Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 089af991

History | View | Annotate | Download (23.7 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
51
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
52
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
53
#define EN0_RSR                0x0c        /* rx status reg RD */
54
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
55
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
56
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
57
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
58
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
59
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
60
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
61

    
62
#define EN1_PHYS        0x11
63
#define EN1_CURPAG      0x17
64
#define EN1_MULT        0x18
65

    
66
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
67
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
68

    
69
#define EN3_CONFIG0        0x33
70
#define EN3_CONFIG1        0x34
71
#define EN3_CONFIG2        0x35
72
#define EN3_CONFIG3        0x36
73

    
74
/*  Register accessed at EN_CMD, the 8390 base addr.  */
75
#define E8390_STOP        0x01        /* Stop and reset the chip */
76
#define E8390_START        0x02        /* Start the chip, clear reset */
77
#define E8390_TRANS        0x04        /* Transmit a frame */
78
#define E8390_RREAD        0x08        /* Remote read */
79
#define E8390_RWRITE        0x10        /* Remote write  */
80
#define E8390_NODMA        0x20        /* Remote DMA */
81
#define E8390_PAGE0        0x00        /* Select page chip registers */
82
#define E8390_PAGE1        0x40        /* using the two high-order bits */
83
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
84

    
85
/* Bits in EN0_ISR - Interrupt status register */
86
#define ENISR_RX        0x01        /* Receiver, no error */
87
#define ENISR_TX        0x02        /* Transmitter, no error */
88
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
89
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
90
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
91
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
92
#define ENISR_RDC        0x40        /* remote dma complete */
93
#define ENISR_RESET        0x80        /* Reset completed */
94
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
95

    
96
/* Bits in received packet status byte and EN0_RSR*/
97
#define ENRSR_RXOK        0x01        /* Received a good packet */
98
#define ENRSR_CRC        0x02        /* CRC error */
99
#define ENRSR_FAE        0x04        /* frame alignment error */
100
#define ENRSR_FO        0x08        /* FIFO overrun */
101
#define ENRSR_MPA        0x10        /* missed pkt */
102
#define ENRSR_PHY        0x20        /* physical/multicast address */
103
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
104
#define ENRSR_DEF        0x80        /* deferring */
105

    
106
/* Transmitted packet status, EN0_TSR. */
107
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
108
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
109
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
110
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
111
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
112
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
113
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
114
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
115

    
116
#define NE2000_PMEM_SIZE    (32*1024)
117
#define NE2000_PMEM_START   (16*1024)
118
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119
#define NE2000_MEM_SIZE     NE2000_PMEM_END
120

    
121
typedef struct NE2000State {
122
    uint8_t cmd;
123
    uint32_t start;
124
    uint32_t stop;
125
    uint8_t boundary;
126
    uint8_t tsr;
127
    uint8_t tpsr;
128
    uint16_t tcnt;
129
    uint16_t rcnt;
130
    uint32_t rsar;
131
    uint8_t rsr;
132
    uint8_t rxcr;
133
    uint8_t isr;
134
    uint8_t dcfg;
135
    uint8_t imr;
136
    uint8_t phys[6]; /* mac address */
137
    uint8_t curpag;
138
    uint8_t mult[8]; /* multicast mask array */
139
    int irq;
140
    PCIDevice *pci_dev;
141
    VLANClientState *vc;
142
    uint8_t macaddr[6];
143
    uint8_t mem[NE2000_MEM_SIZE];
144
} NE2000State;
145

    
146
static void ne2000_reset(NE2000State *s)
147
{
148
    int i;
149

    
150
    s->isr = ENISR_RESET;
151
    memcpy(s->mem, s->macaddr, 6);
152
    s->mem[14] = 0x57;
153
    s->mem[15] = 0x57;
154

    
155
    /* duplicate prom data */
156
    for(i = 15;i >= 0; i--) {
157
        s->mem[2 * i] = s->mem[i];
158
        s->mem[2 * i + 1] = s->mem[i];
159
    }
160
}
161

