            DPRINTF("irq_window_open\n");
1004
            ret = EXCP_INTERRUPT;
1005
            break;
1006
        case KVM_EXIT_SHUTDOWN:
1007
            DPRINTF("shutdown\n");
1008
            qemu_system_reset_request();
1009
            ret = EXCP_INTERRUPT;
1010
            break;
1011
        case KVM_EXIT_UNKNOWN:
1012
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1013
                    (uint64_t)run->hw.hardware_exit_reason);
1014
            ret = -1;
1015
            break;
1016
#ifdef KVM_CAP_INTERNAL_ERROR_DATA
1017
        case KVM_EXIT_INTERNAL_ERROR:
1018
            ret = kvm_handle_internal_error(env, run);
1019
            break;
1020
#endif
1021
        default:
1022
            DPRINTF("kvm_arch_handle_exit\n");
1023
            ret = kvm_arch_handle_exit(env, run);
1024
            break;
1025
        }
1026
    } while (ret == 0);
1027

    
1028
    if (ret < 0) {
1029
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1030
        vm_stop(VMSTOP_PANIC);
1031
    }
1032

    
1033
    env->exit_request = 0;
1034
    cpu_single_env = NULL;
1035
    return ret;
1036
}
1037

    
1038
int kvm_ioctl(KVMState *s, int type, ...)
1039
{
1040
    int ret;
1041
    void *arg;
1042
    va_list ap;
1043

    
1044
    va_start(ap, type);
1045
    arg = va_arg(ap, void *);
1046
    va_end(ap);
1047

    
1048
    ret = ioctl(s->fd, type, arg);
1049
    if (ret == -1) {
1050
        ret = -errno;
1051
    }
1052
    return ret;
1053
}
1054

    
1055
int kvm_vm_ioctl(KVMState *s, int type, ...)
1056
{
1057
    int ret;
1058
    void *arg;
1059
    va_list ap;
1060

    
1061
    va_start(ap, type);
1062
    arg = va_arg(ap, void *);
1063
    va_end(ap);
1064

    
1065
    ret = ioctl(s->vmfd, type, arg);
1066
    if (ret == -1) {
1067
        ret = -errno;
1068
    }
1069
    return ret;
1070
}
1071

    
1072
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1073
{
1074
    int ret;
1075
    void *arg;
1076
    va_list ap;
1077

    
1078
    va_start(ap, type);
1079
    arg = va_arg(ap, void *);
1080
    va_end(ap);
1081

    
1082
    ret = ioctl(env->kvm_fd, type, arg);
1083
    if (ret == -1) {
1084
        ret = -errno;
1085
    }
1086
    return ret;
1087
}
1088

    
1089
int kvm_has_sync_mmu(void)
1090
{
1091
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1092
}
1093

    
1094
int kvm_has_vcpu_events(void)
1095
{
1096
    return kvm_state->vcpu_events;
1097
}
1098

    
1099
int kvm_has_robust_singlestep(void)
1100
{
1101
    return kvm_state->robust_singlestep;
1102
}
1103

    
1104
int kvm_has_debugregs(void)
1105
{
1106
    return kvm_state->debugregs;
1107
}
1108

    
1109
int kvm_has_xsave(void)
1110
{
1111
    return kvm_state->xsave;
1112
}
1113

    
1114
int kvm_has_xcrs(void)
1115
{
1116
    return kvm_state->xcrs;
1117
}
1118

    
1119
int kvm_has_many_ioeventfds(void)
1120
{
1121
    if (!kvm_enabled()) {
1122
        return 0;
1123
    }
1124
    return kvm_state->many_ioeventfds;
1125
}
1126

    
1127
void kvm_setup_guest_memory(void *start, size_t size)
1128
{
1129
    if (!kvm_has_sync_mmu()) {
1130
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1131

    
1132
        if (ret) {
1133
            perror("qemu_madvise");
1134
            fprintf(stderr,
1135
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1136
            exit(1);
1137
        }
1138
    }
1139
}
1140

    
1141
#ifdef KVM_CAP_SET_GUEST_DEBUG
1142
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1143
                                                 target_ulong pc)
1144
{
1145
    struct kvm_sw_breakpoint *bp;
1146

    
1147
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1148
        if (bp->pc == pc) {
1149
            return bp;
1150
        }
1151
    }
1152
    return NULL;
1153
}
1154

    
1155
int kvm_sw_breakpoints_active(CPUState *env)
1156
{
1157
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1158
}
1159

    
1160
struct kvm_set_guest_debug_data {
1161
    struct kvm_guest_debug dbg;
1162
    CPUState *env;
1163
    int err;
1164
};
1165

    
1166
static void kvm_invoke_set_guest_debug(void *data)
1167
{
1168
    struct kvm_set_guest_debug_data *dbg_data = data;
1169
    CPUState *env = dbg_data->env;
1170

    
1171
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1172
}
1173

    
1174
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1175
{
1176
    struct kvm_set_guest_debug_data data;
1177

    
1178
    data.dbg.control = reinject_trap;
1179

    
1180
    if (env->singlestep_enabled) {
1181
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1182
    }
1183
    kvm_arch_update_guest_debug(env, &data.dbg);
1184
    data.env = env;
1185

