Statistics
| Branch: | Revision:

root / memory.c @ 0834c9ea

History | View | Annotate | Download (51.6 kB)

1
/*
2
 * Physical memory management
3
 *
4
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5
 *
6
 * Authors:
7
 *  Avi Kivity <avi@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2.  See
10
 * the COPYING file in the top-level directory.
11
 *
12
 * Contributions after 2012-01-13 are licensed under the terms of the
13
 * GNU GPL, version 2 or (at your option) any later version.
14
 */
15

    
16
#include "memory.h"
17
#include "exec-memory.h"
18
#include "ioport.h"
19
#include "bitops.h"
20
#include "kvm.h"
21
#include <assert.h>
22

    
23
#define WANT_EXEC_OBSOLETE
24
#include "exec-obsolete.h"
25

    
26
unsigned memory_region_transaction_depth = 0;
27
static bool global_dirty_log = false;
28

    
29
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
30
    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
31

    
32
typedef struct AddrRange AddrRange;
33

    
34
/*
35
 * Note using signed integers limits us to physical addresses at most
36
 * 63 bits wide.  They are needed for negative offsetting in aliases
37
 * (large MemoryRegion::alias_offset).
38
 */
39
struct AddrRange {
40
    Int128 start;
41
    Int128 size;
42
};
43

    
44
static AddrRange addrrange_make(Int128 start, Int128 size)
45
{
46
    return (AddrRange) { start, size };
47
}
48

    
49
static bool addrrange_equal(AddrRange r1, AddrRange r2)
50
{
51
    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
52
}
53

    
54
static Int128 addrrange_end(AddrRange r)
55
{
56
    return int128_add(r.start, r.size);
57
}
58

    
59
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
60
{
61
    int128_addto(&range.start, delta);
62
    return range;
63
}
64

    
65
static bool addrrange_contains(AddrRange range, Int128 addr)
66
{
67
    return int128_ge(addr, range.start)
68
        && int128_lt(addr, addrrange_end(range));
69
}
70

    
71
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
72
{
73
    return addrrange_contains(r1, r2.start)
74
        || addrrange_contains(r2, r1.start);
75
}
76

    
77
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
78
{
79
    Int128 start = int128_max(r1.start, r2.start);
80
    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
81
    return addrrange_make(start, int128_sub(end, start));
82
}
83

    
84
enum ListenerDirection { Forward, Reverse };
85

    
86
static bool memory_listener_match(MemoryListener *listener,
87
                                  MemoryRegionSection *section)
88
{
89
    return !listener->address_space_filter
90
        || listener->address_space_filter == section->address_space;
91
}
92

    
93
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
94
    do {                                                                \
95
        MemoryListener *_listener;                                      \
96
                                                                        \
97
        switch (_direction) {                                           \
98
        case Forward:                                                   \
99
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
100
                _listener->_callback(_listener, ##_args);               \
101
            }                                                           \
102
            break;                                                      \
103
        case Reverse:                                                   \
104
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
105
                                   memory_listeners, link) {            \
106
                _listener->_callback(_listener, ##_args);               \
107
            }                                                           \
108
            break;                                                      \
109
        default:                                                        \
110
            abort();                                                    \
111
        }                                                               \
112
    } while (0)
113

    
114
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
115
    do {                                                                \
116
        MemoryListener *_listener;                                      \
117
                                                                        \
118
        switch (_direction) {                                           \
119
        case Forward:                                                   \
120
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
121
                if (memory_listener_match(_listener, _section)) {       \
122
                    _listener->_callback(_listener, _section, ##_args); \
123
                }                                                       \
124
            }                                                           \
125
            break;                                                      \
126
        case Reverse:                                                   \
127
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
128
                                   memory_listeners, link) {            \
129
                if (memory_listener_match(_listener, _section)) {       \
130
                    _listener->_callback(_listener, _section, ##_args); \
131
                }                                                       \
132
            }                                                           \
133
            break;                                                      \
134
        default:                                                        \
135
            abort();                                                    \
136
        }                                                               \
137
    } while (0)
138

    
139
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
140
    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
141
        .mr = (fr)->mr,                                                 \
142
        .address_space = (as)->root,                                    \
143
        .offset_within_region = (fr)->offset_in_region,                 \
144
        .size = int128_get64((fr)->addr.size),                          \
145
        .offset_within_address_space = int128_get64((fr)->addr.start),  \
146
        .readonly = (fr)->readonly,                                     \
147
              }))
148

    
149
struct CoalescedMemoryRange {
150
    AddrRange addr;
151
    QTAILQ_ENTRY(CoalescedMemoryRange) link;
152
};
153

    
154
struct MemoryRegionIoeventfd {
155
    AddrRange addr;
156
    bool match_data;
157
    uint64_t data;
158
    EventNotifier *e;
159
};
160

    
161
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
162
                                           MemoryRegionIoeventfd b)
163
{
164
    if (int128_lt(a.addr.start, b.addr.start)) {
165
        return true;
166
    } else if (int128_gt(a.addr.start, b.addr.start)) {
167
        return false;
168
    } else if (int128_lt(a.addr.size, b.addr.size)) {
169
        return true;
170
    } else if (int128_gt(a.addr.size, b.addr.size)) {
171
        return false;
172
    } else if (a.match_data < b.match_data) {
173
        return true;
174
    } else  if (a.match_data > b.match_data) {
175
        return false;
176
    } else if (a.match_data) {
177
        if (a.data < b.data) {
178
            return true;
179
        } else if (a.data > b.data) {
180
            return false;
181
        }
182
    }
183
    if (a.e < b.e) {
184
        return true;
185
    } else if (a.e > b.e) {
186
        return false;
187
    }
188
    return false;
189
}
190

    
191
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
192
                                          MemoryRegionIoeventfd b)
193
{
194
    return !memory_region_ioeventfd_before(a, b)
195
        && !memory_region_ioeventfd_before(b, a);
196
}
197

    
198
typedef struct FlatRange FlatRange;
199
typedef struct FlatView FlatView;
200

    
201
/* Range of memory in the global map.  Addresses are absolute. */
202
struct FlatRange {
203
    MemoryRegion *mr;
204
    target_phys_addr_t offset_in_region;
205
    AddrRange addr;
206
    uint8_t dirty_log_mask;
207
    bool readable;
208
    bool readonly;
209
};
210

    
211
/* Flattened global view of current active memory hierarchy.  Kept in sorted
212
 * order.
213
 */
214
struct FlatView {
215
    FlatRange *ranges;
216
    unsigned nr;
217
    unsigned nr_allocated;
218
};
219

