Statistics
| Branch: | Revision:

root / hw / m48t59.c @ 089b7c0a

History | View | Annotate | Download (16.7 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "nvram.h"
26
#include "isa.h"
27
#include "qemu-timer.h"
28
#include "sysemu.h"
29

    
30
//#define DEBUG_NVRAM
31

    
32
#if defined(DEBUG_NVRAM)
33
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
34
#else
35
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
36
#endif
37

    
38
/*
39
 * The M48T08 and M48T59 chips are very similar. The newer '59 has
40
 * alarm and a watchdog timer and related control registers. In the
41
 * PPC platform there is also a nvram lock function.
42
 */
43
struct m48t59_t {
44
    /* Model parameters */
45
    int type; // 8 = m48t08, 59 = m48t59
46
    /* Hardware parameters */
47
    qemu_irq IRQ;
48
    int mem_index;
49
    target_phys_addr_t mem_base;
50
    uint32_t io_base;
51
    uint16_t size;
52
    /* RTC management */
53
    time_t   time_offset;
54
    time_t   stop_time;
55
    /* Alarm & watchdog */
56
    time_t   alarm;
57
    struct QEMUTimer *alrm_timer;
58
    struct QEMUTimer *wd_timer;
59
    /* NVRAM storage */
60
    uint8_t  lock;
61
    uint16_t addr;
62
    uint8_t *buffer;
63
};
64

    
65
/* Fake timer functions */
66
/* Generic helpers for BCD */
67
static inline uint8_t toBCD (uint8_t value)
68
{
69
    return (((value / 10) % 10) << 4) | (value % 10);
70
}
71

    
72
static inline uint8_t fromBCD (uint8_t BCD)
73
{
74
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
75
}
76

    
77
/* RTC management helpers */
78
static void get_time (m48t59_t *NVRAM, struct tm *tm)
79
{
80
    time_t t;
81

    
82
    t = time(NULL) + NVRAM->time_offset;
83
#ifdef _WIN32
84
    memcpy(tm,localtime(&t),sizeof(*tm));
85
#else
86
    if (rtc_utc)
87
        gmtime_r (&t, tm);
88
    else
89
        localtime_r (&t, tm) ;
90
#endif
91
}
92

    
93
static void set_time (m48t59_t *NVRAM, struct tm *tm)
94
{
95
    time_t now, new_time;
96

    
97
    new_time = mktime(tm);
98
    now = time(NULL);
99
    NVRAM->time_offset = new_time - now;
100
}
101

    
102
/* Alarm management */
103
static void alarm_cb (void *opaque)
104
{
105
    struct tm tm, tm_now;
106
    uint64_t next_time;
107
    m48t59_t *NVRAM = opaque;
108

    
109
    qemu_set_irq(NVRAM->IRQ, 1);
110
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
111
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
112
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
113
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
114
        /* Repeat once a month */
115
        get_time(NVRAM, &tm_now);
116
        memcpy(&tm, &tm_now, sizeof(struct tm));
117
        tm.tm_mon++;
118
        if (tm.tm_mon == 13) {
119
            tm.tm_mon = 1;
120
            tm.tm_year++;
121
        }
122
        next_time = mktime(&tm);
123
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
124
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
125
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
126
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
127
        /* Repeat once a day */
128
        next_time = 24 * 60 * 60 + mktime(&tm_now);
129
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
130
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
131
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
132
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
133
        /* Repeat once an hour */
134
        next_time = 60 * 60 + mktime(&tm_now);
135
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
136
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
137
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
138
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
139
        /* Repeat once a minute */
140
        next_time = 60 + mktime(&tm_now);
141
    } else {
142
        /* Repeat once a second */
143
        next_time = 1 + mktime(&tm_now);
144
    }
145
    qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
146
    qemu_set_irq(NVRAM->IRQ, 0);
147
}
148

