Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 08f3dcf1

History | View | Annotate | Download (13.5 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "monitor.h"
27
#include "sysbus.h"
28

    
29
//#define DEBUG_IRQ_COUNT
30
//#define DEBUG_IRQ
31

    
32
#ifdef DEBUG_IRQ
33
#define DPRINTF(fmt, ...)                                       \
34
    do { printf("IRQ: " fmt , ## __VA_ARGS__); } while (0)
35
#else
36
#define DPRINTF(fmt, ...)
37
#endif
38

    
39
/*
40
 * Registers of interrupt controller in sun4m.
41
 *
42
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
43
 * produced as NCR89C105. See
44
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45
 *
46
 * There is a system master controller and one for each cpu.
47
 *
48
 */
49

    
50
#define MAX_CPUS 16
51
#define MAX_PILS 16
52

    
53
struct SLAVIO_INTCTLState;
54

    
55
typedef struct SLAVIO_CPUINTCTLState {
56
    uint32_t intreg_pending;
57
    struct SLAVIO_INTCTLState *master;
58
    uint32_t cpu;
59
    uint32_t irl_out;
60
} SLAVIO_CPUINTCTLState;
61

    
62
typedef struct SLAVIO_INTCTLState {
63
    SysBusDevice busdev;
64
    uint32_t intregm_pending;
65
    uint32_t intregm_disabled;
66
    uint32_t target_cpu;
67
#ifdef DEBUG_IRQ_COUNT
68
    uint64_t irq_count[32];
69
#endif
70
    qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
71
    SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
72
} SLAVIO_INTCTLState;
73

    
74
#define INTCTL_MAXADDR 0xf
75
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76
#define INTCTLM_SIZE 0x14
77
#define MASTER_IRQ_MASK ~0x0fa2007f
78
#define MASTER_DISABLE 0x80000000
79
#define CPU_SOFTIRQ_MASK 0xfffe0000
80
#define CPU_IRQ_INT15_IN (1 << 15)
81
#define CPU_IRQ_TIMER_IN (1 << 14)
82

    
83
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
84

    
85
// per-cpu interrupt controller
86
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
87
{
88
    SLAVIO_CPUINTCTLState *s = opaque;
89
    uint32_t saddr, ret;
90

    
91
    saddr = addr >> 2;
92
    switch (saddr) {
93
    case 0:
94
        ret = s->intreg_pending;
95
        break;
96
    default:
97
        ret = 0;
98
        break;
99
    }
100
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
101

    
102
    return ret;
103
}
104

    
105
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
106
                                     uint32_t val)
107
{
108
    SLAVIO_CPUINTCTLState *s = opaque;
109
    uint32_t saddr;
110

    
111
    saddr = addr >> 2;
112
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
113
    switch (saddr) {
114
    case 1: // clear pending softints
115
        val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
116
        s->intreg_pending &= ~val;
117
        slavio_check_interrupts(s->master, 1);
118
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
119
                s->intreg_pending);
120
        break;
121
    case 2: // set softint
122
        val &= CPU_SOFTIRQ_MASK;
123
        s->intreg_pending |= val;
124
        slavio_check_interrupts(s->master, 1);
125
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
126
                s->intreg_pending);
127
        break;
128
    default:
129
        break;
130
    }
131
}
132

    
133
static CPUReadMemoryFunc * const slavio_intctl_mem_read[3] = {
134
    NULL,
135
    NULL,
136
    slavio_intctl_mem_readl,
137
};
138

    
139
static CPUWriteMemoryFunc * const slavio_intctl_mem_write[3] = {
140
    NULL,
141
    NULL,
142
    slavio_intctl_mem_writel,
143
};
144

    
145
// master system interrupt controller
146
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
147
{
148
    SLAVIO_INTCTLState *s = opaque;
149
    uint32_t saddr, ret;
150

    
151
    saddr = addr >> 2;
152
    switch (saddr) {
153
    case 0:
154
        ret = s->intregm_pending & ~MASTER_DISABLE;
155
        break;
156
    case 1:
157
        ret = s->intregm_disabled & MASTER_IRQ_MASK;
158
        break;
159
    case 4:
160
        ret = s->target_cpu;
161
        break;
162
    default:
163
        ret = 0;
164
        break;
165
    }
166
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
167