    
220
typedef struct AddressSpace AddressSpace;
221
typedef struct AddressSpaceOps AddressSpaceOps;
222

    
223
/* A system address space - I/O, memory, etc. */
224
struct AddressSpace {
225
    MemoryRegion *root;
226
    FlatView current_map;
227
    int ioeventfd_nb;
228
    MemoryRegionIoeventfd *ioeventfds;
229
};
230

    
231
#define FOR_EACH_FLAT_RANGE(var, view)          \
232
    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
233

    
234
static bool flatrange_equal(FlatRange *a, FlatRange *b)
235
{
236
    return a->mr == b->mr
237
        && addrrange_equal(a->addr, b->addr)
238
        && a->offset_in_region == b->offset_in_region
239
        && a->readable == b->readable
240
        && a->readonly == b->readonly;
241
}
242

    
243
static void flatview_init(FlatView *view)
244
{
245
    view->ranges = NULL;
246
    view->nr = 0;
247
    view->nr_allocated = 0;
248
}
249

    
250
/* Insert a range into a given position.  Caller is responsible for maintaining
251
 * sorting order.
252
 */
253
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
254
{
255
    if (view->nr == view->nr_allocated) {
256
        view->nr_allocated = MAX(2 * view->nr, 10);
257
        view->ranges = g_realloc(view->ranges,
258
                                    view->nr_allocated * sizeof(*view->ranges));
259
    }
260
    memmove(view->ranges + pos + 1, view->ranges + pos,
261
            (view->nr - pos) * sizeof(FlatRange));
262
    view->ranges[pos] = *range;
263
    ++view->nr;
264
}
265

    
266
static void flatview_destroy(FlatView *view)
267
{
268
    g_free(view->ranges);
269
}
270

    
271
static bool can_merge(FlatRange *r1, FlatRange *r2)
272
{
273
    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
274
        && r1->mr == r2->mr
275
        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
276
                                r1->addr.size),
277
                     int128_make64(r2->offset_in_region))
278
        && r1->dirty_log_mask == r2->dirty_log_mask
279
        && r1->readable == r2->readable
280
        && r1->readonly == r2->readonly;
281
}
282

    
283
/* Attempt to simplify a view by merging ajacent ranges */
284
static void flatview_simplify(FlatView *view)
285
{
286
    unsigned i, j;
287

    
288
    i = 0;
289
    while (i < view->nr) {
290
        j = i + 1;
291
        while (j < view->nr
292
               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
293
            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
294
            ++j;
295
        }
296
        ++i;
297
        memmove(&view->ranges[i], &view->ranges[j],
298
                (view->nr - j) * sizeof(view->ranges[j]));
299
        view->nr -= j - i;
300
    }
301
}
302

    
303
static void memory_region_read_accessor(void *opaque,
304
                                        target_phys_addr_t addr,
305
                                        uint64_t *value,
306
                                        unsigned size,
307
                                        unsigned shift,
308
                                        uint64_t mask)
309
{
310
    MemoryRegion *mr = opaque;
311
    uint64_t tmp;
312

    
313
    if (mr->flush_coalesced_mmio) {
314
        qemu_flush_coalesced_mmio_buffer();
315
    }
316
    tmp = mr->ops->read(mr->opaque, addr, size);
317
    *value |= (tmp & mask) << shift;
318
}
319

    
320
static void memory_region_write_accessor(void *opaque,
321
                                         target_phys_addr_t addr,
322
                                         uint64_t *value,
323
                                         unsigned size,
324
                                         unsigned shift,
325
                                         uint64_t mask)
326
{
327
    MemoryRegion *mr = opaque;
328
    uint64_t tmp;
329

    
330
    if (mr->flush_coalesced_mmio) {
331
        qemu_flush_coalesced_mmio_buffer();
332
    }
333
    tmp = (*value >> shift) & mask;
334
    mr->ops->write(mr->opaque, addr, tmp, size);
335
}
336

    
337
static void access_with_adjusted_size(target_phys_addr_t addr,
338
                                      uint64_t *value,
339
                                      unsigned size,
340
                                      unsigned access_size_min,
341
                                      unsigned access_size_max,
342
                                      void (*access)(void *opaque,
343
                                                     target_phys_addr_t addr,
344
                                                     uint64_t *value,
345
                                                     unsigned size,
346
                                                     unsigned shift,
347
                                                     uint64_t mask),
348
                                      void *opaque)
349
{
350
    uint64_t access_mask;
351
    unsigned access_size;
352
    unsigned i;
353

    
354
    if (!access_size_min) {
355
        access_size_min = 1;
356
    }
357
    if (!access_size_max) {
358
        access_size_max = 4;
359
    }
360
    access_size = MAX(MIN(size, access_size_max), access_size_min);
361
    access_mask = -1ULL >> (64 - access_size * 8);
362
    for (i = 0; i < size; i += access_size) {
363
        /* FIXME: big-endian support */
364
        access(opaque, addr + i, value, access_size, i * 8, access_mask);
365
    }
366
}
367

    
368
static AddressSpace address_space_memory;
369

    
370
static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
371
                                             unsigned width, bool write)
372
{
373
    const MemoryRegionPortio *mrp;
374

    
375
    for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
376
        if (offset >= mrp->offset && offset < mrp->offset + mrp->len
377
            && width == mrp->size
378
            && (write ? (bool)mrp->write : (bool)mrp->read)) {
379
            return mrp;
380
        }
381
    }
382
    return NULL;
383
}
384

    
385
static void memory_region_iorange_read(IORange *iorange,
386
                                       uint64_t offset,
387
                                       unsigned width,
388
                                       uint64_t *data)
389
{
390
    MemoryRegionIORange *mrio
391
        = container_of(iorange, MemoryRegionIORange, iorange);
392
    MemoryRegion *mr = mrio->mr;
393

    
394
    offset += mrio->offset;
395
    if (mr->ops->old_portio) {
396
        const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
397
                                                    width, false);
398

    
399
        *data = ((uint64_t)1 << (width * 8)) - 1;
400
        if (mrp) {
401
            *data = mrp->read(mr->opaque, offset);
402
        } else if (width == 2) {
403
            mrp = find_portio(mr, offset - mrio->offset, 1, false);
404
            assert(mrp);
405
            *data = mrp->read(mr->opaque, offset) |
406
                    (mrp->read(mr->opaque, offset + 1) << 8);
407
        }
408
        return;
409
    }
410
    *data = 0;
411
    access_with_adjusted_size(offset, data, width,
412
                              mr->ops->impl.min_access_size,
413
                              mr->ops->impl.max_access_size,
414
                              memory_region_read_accessor, mr);
415
}
416