    
149

    
150
static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
151
{
152
#ifdef _WIN32
153
    memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
154
#else
155
    if (rtc_utc)
156
        gmtime_r (&NVRAM->alarm, tm);
157
    else
158
        localtime_r (&NVRAM->alarm, tm);
159
#endif
160
}
161

    
162
static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
163
{
164
    NVRAM->alarm = mktime(tm);
165
    if (NVRAM->alrm_timer != NULL) {
166
        qemu_del_timer(NVRAM->alrm_timer);
167
        if (NVRAM->alarm - time(NULL) > 0)
168
            qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
169
    }
170
}
171

    
172
/* Watchdog management */
173
static void watchdog_cb (void *opaque)
174
{
175
    m48t59_t *NVRAM = opaque;
176

    
177
    NVRAM->buffer[0x1FF0] |= 0x80;
178
    if (NVRAM->buffer[0x1FF7] & 0x80) {
179
        NVRAM->buffer[0x1FF7] = 0x00;
180
        NVRAM->buffer[0x1FFC] &= ~0x40;
181
        /* May it be a hw CPU Reset instead ? */
182
        qemu_system_reset_request();
183
    } else {
184
        qemu_set_irq(NVRAM->IRQ, 1);
185
        qemu_set_irq(NVRAM->IRQ, 0);
186
    }
187
}
188

    
189
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
190
{
191
    uint64_t interval; /* in 1/16 seconds */
192

    
193
    NVRAM->buffer[0x1FF0] &= ~0x80;
194
    if (NVRAM->wd_timer != NULL) {
195
        qemu_del_timer(NVRAM->wd_timer);
196
        if (value != 0) {
197
            interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
198
            qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
199
                           ((interval * 1000) >> 4));
200
        }
201
    }
202
}
203

    
204
/* Direct access to NVRAM */
205
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
206
{
207
    m48t59_t *NVRAM = opaque;
208
    struct tm tm;
209
    int tmp;
210