    
162
static void ne2000_update_irq(NE2000State *s)
163
{
164
    int isr;
165
    isr = (s->isr & s->imr) & 0x7f;
166
#if defined(DEBUG_NE2000)
167
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
168
           s->irq, isr ? 1 : 0, s->isr, s->imr);
169
#endif
170
    if (s->irq == 16) {
171
        /* PCI irq */
172
        pci_set_irq(s->pci_dev, 0, (isr != 0));
173
    } else {
174
        /* ISA irq */
175
        pic_set_irq(s->irq, (isr != 0));
176
    }
177
}
178

    
179
#define POLYNOMIAL 0x04c11db6
180

    
181
/* From FreeBSD */
182
/* XXX: optimize */
183
static int compute_mcast_idx(const uint8_t *ep)
184
{
185
    uint32_t crc;
186
    int carry, i, j;
187
    uint8_t b;
188

    
189
    crc = 0xffffffff;
190
    for (i = 0; i < 6; i++) {
191
        b = *ep++;
192
        for (j = 0; j < 8; j++) {
193
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
194
            crc <<= 1;
195
            b >>= 1;
196
            if (carry)
197
                crc = ((crc ^ POLYNOMIAL) | carry);
198
        }
199
    }
200
    return (crc >> 26);
201
}
202

    
203
/* return the max buffer size if the NE2000 can receive more data */
204
static int ne2000_can_receive(void *opaque)
205
{
206
    NE2000State *s = opaque;
207
    int avail, index, boundary;
208
    
209
    if (s->cmd & E8390_STOP)
210
        return 0;
211
    index = s->curpag << 8;
212
    boundary = s->boundary << 8;
213
    if (index < boundary)
214
        avail = boundary - index;
215
    else
216
        avail = (s->stop - s->start) - (index - boundary);
217
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
218
        return 0;
219
    return MAX_ETH_FRAME_SIZE;
220
}
221

    
222
#define MIN_BUF_SIZE 60
223

    
224
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
225
{
226
    NE2000State *s = opaque;
227
    uint8_t *p;
228
    int total_len, next, avail, len, index, mcast_idx;
229
    uint8_t buf1[60];
230
    static const uint8_t broadcast_macaddr[6] = 
231
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
232
    
233
#if defined(DEBUG_NE2000)
234
    printf("NE2000: received len=%d\n", size);
235
#endif
236

    
237
    if (!ne2000_can_receive(s))
238
        return;
239
    
240
    /* XXX: check this */
241
    if (s->rxcr & 0x10) {
242
        /* promiscuous: receive all */
243
    } else {
244
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
245
            /* broadcast address */
246
            if (!(s->rxcr & 0x04))
247
                return;
248
        } else if (buf[0] & 0x01) {
249
            /* multicast */
250
            if (!(s->rxcr & 0x08))
251
                return;
252
            mcast_idx = compute_mcast_idx(buf);
253
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
254
                return;
255
        } else if (s->mem[0] == buf[0] &&
256
                   s->mem[2] == buf[1] &&                   
257
                   s->mem[4] == buf[2] &&            
258
                   s->mem[6] == buf[3] &&            
259
                   s->mem[8] == buf[4] &&            
260
                   s->mem[10] == buf[5]) {
261
            /* match */
262
        } else {
263
            return;
264
        }
265
    }
266

    
267

    
268
    /* if too small buffer, then expand it */
269
    if (size < MIN_BUF_SIZE) {
270
        memcpy(buf1, buf, size);
271
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
272
        buf = buf1;
273
        size = MIN_BUF_SIZE;
274
    }
275