    
417
static void memory_region_iorange_write(IORange *iorange,
418
                                        uint64_t offset,
419
                                        unsigned width,
420
                                        uint64_t data)
421
{
422
    MemoryRegionIORange *mrio
423
        = container_of(iorange, MemoryRegionIORange, iorange);
424
    MemoryRegion *mr = mrio->mr;
425

    
426
    offset += mrio->offset;
427
    if (mr->ops->old_portio) {
428
        const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
429
                                                    width, true);
430

    
431
        if (mrp) {
432
            mrp->write(mr->opaque, offset, data);
433
        } else if (width == 2) {
434
            mrp = find_portio(mr, offset - mrio->offset, 1, true);
435
            assert(mrp);
436
            mrp->write(mr->opaque, offset, data & 0xff);
437
            mrp->write(mr->opaque, offset + 1, data >> 8);
438
        }
439
        return;
440
    }
441
    access_with_adjusted_size(offset, &data, width,
442
                              mr->ops->impl.min_access_size,
443
                              mr->ops->impl.max_access_size,
444
                              memory_region_write_accessor, mr);
445
}
446

    
447
static void memory_region_iorange_destructor(IORange *iorange)
448
{
449
    g_free(container_of(iorange, MemoryRegionIORange, iorange));
450
}
451

    
452
const IORangeOps memory_region_iorange_ops = {
453
    .read = memory_region_iorange_read,
454
    .write = memory_region_iorange_write,
455
    .destructor = memory_region_iorange_destructor,
456
};
457

    
458
static AddressSpace address_space_io;
459

    
460
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
461
{
462
    while (mr->parent) {
463
        mr = mr->parent;
464
    }
465
    if (mr == address_space_memory.root) {
466
        return &address_space_memory;
467
    }
468
    if (mr == address_space_io.root) {
469
        return &address_space_io;
470
    }
471
    abort();
472
}
473

    
474
/* Render a memory region into the global view.  Ranges in @view obscure
475
 * ranges in @mr.
476
 */
477
static void render_memory_region(FlatView *view,
478
                                 MemoryRegion *mr,
479
                                 Int128 base,
480
                                 AddrRange clip,
481
                                 bool readonly)
482
{
483
    MemoryRegion *subregion;
484
    unsigned i;
485
    target_phys_addr_t offset_in_region;
486
    Int128 remain;
487
    Int128 now;
488
    FlatRange fr;
489
    AddrRange tmp;
490

    
491
    if (!mr->enabled) {
492
        return;
493
    }
494

    
495
    int128_addto(&base, int128_make64(mr->addr));
496
    readonly |= mr->readonly;
497

    
498
    tmp = addrrange_make(base, mr->size);
499

    
500
    if (!addrrange_intersects(tmp, clip)) {
501
        return;
502
    }
503

    
504
    clip = addrrange_intersection(tmp, clip);
505

    
506
    if (mr->alias) {
507
        int128_subfrom(&base, int128_make64(mr->alias->addr));
508
        int128_subfrom(&base, int128_make64(mr->alias_offset));
509
        render_memory_region(view, mr->alias, base, clip, readonly);
510
        return;
511
    }
512

    
513
    /* Render subregions in priority order. */
514
    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
515
        render_memory_region(view, subregion, base, clip, readonly);
516
    }
517

    
518
    if (!mr->terminates) {
519
        return;
520
    }
521

    
522
    offset_in_region = int128_get64(int128_sub(clip.start, base));
523
    base = clip.start;
524
    remain = clip.size;
525

    
526
    /* Render the region itself into any gaps left by the current view. */
527
    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
528
        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
529
            continue;
530
        }
531
        if (int128_lt(base, view->ranges[i].addr.start)) {
532
            now = int128_min(remain,
533
                             int128_sub(view->ranges[i].addr.start, base));
534
            fr.mr = mr;
535
            fr.offset_in_region = offset_in_region;
536
            fr.addr = addrrange_make(base, now);
537
            fr.dirty_log_mask = mr->dirty_log_mask;
538
            fr.readable = mr->readable;
539
            fr.readonly = readonly;
540
            flatview_insert(view, i, &fr);
541
            ++i;
542
            int128_addto(&base, now);
543
            offset_in_region += int128_get64(now);
544
            int128_subfrom(&remain, now);
545
        }
546
        if (int128_eq(base, view->ranges[i].addr.start)) {
547
            now = int128_min(remain, view->ranges[i].addr.size);
548
            int128_addto(&base, now);
549
            offset_in_region += int128_get64(now);
550
            int128_subfrom(&remain, now);
551
        }
552
    }
553
    if (int128_nz(remain)) {
554
        fr.mr = mr;
555
        fr.offset_in_region = offset_in_region;
556
        fr.addr = addrrange_make(base, remain);
557
        fr.dirty_log_mask = mr->dirty_log_mask;
558
        fr.readable = mr->readable;
559
        fr.readonly = readonly;
560
        flatview_insert(view, i, &fr);
561
    }
562
}
563

    
564
/* Render a memory topology into a list of disjoint absolute ranges. */
565
static FlatView generate_memory_topology(MemoryRegion *mr)
566
{
567
    FlatView view;
568

    
569
    flatview_init(&view);
570

    
571
    render_memory_region(&view, mr, int128_zero(),
572
                         addrrange_make(int128_zero(), int128_2_64()), false);
573
    flatview_simplify(&view);
574

    
575
    return view;
576
}
577

    
578
static void address_space_add_del_ioeventfds(AddressSpace *as,
579
                                             MemoryRegionIoeventfd *fds_new,
580
                                             unsigned fds_new_nb,
581
                                             MemoryRegionIoeventfd *fds_old,
582
                                             unsigned fds_old_nb)
583
{
584
    unsigned iold, inew;
585
    MemoryRegionIoeventfd *fd;
586
    MemoryRegionSection section;
587

    
588
    /* Generate a symmetric difference of the old and new fd sets, adding
589
     * and deleting as necessary.
590
     */
591