    
211
    if (addr > 0x1FF8 && addr < 0x2000)
212
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
213
    if (NVRAM->type == 8 &&
214
        (addr >= 0x1ff0 && addr <= 0x1ff7))
215
        goto do_write;
216
    switch (addr) {
217
    case 0x1FF0:
218
        /* flags register : read-only */
219
        break;
220
    case 0x1FF1:
221
        /* unused */
222
        break;
223
    case 0x1FF2:
224
        /* alarm seconds */
225
        tmp = fromBCD(val & 0x7F);
226
        if (tmp >= 0 && tmp <= 59) {
227
            get_alarm(NVRAM, &tm);
228
            tm.tm_sec = tmp;
229
            NVRAM->buffer[0x1FF2] = val;
230
            set_alarm(NVRAM, &tm);
231
        }
232
        break;
233
    case 0x1FF3:
234
        /* alarm minutes */
235
        tmp = fromBCD(val & 0x7F);
236
        if (tmp >= 0 && tmp <= 59) {
237
            get_alarm(NVRAM, &tm);
238
            tm.tm_min = tmp;
239
            NVRAM->buffer[0x1FF3] = val;
240
            set_alarm(NVRAM, &tm);
241
        }
242
        break;
243
    case 0x1FF4:
244
        /* alarm hours */
245
        tmp = fromBCD(val & 0x3F);
246
        if (tmp >= 0 && tmp <= 23) {
247
            get_alarm(NVRAM, &tm);
248
            tm.tm_hour = tmp;
249
            NVRAM->buffer[0x1FF4] = val;
250
            set_alarm(NVRAM, &tm);
251
        }
252
        break;
253
    case 0x1FF5:
254
        /* alarm date */
255
        tmp = fromBCD(val & 0x1F);
256
        if (tmp != 0) {
257
            get_alarm(NVRAM, &tm);
258
            tm.tm_mday = tmp;
259
            NVRAM->buffer[0x1FF5] = val;
260
            set_alarm(NVRAM, &tm);
261
        }
262
        break;
263
    case 0x1FF6:
264
        /* interrupts */
265
        NVRAM->buffer[0x1FF6] = val;
266
        break;
267
    case 0x1FF7:
268
        /* watchdog */
269
        NVRAM->buffer[0x1FF7] = val;
270
        set_up_watchdog(NVRAM, val);
271
        break;
272
    case 0x1FF8:
273
        /* control */
274
        NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
275
        break;
276
    case 0x1FF9:
277
        /* seconds (BCD) */
278
        tmp = fromBCD(val & 0x7F);
279
        if (tmp >= 0 && tmp <= 59) {
280
            get_time(NVRAM, &tm);
281
            tm.tm_sec = tmp;
282
            set_time(NVRAM, &tm);
283
        }
284
        if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
285
            if (val & 0x80) {
286
                NVRAM->stop_time = time(NULL);
287
            } else {
288
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
289
                NVRAM->stop_time = 0;
290
            }
291
        }
292
        NVRAM->buffer[0x1FF9] = val & 0x80;
293
        break;
294
    case 0x1FFA:
295
        /* minutes (BCD) */
296
        tmp = fromBCD(val & 0x7F);
297
        if (tmp >= 0 && tmp <= 59) {
298
            get_time(NVRAM, &tm);
299
            tm.tm_min = tmp;
300
            set_time(NVRAM, &tm);
301
        }
302
        break;
303
    case 0x1FFB:
304
        /* hours (BCD) */
305
        tmp = fromBCD(val & 0x3F);
306
        if (tmp >= 0 && tmp <= 23) {
307
            get_time(NVRAM, &tm);
308
            tm.tm_hour = tmp;
309
            set_time(NVRAM, &tm);
310
        }
311
        break;
312
    case 0x1FFC:
313
        /* day of the week / century */
314
        tmp = fromBCD(val & 0x07);
315
        get_time(NVRAM, &tm);
316
        tm.tm_wday = tmp;
317
        set_time(NVRAM, &tm);
318
        NVRAM->buffer[0x1FFC] = val & 0x40;
319
        break;
320
    case 0x1FFD:
321
        /* date */
322
        tmp = fromBCD(val & 0x1F);
323
        if (tmp != 0) {
324
            get_time(NVRAM, &tm);
325
            tm.tm_mday = tmp;
326
            set_time(NVRAM, &tm);
327
        }
328
        break;
329
    case 0x1FFE:
330
        /* month */
331
        tmp = fromBCD(val & 0x1F);
332
        if (tmp >= 1 && tmp <= 12) {
333
            get_time(NVRAM, &tm);
334
            tm.tm_mon = tmp - 1;
335
            set_time(NVRAM, &tm);
336
        }
337
        break;
338
    case 0x1FFF:
339
        /* year */
340
        tmp = fromBCD(val);
341
        if (tmp >= 0 && tmp <= 99) {
342
            get_time(NVRAM, &tm);
343
            if (NVRAM->type == 8)
344
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
345
            else
346
                tm.tm_year = fromBCD(val);
347
            set_time(NVRAM, &tm);
348
        }
349
        break;
350
    default:
351
        /* Check lock registers state */
352
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
353
            break;
354
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
355
            break;
356
    do_write:
357
        if (addr < NVRAM->size) {
358
            NVRAM->buffer[addr] = val & 0xFF;
359
        }
360
        break;
361
    }
362
}
363

    
364
uint32_t m48t59_read (void *opaque, uint32_t addr)
365
{
366
    m48t59_t *NVRAM = opaque;
367
    struct tm tm;
368
    uint32_t retval = 0xFF;
369