    
276
    index = s->curpag << 8;
277
    /* 4 bytes for header */
278
    total_len = size + 4;
279
    /* address for next packet (4 bytes for CRC) */
280
    next = index + ((total_len + 4 + 255) & ~0xff);
281
    if (next >= s->stop)
282
        next -= (s->stop - s->start);
283
    /* prepare packet header */
284
    p = s->mem + index;
285
    s->rsr = ENRSR_RXOK; /* receive status */
286
    /* XXX: check this */
287
    if (buf[0] & 0x01)
288
        s->rsr |= ENRSR_PHY;
289
    p[0] = s->rsr;
290
    p[1] = next >> 8;
291
    p[2] = total_len;
292
    p[3] = total_len >> 8;
293
    index += 4;
294

    
295
    /* write packet data */
296
    while (size > 0) {
297
        avail = s->stop - index;
298
        len = size;
299
        if (len > avail)
300
            len = avail;
301
        memcpy(s->mem + index, buf, len);
302
        buf += len;
303
        index += len;
304
        if (index == s->stop)
305
            index = s->start;
306
        size -= len;
307
    }
308
    s->curpag = next >> 8;
309

    
310
    /* now we can signal we have receive something */
311
    s->isr |= ENISR_RX;
312
    ne2000_update_irq(s);
313
}
314

    
315
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
316
{
317
    NE2000State *s = opaque;
318
    int offset, page, index;
319

    
320
    addr &= 0xf;
321
#ifdef DEBUG_NE2000
322
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
323
#endif
324
    if (addr == E8390_CMD) {
325
        /* control register */
326
        s->cmd = val;
327
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
328
            s->isr &= ~ENISR_RESET;
329
            /* test specific case: zero length transfert */
330
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
331
                s->rcnt == 0) {
332
                s->isr |= ENISR_RDC;
333
                ne2000_update_irq(s);
334
            }
335
            if (val & E8390_TRANS) {
336
                index = (s->tpsr << 8);
337
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
338
                if (index >= NE2000_PMEM_END)
339
                    index -= NE2000_PMEM_SIZE;
340
                /* fail safe: check range on the transmitted length  */
341
                if (index + s->tcnt <= NE2000_PMEM_END) {
342
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
343
                }
344
                /* signal end of transfert */
345
                s->tsr = ENTSR_PTX;
346
                s->isr |= ENISR_TX;
347
                s->cmd &= ~E8390_TRANS; 
348
                ne2000_update_irq(s);
349
            }
350
        }
351
    } else {
352
        page = s->cmd >> 6;
353
        offset = addr | (page << 4);
354
        switch(offset) {
355
        case EN0_STARTPG:
356
            s->start = val << 8;
357
            break;
358
        case EN0_STOPPG:
359
            s->stop = val << 8;
360
            break;
361
        case EN0_BOUNDARY:
362
            s->boundary = val;
363
            break;
364
        case EN0_IMR:
365
            s->imr = val;
366
            ne2000_update_irq(s);
367
            break;
368
        case EN0_TPSR:
369
            s->tpsr = val;
370
            break;
371
        case EN0_TCNTLO:
372
            s->tcnt = (s->tcnt & 0xff00) | val;
373
            break;
374
        case EN0_TCNTHI:
375
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
376
            break;
377
        case EN0_RSARLO:
378
            s->rsar = (s->rsar & 0xff00) | val;
379
            break;
380
        case EN0_RSARHI:
381
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
382
            break;
383
        case EN0_RCNTLO:
384
            s->rcnt = (s->rcnt & 0xff00) | val;
385
            break;
386
        case EN0_RCNTHI:
387
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
388
            break;
389
        case EN0_RXCR:
390
            s->rxcr = val;
391
            break;
392
        case EN0_DCFG:
393
            s->dcfg = val;
394
            break;
395
        case EN0_ISR:
396
            s->isr &= ~(val & 0x7f);
397
            ne2000_update_irq(s);
398
            break;
399
        case EN1_PHYS ... EN1_PHYS + 5:
400
            s->phys[offset - EN1_PHYS] = val;
401
            break;
402
        case EN1_CURPAG:
403
            s->curpag = val;
404
            break;
405
        case EN1_MULT ... EN1_MULT + 7:
406
            s->mult[offset - EN1_MULT] = val;
407
            break;
408
        }
409
    }
410
}
411