    
592
    iold = inew = 0;
593
    while (iold < fds_old_nb || inew < fds_new_nb) {
594
        if (iold < fds_old_nb
595
            && (inew == fds_new_nb
596
                || memory_region_ioeventfd_before(fds_old[iold],
597
                                                  fds_new[inew]))) {
598
            fd = &fds_old[iold];
599
            section = (MemoryRegionSection) {
600
                .address_space = as->root,
601
                .offset_within_address_space = int128_get64(fd->addr.start),
602
                .size = int128_get64(fd->addr.size),
603
            };
604
            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
605
                                 fd->match_data, fd->data, fd->e);
606
            ++iold;
607
        } else if (inew < fds_new_nb
608
                   && (iold == fds_old_nb
609
                       || memory_region_ioeventfd_before(fds_new[inew],
610
                                                         fds_old[iold]))) {
611
            fd = &fds_new[inew];
612
            section = (MemoryRegionSection) {
613
                .address_space = as->root,
614
                .offset_within_address_space = int128_get64(fd->addr.start),
615
                .size = int128_get64(fd->addr.size),
616
            };
617
            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
618
                                 fd->match_data, fd->data, fd->e);
619
            ++inew;
620
        } else {
621
            ++iold;
622
            ++inew;
623
        }
624
    }
625
}
626

    
627
static void address_space_update_ioeventfds(AddressSpace *as)
628
{
629
    FlatRange *fr;
630
    unsigned ioeventfd_nb = 0;
631
    MemoryRegionIoeventfd *ioeventfds = NULL;
632
    AddrRange tmp;
633
    unsigned i;
634

    
635
    FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
636
        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
637
            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
638
                                  int128_sub(fr->addr.start,
639
                                             int128_make64(fr->offset_in_region)));
640
            if (addrrange_intersects(fr->addr, tmp)) {
641
                ++ioeventfd_nb;
642
                ioeventfds = g_realloc(ioeventfds,
643
                                          ioeventfd_nb * sizeof(*ioeventfds));
644
                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
645
                ioeventfds[ioeventfd_nb-1].addr = tmp;
646
            }
647
        }
648
    }
649

    
650
    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
651
                                     as->ioeventfds, as->ioeventfd_nb);
652

    
653
    g_free(as->ioeventfds);
654
    as->ioeventfds = ioeventfds;
655
    as->ioeventfd_nb = ioeventfd_nb;
656
}
657

    
658
static void address_space_update_topology_pass(AddressSpace *as,
659
                                               FlatView old_view,
660
                                               FlatView new_view,
661
                                               bool adding)
662
{
663
    unsigned iold, inew;
664
    FlatRange *frold, *frnew;
665

    
666
    /* Generate a symmetric difference of the old and new memory maps.
667
     * Kill ranges in the old map, and instantiate ranges in the new map.
668
     */
669
    iold = inew = 0;
670
    while (iold < old_view.nr || inew < new_view.nr) {
671
        if (iold < old_view.nr) {
672
            frold = &old_view.ranges[iold];
673
        } else {
674
            frold = NULL;
675
        }
676
        if (inew < new_view.nr) {
677
            frnew = &new_view.ranges[inew];
678
        } else {
679
            frnew = NULL;
680
        }
681

    
682
        if (frold
683
            && (!frnew
684
                || int128_lt(frold->addr.start, frnew->addr.start)
685
                || (int128_eq(frold->addr.start, frnew->addr.start)
686
                    && !flatrange_equal(frold, frnew)))) {
687
            /* In old, but (not in new, or in new but attributes changed). */
688

    
689
            if (!adding) {
690
                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
691
            }
692

    
693
            ++iold;
694
        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
695
            /* In both (logging may have changed) */
696

    
697
            if (adding) {
698
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
699
                if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
700
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
701
                } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
702
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
703
                }
704
            }
705

    
706
            ++iold;
707
            ++inew;
708
        } else {
709
            /* In new */
710

    
711
            if (adding) {
712
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
713
            }
714

    
715
            ++inew;
716
        }
717
    }
718
}
719

    
720

    
721
static void address_space_update_topology(AddressSpace *as)
722
{
723
    FlatView old_view = as->current_map;
724
    FlatView new_view = generate_memory_topology(as->root);
725

    
726
    address_space_update_topology_pass(as, old_view, new_view, false);
727
    address_space_update_topology_pass(as, old_view, new_view, true);
728

    
729
    as->current_map = new_view;
730
    flatview_destroy(&old_view);
731
    address_space_update_ioeventfds(as);
732
}
733

    
734
void memory_region_transaction_begin(void)
735
{
736
    qemu_flush_coalesced_mmio_buffer();
737
    ++memory_region_transaction_depth;
738
}
739

    
740
void memory_region_transaction_commit(void)
741
{
742
    assert(memory_region_transaction_depth);
743
    --memory_region_transaction_depth;
744
    if (!memory_region_transaction_depth) {
745
        MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
746

    
747
        if (address_space_memory.root) {
748
            address_space_update_topology(&address_space_memory);
749
        }
750
        if (address_space_io.root) {
751
            address_space_update_topology(&address_space_io);
752
        }
753

    
754
        MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
755
    }
756
}
757

    
758
static void memory_region_destructor_none(MemoryRegion *mr)
759
{
760
}
761

    
762
static void memory_region_destructor_ram(MemoryRegion *mr)
763
{
764
    qemu_ram_free(mr->ram_addr);
765
}
766

    
767
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
768
{
769
    qemu_ram_free_from_ptr(mr->ram_addr);
770
}
771

    
772
static void memory_region_destructor_iomem(MemoryRegion *mr)
773
{
774
}
775

    
776
static void memory_region_destructor_rom_device(MemoryRegion *mr)
777
{
778
    qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
779
}
780

    
781
static bool memory_region_wrong_endianness(MemoryRegion *mr)
782
{
783
#ifdef TARGET_WORDS_BIGENDIAN
784
    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
785
#else
786
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
787
#endif
788
}
789

    
790
void memory_region_init(MemoryRegion *mr,
791
                        const char *name,
792
                        uint64_t size)
793
{
794
    mr->ops = NULL;
795
    mr->parent = NULL;
796
    mr->size = int128_make64(size);
797
    if (size == UINT64_MAX) {
798
        mr->size = int128_2_64();
799
    }
800
    mr->addr = 0;
801
    mr->subpage = false;
802
    mr->enabled = true;
803
    mr->terminates = false;
804
    mr->ram = false;
805
    mr->readable = true;
806
    mr->readonly = false;
807
    mr->rom_device = false;
808
    mr->destructor = memory_region_destructor_none;
809
    mr->priority = 0;
810
    mr->may_overlap = false;
811
    mr->alias = NULL;
812
    QTAILQ_INIT(&mr->subregions);
813
    memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
814
    QTAILQ_INIT(&mr->coalesced);
815
    mr->name = g_strdup(name);
816
    mr->dirty_log_mask = 0;
817
    mr->ioeventfd_nb = 0;
818
    mr->ioeventfds = NULL;
819
    mr->flush_coalesced_mmio = false;
820
}
821