    
370
    if (NVRAM->type == 8 &&
371
        (addr >= 0x1ff0 && addr <= 0x1ff7))
372
        goto do_read;
373
    switch (addr) {
374
    case 0x1FF0:
375
        /* flags register */
376
        goto do_read;
377
    case 0x1FF1:
378
        /* unused */
379
        retval = 0;
380
        break;
381
    case 0x1FF2:
382
        /* alarm seconds */
383
        goto do_read;
384
    case 0x1FF3:
385
        /* alarm minutes */
386
        goto do_read;
387
    case 0x1FF4:
388
        /* alarm hours */
389
        goto do_read;
390
    case 0x1FF5:
391
        /* alarm date */
392
        goto do_read;
393
    case 0x1FF6:
394
        /* interrupts */
395
        goto do_read;
396
    case 0x1FF7:
397
        /* A read resets the watchdog */
398
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
399
        goto do_read;
400
    case 0x1FF8:
401
        /* control */
402
        goto do_read;
403
    case 0x1FF9:
404
        /* seconds (BCD) */
405
        get_time(NVRAM, &tm);
406
        retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
407
        break;
408
    case 0x1FFA:
409
        /* minutes (BCD) */
410
        get_time(NVRAM, &tm);
411
        retval = toBCD(tm.tm_min);
412
        break;
413
    case 0x1FFB:
414
        /* hours (BCD) */
415
        get_time(NVRAM, &tm);
416
        retval = toBCD(tm.tm_hour);
417
        break;
418
    case 0x1FFC:
419
        /* day of the week / century */
420
        get_time(NVRAM, &tm);
421
        retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
422
        break;
423
    case 0x1FFD:
424
        /* date */
425
        get_time(NVRAM, &tm);
426
        retval = toBCD(tm.tm_mday);
427
        break;
428
    case 0x1FFE:
429
        /* month */
430
        get_time(NVRAM, &tm);
431
        retval = toBCD(tm.tm_mon + 1);
432
        break;
433
    case 0x1FFF:
434
        /* year */
435
        get_time(NVRAM, &tm);
436
        if (NVRAM->type == 8)
437
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
438
        else
439
            retval = toBCD(tm.tm_year);
440
        break;
441
    default:
442
        /* Check lock registers state */
443
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
444
            break;
445
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
446
            break;
447
    do_read:
448
        if (addr < NVRAM->size) {
449
            retval = NVRAM->buffer[addr];
450
        }
451
        break;
452
    }
453
    if (addr > 0x1FF9 && addr < 0x2000)
454
        NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
455

    
456
    return retval;
457
}
458

    
459
void m48t59_set_addr (void *opaque, uint32_t addr)
460
{
461
    m48t59_t *NVRAM = opaque;
462

    
463
    NVRAM->addr = addr;
464
}
465

    
466
void m48t59_toggle_lock (void *opaque, int lock)
467
{
468
    m48t59_t *NVRAM = opaque;
469

    
470
    NVRAM->lock ^= 1 << lock;
471
}
472

    
473
/* IO access to NVRAM */
474
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
475
{
476
    m48t59_t *NVRAM = opaque;
477

    
478
    addr -= NVRAM->io_base;
479
    NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
480
    switch (addr) {
481
    case 0:
482
        NVRAM->addr &= ~0x00FF;
483
        NVRAM->addr |= val;
484
        break;
485
    case 1:
486
        NVRAM->addr &= ~0xFF00;
487
        NVRAM->addr |= val << 8;
488
        break;
489
    case 3:
490
        m48t59_write(NVRAM, val, NVRAM->addr);
491
        NVRAM->addr = 0x0000;
492
        break;
493
    default:
494
        break;
495
    }
496
}
497

    
498
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
499
{
500
    m48t59_t *NVRAM = opaque;
501
    uint32_t retval;
502

    
503
    addr -= NVRAM->io_base;
504
    switch (addr) {
505
    case 3:
506
        retval = m48t59_read(NVRAM, NVRAM->addr);
507
        break;
508
    default:
509
        retval = -1;
510
        break;
511
    }
512
    NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
513

    
514
    return retval;
515
}
516

    
517
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
518
{
519
    m48t59_t *NVRAM = opaque;
520

    
521
    addr -= NVRAM->mem_base;
522
    m48t59_write(NVRAM, addr, value & 0xff);
523
}
524