    
412
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
413
{
414
    NE2000State *s = opaque;
415
    int offset, page, ret;
416

    
417
    addr &= 0xf;
418
    if (addr == E8390_CMD) {
419
        ret = s->cmd;
420
    } else {
421
        page = s->cmd >> 6;
422
        offset = addr | (page << 4);
423
        switch(offset) {
424
        case EN0_TSR:
425
            ret = s->tsr;
426
            break;
427
        case EN0_BOUNDARY:
428
            ret = s->boundary;
429
            break;
430
        case EN0_ISR:
431
            ret = s->isr;
432
            break;
433
        case EN0_RSARLO:
434
            ret = s->rsar & 0x00ff;
435
            break;
436
        case EN0_RSARHI:
437
            ret = s->rsar >> 8;
438
            break;
439
        case EN1_PHYS ... EN1_PHYS + 5:
440
            ret = s->phys[offset - EN1_PHYS];
441
            break;
442
        case EN1_CURPAG:
443
            ret = s->curpag;
444
            break;
445
        case EN1_MULT ... EN1_MULT + 7:
446
            ret = s->mult[offset - EN1_MULT];
447
            break;
448
        case EN0_RSR:
449
            ret = s->rsr;
450
            break;
451
        case EN2_STARTPG:
452
            ret = s->start >> 8;
453
            break;
454
        case EN2_STOPPG:
455
            ret = s->stop >> 8;
456
            break;
457
        case EN0_RTL8029ID0:
458
            ret = 0x50;
459
            break;
460
        case EN0_RTL8029ID1:
461
            ret = 0x43;
462
            break;
463
        case EN3_CONFIG0:
464
            ret = 0;                /* 10baseT media */
465
            break;
466
        case EN3_CONFIG2:
467
            ret = 0x40;                /* 10baseT active */
468
            break;
469
        case EN3_CONFIG3:
470
            ret = 0x40;                /* Full duplex */
471
            break;
472
        default:
473
            ret = 0x00;
474
            break;
475
        }
476
    }
477
#ifdef DEBUG_NE2000
478
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
479
#endif
480
    return ret;
481
}
482

    
483
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
484
                                     uint32_t val)
485
{
486
    if (addr < 32 || 
487
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
488
        s->mem[addr] = val;
489
    }
490
}
491

    
492
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
493
                                     uint32_t val)
494
{
495
    addr &= ~1; /* XXX: check exact behaviour if not even */
496
    if (addr < 32 || 
497
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
498
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
499
    }
500
}
501

    
502
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
503
                                     uint32_t val)
504
{
505
    addr &= ~1; /* XXX: check exact behaviour if not even */
506
    if (addr < 32 || 
507
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
508
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
509
    }
510
}
511

    
512
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
513
{
514
    if (addr < 32 || 
515
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
516
        return s->mem[addr];
517
    } else {
518
        return 0xff;
519
    }
520
}
521

    
522
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
523
{
524
    addr &= ~1; /* XXX: check exact behaviour if not even */
525
    if (addr < 32 || 
526
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
527
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
528
    } else {
529
        return 0xffff;
530
    }
531
}
532

    
533
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
534
{
535
    addr &= ~1; /* XXX: check exact behaviour if not even */
536
    if (addr < 32 || 
537
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
538
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
539
    } else {
540
        return 0xffffffff;
541
    }
542
}
543

    
544
static inline void ne2000_dma_update(NE2000State *s, int len)
545
{
546
    s->rsar += len;
547
    /* wrap */
548
    /* XXX: check what to do if rsar > stop */
549
    if (s->rsar == s->stop)
550
        s->rsar = s->start;
551