    
822
static bool memory_region_access_valid(MemoryRegion *mr,
823
                                       target_phys_addr_t addr,
824
                                       unsigned size,
825
                                       bool is_write)
826
{
827
    if (mr->ops->valid.accepts
828
        && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
829
        return false;
830
    }
831

    
832
    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
833
        return false;
834
    }
835

    
836
    /* Treat zero as compatibility all valid */
837
    if (!mr->ops->valid.max_access_size) {
838
        return true;
839
    }
840

    
841
    if (size > mr->ops->valid.max_access_size
842
        || size < mr->ops->valid.min_access_size) {
843
        return false;
844
    }
845
    return true;
846
}
847

    
848
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
849
                                             target_phys_addr_t addr,
850
                                             unsigned size)
851
{
852
    uint64_t data = 0;
853

    
854
    if (!memory_region_access_valid(mr, addr, size, false)) {
855
        return -1U; /* FIXME: better signalling */
856
    }
857

    
858
    if (!mr->ops->read) {
859
        return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
860
    }
861

    
862
    /* FIXME: support unaligned access */
863
    access_with_adjusted_size(addr, &data, size,
864
                              mr->ops->impl.min_access_size,
865
                              mr->ops->impl.max_access_size,
866
                              memory_region_read_accessor, mr);
867

    
868
    return data;
869
}
870

    
871
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
872
{
873
    if (memory_region_wrong_endianness(mr)) {
874
        switch (size) {
875
        case 1:
876
            break;
877
        case 2:
878
            *data = bswap16(*data);
879
            break;
880
        case 4:
881
            *data = bswap32(*data);
882
            break;
883
        default:
884
            abort();
885
        }
886
    }
887
}
888

    
889
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
890
                                            target_phys_addr_t addr,
891
                                            unsigned size)
892
{
893
    uint64_t ret;
894

    
895
    ret = memory_region_dispatch_read1(mr, addr, size);
896
    adjust_endianness(mr, &ret, size);
897
    return ret;
898
}
899

    
900
static void memory_region_dispatch_write(MemoryRegion *mr,
901
                                         target_phys_addr_t addr,
902
                                         uint64_t data,
903
                                         unsigned size)
904
{
905
    if (!memory_region_access_valid(mr, addr, size, true)) {
906
        return; /* FIXME: better signalling */
907
    }
908

    
909
    adjust_endianness(mr, &data, size);
910

    
911
    if (!mr->ops->write) {
912
        mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
913
        return;
914
    }
915

    
916
    /* FIXME: support unaligned access */
917
    access_with_adjusted_size(addr, &data, size,
918
                              mr->ops->impl.min_access_size,
919
                              mr->ops->impl.max_access_size,
920
                              memory_region_write_accessor, mr);
921
}
922

    
923
void memory_region_init_io(MemoryRegion *mr,
924
                           const MemoryRegionOps *ops,
925
                           void *opaque,
926
                           const char *name,
927
                           uint64_t size)
928
{
929
    memory_region_init(mr, name, size);
930
    mr->ops = ops;
931
    mr->opaque = opaque;
932
    mr->terminates = true;
933
    mr->destructor = memory_region_destructor_iomem;
934
    mr->ram_addr = ~(ram_addr_t)0;
935
}
936

    
937
void memory_region_init_ram(MemoryRegion *mr,
938
                            const char *name,
939
                            uint64_t size)
940
{
941
    memory_region_init(mr, name, size);
942
    mr->ram = true;
943
    mr->terminates = true;
944
    mr->destructor = memory_region_destructor_ram;
945
    mr->ram_addr = qemu_ram_alloc(size, mr);
946
}
947

    
948
void memory_region_init_ram_ptr(MemoryRegion *mr,
949
                                const char *name,
950
                                uint64_t size,
951
                                void *ptr)
952
{
953
    memory_region_init(mr, name, size);
954
    mr->ram = true;
955
    mr->terminates = true;
956
    mr->destructor = memory_region_destructor_ram_from_ptr;
957
    mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
958
}
959

    
960
void memory_region_init_alias(MemoryRegion *mr,
961
                              const char *name,
962
                              MemoryRegion *orig,
963
                              target_phys_addr_t offset,
964
                              uint64_t size)
965
{
966
    memory_region_init(mr, name, size);
967
    mr->alias = orig;
968
    mr->alias_offset = offset;
969
}
970

    
971
void memory_region_init_rom_device(MemoryRegion *mr,
972
                                   const MemoryRegionOps *ops,
973
                                   void *opaque,
974
                                   const char *name,
975
                                   uint64_t size)
976
{
977
    memory_region_init(mr, name, size);
978
    mr->ops = ops;
979
    mr->opaque = opaque;
980
    mr->terminates = true;
981
    mr->rom_device = true;
982
    mr->destructor = memory_region_destructor_rom_device;
983
    mr->ram_addr = qemu_ram_alloc(size, mr);
984
}
985

    
986
static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
987
                             unsigned size)
988
{
989
    MemoryRegion *mr = opaque;
990

    
991
    if (!mr->warning_printed) {
992
        fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
993
        mr->warning_printed = true;
994
    }
995
    return -1U;
996
}
997

    
998
static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
999
                          unsigned size)
1000
{
1001
    MemoryRegion *mr = opaque;
1002

    
1003
    if (!mr->warning_printed) {
1004
        fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1005
        mr->warning_printed = true;
1006
    }
1007
}
1008

    
1009
static const MemoryRegionOps reservation_ops = {
1010
    .read = invalid_read,
1011
    .write = invalid_write,
1012
    .endianness = DEVICE_NATIVE_ENDIAN,
1013
};
1014

    
1015
void memory_region_init_reservation(MemoryRegion *mr,
1016
                                    const char *name,
1017
                                    uint64_t size)
1018
{
1019
    memory_region_init_io(mr, &reservation_ops, mr, name, size);
1020
}
1021