    
1186
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1187
    return data.err;
1188
}
1189

    
1190
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1191
                          target_ulong len, int type)
1192
{
1193
    struct kvm_sw_breakpoint *bp;
1194
    CPUState *env;
1195
    int err;
1196

    
1197
    if (type == GDB_BREAKPOINT_SW) {
1198
        bp = kvm_find_sw_breakpoint(current_env, addr);
1199
        if (bp) {
1200
            bp->use_count++;
1201
            return 0;
1202
        }
1203

    
1204
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1205
        if (!bp) {
1206
            return -ENOMEM;
1207
        }
1208

    
1209
        bp->pc = addr;
1210
        bp->use_count = 1;
1211
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1212
        if (err) {
1213
            qemu_free(bp);
1214
            return err;
1215
        }
1216

    
1217
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1218
                          bp, entry);
1219
    } else {
1220
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1221
        if (err) {
1222
            return err;
1223
        }
1224
    }
1225

    
1226
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1227
        err = kvm_update_guest_debug(env, 0);
1228
        if (err) {
1229
            return err;
1230
        }
1231
    }
1232
    return 0;
1233
}
1234

    
1235
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1236
                          target_ulong len, int type)
1237
{
1238
    struct kvm_sw_breakpoint *bp;
1239
    CPUState *env;
1240
    int err;
1241

    
1242
    if (type == GDB_BREAKPOINT_SW) {
1243
        bp = kvm_find_sw_breakpoint(current_env, addr);
1244
        if (!bp) {
1245
            return -ENOENT;
1246
        }
1247

    
1248
        if (bp->use_count > 1) {
1249
            bp->use_count--;
1250
            return 0;
1251
        }
1252

    
1253
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1254
        if (err) {
1255
            return err;
1256
        }
1257

    
1258
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1259
        qemu_free(bp);
1260
    } else {
1261
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1262
        if (err) {
1263
            return err;
1264
        }
1265
    }
1266

    
1267
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1268
        err = kvm_update_guest_debug(env, 0);
1269
        if (err) {
1270
            return err;
1271
        }
1272
    }
1273
    return 0;
1274
}
1275

    
1276
void kvm_remove_all_breakpoints(CPUState *current_env)
1277
{
1278
    struct kvm_sw_breakpoint *bp, *next;
1279
    KVMState *s = current_env->kvm_state;
1280
    CPUState *env;
1281

    
1282
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1283
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1284
            /* Try harder to find a CPU that currently sees the breakpoint. */
1285
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1286
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1287
                    break;
1288
                }
1289
            }
1290
        }
1291
    }
1292
    kvm_arch_remove_all_hw_breakpoints();
1293

    
1294
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1295
        kvm_update_guest_debug(env, 0);
1296
    }
1297
}
1298

    
1299
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1300

    
1301
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1302
{
1303
    return -EINVAL;
1304
}
1305

    
1306
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1307
                          target_ulong len, int type)
1308
{
1309
    return -EINVAL;
1310
}
1311

    
1312
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1313
                          target_ulong len, int type)
1314
{
1315
    return -EINVAL;
1316
}
1317

    
1318
void kvm_remove_all_breakpoints(CPUState *current_env)
1319
{
1320
}
1321
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1322

    
1323
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1324
{
1325
    struct kvm_signal_mask *sigmask;
1326
    int r;
1327

    
1328
    if (!sigset) {
1329
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1330
    }
1331

    
1332
    sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1333

    
1334
    sigmask->len = 8;
1335
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1336
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1337
    qemu_free(sigmask);
1338

    
1339
    return r;
1340
}
1341

    
1342
int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1343
{
1344
#ifdef KVM_IOEVENTFD
1345
    int ret;
1346
    struct kvm_ioeventfd iofd;
1347

    
1348
    iofd.datamatch = val;
1349
    iofd.addr = addr;
1350
    iofd.len = 4;
1351
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1352
    iofd.fd = fd;
1353

    
1354
    if (!kvm_enabled()) {
1355
        return -ENOSYS;
1356
    }
1357

    
1358
    if (!assign) {
1359
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1360
    }
1361

    
1362
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1363

    
1364
    if (ret < 0) {
1365
        return -errno;
1366
    }
1367

    
1368
    return 0;
1369
#else
1370
    return -ENOSYS;
1371
#endif
1372
}
1373

    
1374
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1375
{
1376
#ifdef KVM_IOEVENTFD
1377
    struct kvm_ioeventfd kick = {
1378
        .datamatch = val,
1379
        .addr = addr,
1380
        .len = 2,
1381
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1382
        .fd = fd,
1383
    };
1384
    int r;
1385
    if (!kvm_enabled()) {
1386
        return -ENOSYS;
1387
    }
1388
    if (!assign) {
1389
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1390
    }
1391
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1392
    if (r < 0) {
1393
        return r;
1394
    }
1395
    return 0;
1396
#else
1397
    return -ENOSYS;
1398
#endif
1399
}
1400

    
1401
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1402
{
1403
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1404
}
1405

    
1406
int kvm_on_sigbus(int code, void *addr)
1407
{
1408
    return kvm_arch_on_sigbus(code, addr);
1409
}