    
552
    if (s->rcnt <= len) {
553
        s->rcnt = 0;
554
        /* signal end of transfert */
555
        s->isr |= ENISR_RDC;
556
        ne2000_update_irq(s);
557
    } else {
558
        s->rcnt -= len;
559
    }
560
}
561

    
562
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
563
{
564
    NE2000State *s = opaque;
565

    
566
#ifdef DEBUG_NE2000
567
    printf("NE2000: asic write val=0x%04x\n", val);
568
#endif
569
    if (s->rcnt == 0)
570
        return;
571
    if (s->dcfg & 0x01) {
572
        /* 16 bit access */
573
        ne2000_mem_writew(s, s->rsar, val);
574
        ne2000_dma_update(s, 2);
575
    } else {
576
        /* 8 bit access */
577
        ne2000_mem_writeb(s, s->rsar, val);
578
        ne2000_dma_update(s, 1);
579
    }
580
}
581

    
582
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
583
{
584
    NE2000State *s = opaque;
585
    int ret;
586

    
587
    if (s->dcfg & 0x01) {
588
        /* 16 bit access */
589
        ret = ne2000_mem_readw(s, s->rsar);
590
        ne2000_dma_update(s, 2);
591
    } else {
592
        /* 8 bit access */
593
        ret = ne2000_mem_readb(s, s->rsar);
594
        ne2000_dma_update(s, 1);
595
    }
596
#ifdef DEBUG_NE2000
597
    printf("NE2000: asic read val=0x%04x\n", ret);
598
#endif
599
    return ret;
600
}
601

    
602
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
603
{
604
    NE2000State *s = opaque;
605

    
606
#ifdef DEBUG_NE2000
607
    printf("NE2000: asic writel val=0x%04x\n", val);
608
#endif
609
    if (s->rcnt == 0)
610
        return;
611
    /* 32 bit access */
612
    ne2000_mem_writel(s, s->rsar, val);
613
    ne2000_dma_update(s, 4);
614
}
615

    
616
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
617
{
618
    NE2000State *s = opaque;
619
    int ret;
620

    
621
    /* 32 bit access */
622
    ret = ne2000_mem_readl(s, s->rsar);
623
    ne2000_dma_update(s, 4);
624
#ifdef DEBUG_NE2000
625
    printf("NE2000: asic readl val=0x%04x\n", ret);
626
#endif
627
    return ret;
628
}
629

    
630
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
631
{
632
    /* nothing to do (end of reset pulse) */
633
}
634

    
635
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
636
{
637
    NE2000State *s = opaque;
638
    ne2000_reset(s);
639
    return 0;
640
}
641

    
642
static void ne2000_save(QEMUFile* f,void* opaque)
643
{
644
        NE2000State* s=(NE2000State*)opaque;
645

    
646
        qemu_put_8s(f, &s->cmd);
647
        qemu_put_be32s(f, &s->start);
648
        qemu_put_be32s(f, &s->stop);
649
        qemu_put_8s(f, &s->boundary);
650
        qemu_put_8s(f, &s->tsr);
651
        qemu_put_8s(f, &s->tpsr);
652
        qemu_put_be16s(f, &s->tcnt);
653
        qemu_put_be16s(f, &s->rcnt);
654
        qemu_put_be32s(f, &s->rsar);
655
        qemu_put_8s(f, &s->rsr);
656
        qemu_put_8s(f, &s->isr);
657
        qemu_put_8s(f, &s->dcfg);
658
        qemu_put_8s(f, &s->imr);
659
        qemu_put_buffer(f, s->phys, 6);
660
        qemu_put_8s(f, &s->curpag);
661
        qemu_put_buffer(f, s->mult, 8);
662
        qemu_put_be32s(f, &s->irq);
663
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
664
}
665

    
666
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
667
{
668
        NE2000State* s=(NE2000State*)opaque;
669