    
1022
void memory_region_destroy(MemoryRegion *mr)
1023
{
1024
    assert(QTAILQ_EMPTY(&mr->subregions));
1025
    mr->destructor(mr);
1026
    memory_region_clear_coalescing(mr);
1027
    g_free((char *)mr->name);
1028
    g_free(mr->ioeventfds);
1029
}
1030

    
1031
uint64_t memory_region_size(MemoryRegion *mr)
1032
{
1033
    if (int128_eq(mr->size, int128_2_64())) {
1034
        return UINT64_MAX;
1035
    }
1036
    return int128_get64(mr->size);
1037
}
1038

    
1039
const char *memory_region_name(MemoryRegion *mr)
1040
{
1041
    return mr->name;
1042
}
1043

    
1044
bool memory_region_is_ram(MemoryRegion *mr)
1045
{
1046
    return mr->ram;
1047
}
1048

    
1049
bool memory_region_is_logging(MemoryRegion *mr)
1050
{
1051
    return mr->dirty_log_mask;
1052
}
1053

    
1054
bool memory_region_is_rom(MemoryRegion *mr)
1055
{
1056
    return mr->ram && mr->readonly;
1057
}
1058

    
1059
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1060
{
1061
    uint8_t mask = 1 << client;
1062

    
1063
    memory_region_transaction_begin();
1064
    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1065
    memory_region_transaction_commit();
1066
}
1067

    
1068
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1069
                             target_phys_addr_t size, unsigned client)
1070
{
1071
    assert(mr->terminates);
1072
    return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1073
                                         1 << client);
1074
}
1075

    
1076
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1077
                             target_phys_addr_t size)
1078
{
1079
    assert(mr->terminates);
1080
    return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1081
}
1082

    
1083
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1084
{
1085
    FlatRange *fr;
1086

    
1087
    FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1088
        if (fr->mr == mr) {
1089
            MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1090
                                          Forward, log_sync);
1091
        }
1092
    }
1093
}
1094

    
1095
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1096
{
1097
    if (mr->readonly != readonly) {
1098
        memory_region_transaction_begin();
1099
        mr->readonly = readonly;
1100
        memory_region_transaction_commit();
1101
    }
1102
}
1103

    
1104
void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1105
{
1106
    if (mr->readable != readable) {
1107
        memory_region_transaction_begin();
1108
        mr->readable = readable;
1109
        memory_region_transaction_commit();
1110
    }
1111
}
1112

    
1113
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1114
                               target_phys_addr_t size, unsigned client)
1115
{
1116
    assert(mr->terminates);
1117
    cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1118
                                    mr->ram_addr + addr + size,
1119
                                    1 << client);
1120
}
1121

    
1122
void *memory_region_get_ram_ptr(MemoryRegion *mr)
1123
{
1124
    if (mr->alias) {
1125
        return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1126
    }
1127

    
1128
    assert(mr->terminates);
1129

    
1130
    return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1131
}
1132

    
1133
static void memory_region_update_coalesced_range(MemoryRegion *mr)
1134
{
1135
    FlatRange *fr;
1136
    CoalescedMemoryRange *cmr;
1137
    AddrRange tmp;
1138

    
1139
    FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1140
        if (fr->mr == mr) {
1141
            qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1142
                                           int128_get64(fr->addr.size));
1143
            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1144
                tmp = addrrange_shift(cmr->addr,
1145
                                      int128_sub(fr->addr.start,
1146
                                                 int128_make64(fr->offset_in_region)));
1147
                if (!addrrange_intersects(tmp, fr->addr)) {
1148
                    continue;
1149
                }
1150
                tmp = addrrange_intersection(tmp, fr->addr);
1151
                qemu_register_coalesced_mmio(int128_get64(tmp.start),
1152
                                             int128_get64(tmp.size));
1153
            }
1154
        }
1155
    }
1156
}
1157

    
1158
void memory_region_set_coalescing(MemoryRegion *mr)
1159
{
1160
    memory_region_clear_coalescing(mr);
1161
    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1162
}
1163

    
1164
void memory_region_add_coalescing(MemoryRegion *mr,
1165
                                  target_phys_addr_t offset,
1166
                                  uint64_t size)
1167
{
1168
    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1169

    
1170
    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1171
    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1172
    memory_region_update_coalesced_range(mr);
1173
    memory_region_set_flush_coalesced(mr);
1174
}
1175

    
1176
void memory_region_clear_coalescing(MemoryRegion *mr)
1177
{
1178
    CoalescedMemoryRange *cmr;
1179

    
1180
    qemu_flush_coalesced_mmio_buffer();
1181
    mr->flush_coalesced_mmio = false;
1182

    
1183
    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1184
        cmr = QTAILQ_FIRST(&mr->coalesced);
1185
        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1186
        g_free(cmr);
1187
    }
1188
    memory_region_update_coalesced_range(mr);
1189
}
1190

    
1191
void memory_region_set_flush_coalesced(MemoryRegion *mr)
1192
{
1193
    mr->flush_coalesced_mmio = true;
1194
}
1195

    
1196
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1197
{
1198
    qemu_flush_coalesced_mmio_buffer();
1199
    if (QTAILQ_EMPTY(&mr->coalesced)) {
1200
        mr->flush_coalesced_mmio = false;
1201
    }
1202
}
1203

    
1204
void memory_region_add_eventfd(MemoryRegion *mr,
1205
                               target_phys_addr_t addr,
1206
                               unsigned size,
1207
                               bool match_data,
1208
                               uint64_t data,
1209
                               EventNotifier *e)
1210
{
1211
    MemoryRegionIoeventfd mrfd = {
1212
        .addr.start = int128_make64(addr),
1213
        .addr.size = int128_make64(size),
1214
        .match_data = match_data,
1215
        .data = data,
1216
        .e = e,
1217
    };
1218
    unsigned i;
1219

    
1220
    memory_region_transaction_begin();
1221
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1222
        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1223
            break;
1224
        }
1225
    }
1226
    ++mr->ioeventfd_nb;
1227
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1228
                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1229
    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1230
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1231
    mr->ioeventfds[i] = mrfd;
1232
    memory_region_transaction_commit();
1233
}
1234

    
1235
void memory_region_del_eventfd(MemoryRegion *mr,
1236
                               target_phys_addr_t addr,
1237
                               unsigned size,
1238
                               bool match_data,
1239
                               uint64_t data,
1240
                               EventNotifier *e)
1241
{
1242
    MemoryRegionIoeventfd mrfd = {
1243
        .addr.start = int128_make64(addr),
1244
        .addr.size = int128_make64(size),
1245
        .match_data = match_data,
1246
        .data = data,
1247
        .e = e,
1248
    };
1249
    unsigned i;
1250