    
525
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
526
{
527
    m48t59_t *NVRAM = opaque;
528

    
529
    addr -= NVRAM->mem_base;
530
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
531
    m48t59_write(NVRAM, addr + 1, value & 0xff);
532
}
533

    
534
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
535
{
536
    m48t59_t *NVRAM = opaque;
537

    
538
    addr -= NVRAM->mem_base;
539
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
540
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
541
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
542
    m48t59_write(NVRAM, addr + 3, value & 0xff);
543
}
544

    
545
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
546
{
547
    m48t59_t *NVRAM = opaque;
548
    uint32_t retval;
549

    
550
    addr -= NVRAM->mem_base;
551
    retval = m48t59_read(NVRAM, addr);
552
    return retval;
553
}
554

    
555
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
556
{
557
    m48t59_t *NVRAM = opaque;
558
    uint32_t retval;
559

    
560
    addr -= NVRAM->mem_base;
561
    retval = m48t59_read(NVRAM, addr) << 8;
562
    retval |= m48t59_read(NVRAM, addr + 1);
563
    return retval;
564
}
565

    
566
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
567
{
568
    m48t59_t *NVRAM = opaque;
569
    uint32_t retval;
570

    
571
    addr -= NVRAM->mem_base;
572
    retval = m48t59_read(NVRAM, addr) << 24;
573
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
574
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
575
    retval |= m48t59_read(NVRAM, addr + 3);
576
    return retval;
577
}
578

    
579
static CPUWriteMemoryFunc *nvram_write[] = {
580
    &nvram_writeb,
581
    &nvram_writew,
582
    &nvram_writel,
583
};
584

    
585
static CPUReadMemoryFunc *nvram_read[] = {
586
    &nvram_readb,
587
    &nvram_readw,
588
    &nvram_readl,
589
};
590

    
591
static void m48t59_save(QEMUFile *f, void *opaque)
592
{
593
    m48t59_t *s = opaque;
594

    
595
    qemu_put_8s(f, &s->lock);
596
    qemu_put_be16s(f, &s->addr);
597
    qemu_put_buffer(f, s->buffer, s->size);
598
}
599

    
600
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
601
{
602
    m48t59_t *s = opaque;
603

    
604
    if (version_id != 1)
605
        return -EINVAL;
606

    
607
    qemu_get_8s(f, &s->lock);
608
    qemu_get_be16s(f, &s->addr);
609
    qemu_get_buffer(f, s->buffer, s->size);
610

    
611
    return 0;
612
}
613

    
614
static void m48t59_reset(void *opaque)
615
{
616
    m48t59_t *NVRAM = opaque;
617

    
618
    if (NVRAM->alrm_timer != NULL)
619
        qemu_del_timer(NVRAM->alrm_timer);
620

    
621
    if (NVRAM->wd_timer != NULL)
622
        qemu_del_timer(NVRAM->wd_timer);
623
}
624

    
625
/* Initialisation routine */
626
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
627
                       uint32_t io_base, uint16_t size,
628
                       int type)
629
{
630
    m48t59_t *s;
631
    target_phys_addr_t save_base;
632

    
633
    s = qemu_mallocz(sizeof(m48t59_t));
634
    if (!s)
635
        return NULL;
636
    s->buffer = qemu_mallocz(size);
637
    if (!s->buffer) {
638
        qemu_free(s);
639
        return NULL;
640
    }
641
    s->IRQ = IRQ;
642
    s->size = size;
643
    s->mem_base = mem_base;
644
    s->io_base = io_base;
645
    s->addr = 0;
646
    s->type = type;
647
    if (io_base != 0) {
648
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
649
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
650
    }
651
    if (mem_base != 0) {
652
        s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
653
        cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
654
    }
655
    if (type == 59) {
656
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
657
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
658
    }
659
    s->lock = 0;
660

    
661
    qemu_register_reset(m48t59_reset, s);
662
    save_base = mem_base ? mem_base : io_base;
663
    register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
664

    
665
    return s;
666
}