    
670
        if (version_id != 1)
671
            return -EINVAL;
672

    
673
        qemu_get_8s(f, &s->cmd);
674
        qemu_get_be32s(f, &s->start);
675
        qemu_get_be32s(f, &s->stop);
676
        qemu_get_8s(f, &s->boundary);
677
        qemu_get_8s(f, &s->tsr);
678
        qemu_get_8s(f, &s->tpsr);
679
        qemu_get_be16s(f, &s->tcnt);
680
        qemu_get_be16s(f, &s->rcnt);
681
        qemu_get_be32s(f, &s->rsar);
682
        qemu_get_8s(f, &s->rsr);
683
        qemu_get_8s(f, &s->isr);
684
        qemu_get_8s(f, &s->dcfg);
685
        qemu_get_8s(f, &s->imr);
686
        qemu_get_buffer(f, s->phys, 6);
687
        qemu_get_8s(f, &s->curpag);
688
        qemu_get_buffer(f, s->mult, 8);
689
        qemu_get_be32s(f, &s->irq);
690
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
691

    
692
        return 0;
693
}
694

    
695
void isa_ne2000_init(int base, int irq, NICInfo *nd)
696
{
697
    NE2000State *s;
698
    
699
    s = qemu_mallocz(sizeof(NE2000State));
700
    if (!s)
701
        return;
702
    
703
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
704
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
705

    
706
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
707
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
708
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
709
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
710

    
711
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
712
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
713
    s->irq = irq;
714
    memcpy(s->macaddr, nd->macaddr, 6);
715

    
716
    ne2000_reset(s);
717

    
718
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
719

    
720
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
721
             "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
722
             s->macaddr[0],
723
             s->macaddr[1],
724
             s->macaddr[2],
725
             s->macaddr[3],
726
             s->macaddr[4],
727
             s->macaddr[5]);
728
             
729
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
730
}
731

    
732
/***********************************************************/
733
/* PCI NE2000 definitions */
734

    
735
typedef struct PCINE2000State {
736
    PCIDevice dev;
737
    NE2000State ne2000;
738
} PCINE2000State;
739

    
740
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
741
                       uint32_t addr, uint32_t size, int type)
742
{
743
    PCINE2000State *d = (PCINE2000State *)pci_dev;
744
    NE2000State *s = &d->ne2000;
745

    
746
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
747
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
748

    
749
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
750
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
751
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
752
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
753
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
754
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
755

    
756
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
757
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
758
}
759

    
760
void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
761
{
762
    PCINE2000State *d;
763
    NE2000State *s;
764
    uint8_t *pci_conf;
765
    
766
    d = (PCINE2000State *)pci_register_device(bus,
767
                                              "NE2000", sizeof(PCINE2000State),
768
                                              -1, 
769
                                              NULL, NULL);
770
    pci_conf = d->dev.config;
771
    pci_conf[0x00] = 0xec; // Realtek 8029
772
    pci_conf[0x01] = 0x10;
773
    pci_conf[0x02] = 0x29;
774
    pci_conf[0x03] = 0x80;
775
    pci_conf[0x0a] = 0x00; // ethernet network controller 
776
    pci_conf[0x0b] = 0x02;
777
    pci_conf[0x0e] = 0x00; // header_type
778
    pci_conf[0x3d] = 1; // interrupt pin 0
779
    
780
    pci_register_io_region(&d->dev, 0, 0x100, 
781
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
782
    s = &d->ne2000;
783
    s->irq = 16; // PCI interrupt
784
    s->pci_dev = (PCIDevice *)d;
785
    memcpy(s->macaddr, nd->macaddr, 6);
786
    ne2000_reset(s);
787
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
788

    
789
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
790
             "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
791
             s->macaddr[0],
792
             s->macaddr[1],
793
             s->macaddr[2],
794
             s->macaddr[3],
795
             s->macaddr[4],
796
             s->macaddr[5]);
797
             
798
    /* XXX: instance number ? */
799
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
800
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
801
                    &d->dev);
802
}