    
1251
    memory_region_transaction_begin();
1252
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1253
        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1254
            break;
1255
        }
1256
    }
1257
    assert(i != mr->ioeventfd_nb);
1258
    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1259
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1260
    --mr->ioeventfd_nb;
1261
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1262
                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1263
    memory_region_transaction_commit();
1264
}
1265

    
1266
static void memory_region_add_subregion_common(MemoryRegion *mr,
1267
                                               target_phys_addr_t offset,
1268
                                               MemoryRegion *subregion)
1269
{
1270
    MemoryRegion *other;
1271

    
1272
    memory_region_transaction_begin();
1273

    
1274
    assert(!subregion->parent);
1275
    subregion->parent = mr;
1276
    subregion->addr = offset;
1277
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1278
        if (subregion->may_overlap || other->may_overlap) {
1279
            continue;
1280
        }
1281
        if (int128_gt(int128_make64(offset),
1282
                      int128_add(int128_make64(other->addr), other->size))
1283
            || int128_le(int128_add(int128_make64(offset), subregion->size),
1284
                         int128_make64(other->addr))) {
1285
            continue;
1286
        }
1287
#if 0
1288
        printf("warning: subregion collision %llx/%llx (%s) "
1289
               "vs %llx/%llx (%s)\n",
1290
               (unsigned long long)offset,
1291
               (unsigned long long)int128_get64(subregion->size),
1292
               subregion->name,
1293
               (unsigned long long)other->addr,
1294
               (unsigned long long)int128_get64(other->size),
1295
               other->name);
1296
#endif
1297
    }
1298
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1299
        if (subregion->priority >= other->priority) {
1300
            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1301
            goto done;
1302
        }
1303
    }
1304
    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1305
done:
1306
    memory_region_transaction_commit();
1307
}
1308

    
1309

    
1310
void memory_region_add_subregion(MemoryRegion *mr,
1311
                                 target_phys_addr_t offset,
1312
                                 MemoryRegion *subregion)
1313
{
1314
    subregion->may_overlap = false;
1315
    subregion->priority = 0;
1316
    memory_region_add_subregion_common(mr, offset, subregion);
1317
}
1318

    
1319
void memory_region_add_subregion_overlap(MemoryRegion *mr,
1320
                                         target_phys_addr_t offset,
1321
                                         MemoryRegion *subregion,
1322
                                         unsigned priority)
1323
{
1324
    subregion->may_overlap = true;
1325
    subregion->priority = priority;
1326
    memory_region_add_subregion_common(mr, offset, subregion);
1327
}
1328

    
1329
void memory_region_del_subregion(MemoryRegion *mr,
1330
                                 MemoryRegion *subregion)
1331
{
1332
    memory_region_transaction_begin();
1333
    assert(subregion->parent == mr);
1334
    subregion->parent = NULL;
1335
    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1336
    memory_region_transaction_commit();
1337
}
1338

    
1339
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1340
{
1341
    if (enabled == mr->enabled) {
1342
        return;
1343
    }
1344
    memory_region_transaction_begin();
1345
    mr->enabled = enabled;
1346
    memory_region_transaction_commit();
1347
}
1348

    
1349
void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1350
{
1351
    MemoryRegion *parent = mr->parent;
1352
    unsigned priority = mr->priority;
1353
    bool may_overlap = mr->may_overlap;
1354

    
1355
    if (addr == mr->addr || !parent) {
1356
        mr->addr = addr;
1357
        return;
1358
    }
1359

    
1360
    memory_region_transaction_begin();
1361
    memory_region_del_subregion(parent, mr);
1362
    if (may_overlap) {
1363
        memory_region_add_subregion_overlap(parent, addr, mr, priority);
1364
    } else {
1365
        memory_region_add_subregion(parent, addr, mr);
1366
    }
1367
    memory_region_transaction_commit();
1368
}
1369

    
1370
void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1371
{
1372
    assert(mr->alias);
1373

    
1374
    if (offset == mr->alias_offset) {
1375
        return;
1376
    }
1377

    
1378
    memory_region_transaction_begin();
1379
    mr->alias_offset = offset;
1380
    memory_region_transaction_commit();
1381
}
1382

    
1383
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1384
{
1385
    return mr->ram_addr;
1386
}
1387

    
1388
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1389
{
1390
    const AddrRange *addr = addr_;
1391
    const FlatRange *fr = fr_;
1392

    
1393
    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1394
        return -1;
1395
    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1396
        return 1;
1397
    }
1398
    return 0;
1399
}
1400

    
1401
static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1402
{
1403
    return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
1404
                   sizeof(FlatRange), cmp_flatrange_addr);
1405
}
1406

    
1407
MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1408
                                       target_phys_addr_t addr, uint64_t size)
1409
{
1410
    AddressSpace *as = memory_region_to_address_space(address_space);
1411
    AddrRange range = addrrange_make(int128_make64(addr),
1412
                                     int128_make64(size));
1413
    FlatRange *fr = address_space_lookup(as, range);
1414
    MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1415

    
1416
    if (!fr) {
1417
        return ret;
1418
    }
1419

    
1420
    while (fr > as->current_map.ranges
1421
           && addrrange_intersects(fr[-1].addr, range)) {
1422
        --fr;
1423
    }
1424

    
1425
    ret.mr = fr->mr;
1426
    range = addrrange_intersection(range, fr->addr);
1427
    ret.offset_within_region = fr->offset_in_region;
1428
    ret.offset_within_region += int128_get64(int128_sub(range.start,
1429
                                                        fr->addr.start));
1430
    ret.size = int128_get64(range.size);
1431
    ret.offset_within_address_space = int128_get64(range.start);
1432
    ret.readonly = fr->readonly;
1433
    return ret;
1434
}
1435

    
1436
void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1437
{
1438
    AddressSpace *as = memory_region_to_address_space(address_space);
1439
    FlatRange *fr;
1440

    
1441
    FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1442
        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1443
    }
1444
}
1445

    
1446
void memory_global_dirty_log_start(void)
1447
{
1448
    global_dirty_log = true;
1449
    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1450
}
1451

    
1452
void memory_global_dirty_log_stop(void)
1453
{
1454
    global_dirty_log = false;
1455
    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1456
}
1457

    
1458
static void listener_add_address_space(MemoryListener *listener,
1459
                                       AddressSpace *as)
1460
{
1461
    FlatRange *fr;
1462

    
1463
    if (listener->address_space_filter
1464
        && listener->address_space_filter != as->root) {
1465
        return;
1466
    }
1467

    
1468
    if (global_dirty_log) {
1469
        listener->log_global_start(listener);
1470
    }
1471
    FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1472
        MemoryRegionSection section = {
1473
            .mr = fr->mr,
1474
            .address_space = as->root,
1475
            .offset_within_region = fr->offset_in_region,
1476
            .size = int128_get64(fr->addr.size),
1477
            .offset_within_address_space = int128_get64(fr->addr.start),
1478
            .readonly = fr->readonly,
1479
        };
1480
        listener->region_add(listener, &section);
1481
    }
1482
}
1483

    
1484
void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1485
{
1486
    MemoryListener *other = NULL;
1487

    
1488
    listener->address_space_filter = filter;
1489
    if (QTAILQ_EMPTY(&memory_listeners)
1490
        || listener->priority >= QTAILQ_LAST(&memory_listeners,
1491
                                             memory_listeners)->priority) {
1492
        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1493
    } else {
1494
        QTAILQ_FOREACH(other, &memory_listeners, link) {
1495
            if (listener->priority < other->priority) {
1496
                break;
1497
            }
1498
        }
1499
        QTAILQ_INSERT_BEFORE(other, listener, link);
1500
    }
1501
    listener_add_address_space(listener, &address_space_memory);
1502
    listener_add_address_space(listener, &address_space_io);
1503
}
1504

    
1505
void memory_listener_unregister(MemoryListener *listener)
1506
{
1507
    QTAILQ_REMOVE(&memory_listeners, listener, link);
1508
}
1509

    
1510
void set_system_memory_map(MemoryRegion *mr)
1511
{
1512
    memory_region_transaction_begin();
1513
    address_space_memory.root = mr;
1514
    memory_region_transaction_commit();
1515
}
1516

    
1517
void set_system_io_map(MemoryRegion *mr)
1518
{
1519
    memory_region_transaction_begin();
1520
    address_space_io.root = mr;
1521
    memory_region_transaction_commit();
1522
}
1523

    
1524
uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1525
{
1526
    return memory_region_dispatch_read(mr, addr, size);
1527
}
1528

    
1529
void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1530
                  uint64_t val, unsigned size)
1531
{
1532
    memory_region_dispatch_write(mr, addr, val, size);
1533
}
1534

    
1535
typedef struct MemoryRegionList MemoryRegionList;
1536

    
1537
struct MemoryRegionList {
1538
    const MemoryRegion *mr;
1539
    bool printed;
1540
    QTAILQ_ENTRY(MemoryRegionList) queue;
1541
};
1542

    
1543
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1544

    
1545
static void mtree_print_mr(fprintf_function mon_printf, void *f,
1546
                           const MemoryRegion *mr, unsigned int level,
1547
                           target_phys_addr_t base,
1548
                           MemoryRegionListHead *alias_print_queue)
1549
{
1550
    MemoryRegionList *new_ml, *ml, *next_ml;
1551
    MemoryRegionListHead submr_print_queue;
1552
    const MemoryRegion *submr;
1553
    unsigned int i;
1554

    
1555
    if (!mr) {
1556
        return;
1557
    }
1558

    
1559
    for (i = 0; i < level; i++) {
1560
        mon_printf(f, "  ");
1561
    }
1562

    
1563
    if (mr->alias) {
1564
        MemoryRegionList *ml;
1565
        bool found = false;
1566

    
1567
        /* check if the alias is already in the queue */
1568
        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1569
            if (ml->mr == mr->alias && !ml->printed) {
1570
                found = true;
1571
            }
1572
        }
1573

    
1574
        if (!found) {
1575
            ml = g_new(MemoryRegionList, 1);
1576
            ml->mr = mr->alias;
1577
            ml->printed = false;
1578
            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1579
        }
1580
        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1581
                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1582
                   "-" TARGET_FMT_plx "\n",
1583
                   base + mr->addr,
1584
                   base + mr->addr
1585
                   + (target_phys_addr_t)int128_get64(mr->size) - 1,
1586
                   mr->priority,
1587
                   mr->readable ? 'R' : '-',
1588
                   !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1589
                                                                      : '-',
1590
                   mr->name,
1591
                   mr->alias->name,
1592
                   mr->alias_offset,
1593
                   mr->alias_offset
1594
                   + (target_phys_addr_t)int128_get64(mr->size) - 1);
1595
    } else {
1596
        mon_printf(f,
1597
                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1598
                   base + mr->addr,
1599
                   base + mr->addr
1600
                   + (target_phys_addr_t)int128_get64(mr->size) - 1,
1601
                   mr->priority,
1602
                   mr->readable ? 'R' : '-',
1603
                   !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1604
                                                                      : '-',
1605
                   mr->name);
1606
    }
1607

    
1608
    QTAILQ_INIT(&submr_print_queue);
1609

    
1610
    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1611
        new_ml = g_new(MemoryRegionList, 1);
1612
        new_ml->mr = submr;
1613
        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1614
            if (new_ml->mr->addr < ml->mr->addr ||
1615
                (new_ml->mr->addr == ml->mr->addr &&
1616
                 new_ml->mr->priority > ml->mr->priority)) {
1617
                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1618
                new_ml = NULL;
1619
                break;
1620
            }
1621
        }
1622
        if (new_ml) {
1623
            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1624
        }
1625
    }
1626

    
1627
    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1628
        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1629
                       alias_print_queue);
1630
    }
1631

    
1632
    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1633
        g_free(ml);
1634
    }
1635
}
1636

    
1637
void mtree_info(fprintf_function mon_printf, void *f)
1638
{
1639
    MemoryRegionListHead ml_head;
1640
    MemoryRegionList *ml, *ml2;
1641

    
1642
    QTAILQ_INIT(&ml_head);
1643

    
1644
    mon_printf(f, "memory\n");
1645
    mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1646

    
1647
    if (address_space_io.root &&
1648
        !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1649
        mon_printf(f, "I/O\n");
1650
        mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1651
    }
1652

    
1653
    mon_printf(f, "aliases\n");
1654
    /* print aliased regions */
1655
    QTAILQ_FOREACH(ml, &ml_head, queue) {
1656
        if (!ml->printed) {
1657
            mon_printf(f, "%s\n", ml->mr->name);
1658
            mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1659
        }
1660
    }
1661

    
1662
    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1663
        g_free(ml);
1664
    }
1665
}