    
168
    return ret;
169
}
170

    
171
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
172
                                      uint32_t val)
173
{
174
    SLAVIO_INTCTLState *s = opaque;
175
    uint32_t saddr;
176

    
177
    saddr = addr >> 2;
178
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
179
    switch (saddr) {
180
    case 2: // clear (enable)
181
        // Force clear unused bits
182
        val &= MASTER_IRQ_MASK;
183
        s->intregm_disabled &= ~val;
184
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
185
                s->intregm_disabled);
186
        slavio_check_interrupts(s, 1);
187
        break;
188
    case 3: // set (disable; doesn't affect pending)
189
        // Force clear unused bits
190
        val &= MASTER_IRQ_MASK;
191
        s->intregm_disabled |= val;
192
        slavio_check_interrupts(s, 1);
193
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
194
                s->intregm_disabled);
195
        break;
196
    case 4:
197
        s->target_cpu = val & (MAX_CPUS - 1);
198
        slavio_check_interrupts(s, 1);
199
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
200
        break;
201
    default:
202
        break;
203
    }
204
}
205

    
206
static CPUReadMemoryFunc * const slavio_intctlm_mem_read[3] = {
207
    NULL,
208
    NULL,
209
    slavio_intctlm_mem_readl,
210
};
211

    
212
static CPUWriteMemoryFunc * const slavio_intctlm_mem_write[3] = {
213
    NULL,
214
    NULL,
215
    slavio_intctlm_mem_writel,
216
};
217

    
218
void slavio_pic_info(Monitor *mon, DeviceState *dev)
219
{
220
    SysBusDevice *sd;
221
    SLAVIO_INTCTLState *s;
222
    int i;
223

    
224
    sd = sysbus_from_qdev(dev);
225
    s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
226
    for (i = 0; i < MAX_CPUS; i++) {
227
        monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
228
                       s->slaves[i].intreg_pending);
229
    }
230
    monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
231
                   s->intregm_pending, s->intregm_disabled);
232
}
233

    
234
void slavio_irq_info(Monitor *mon, DeviceState *dev)
235
{
236
#ifndef DEBUG_IRQ_COUNT
237
    monitor_printf(mon, "irq statistic code not compiled.\n");
238
#else
239
    SysBusDevice *sd;
240
    SLAVIO_INTCTLState *s;
241
    int i;
242
    int64_t count;
243

    
244
    sd = sysbus_from_qdev(dev);
245
    s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
246
    monitor_printf(mon, "IRQ statistics:\n");
247
    for (i = 0; i < 32; i++) {
248
        count = s->irq_count[i];
249
        if (count > 0)
250
            monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
251
    }
252
#endif
253
}
254

    
255
static const uint32_t intbit_to_level[] = {
256
    2, 3, 5, 7, 9, 11, 13, 2,   3, 5, 7, 9, 11, 13, 12, 12,
257
    6, 13, 4, 10, 8, 9, 11, 0,  0, 0, 0, 15, 15, 15, 15, 0,
258
};
259

    
260
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
261
{
262
    uint32_t pending = s->intregm_pending, pil_pending;
263
    unsigned int i, j;
264

    
265
    pending &= ~s->intregm_disabled;
266

    
267
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
268
    for (i = 0; i < MAX_CPUS; i++) {
269
        pil_pending = 0;
270

    
271
        /* If we are the current interrupt target, get hard interrupts */
272
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
273
            (i == s->target_cpu)) {
274
            for (j = 0; j < 32; j++) {
275
                if ((pending & (1 << j)) && intbit_to_level[j]) {
276
                    pil_pending |= 1 << intbit_to_level[j];
277
                }
278
            }
279
        }
280

    
281
        /* Calculate current pending hard interrupts for display */
282
        s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
283
            CPU_IRQ_TIMER_IN;
284
        if (i == s->target_cpu) {
285
            for (j = 0; j < 32; j++) {
286
                if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
287
                    s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
288
                }
289
            }
290
        }
291

    
292
        /* Level 15 and CPU timer interrupts are only masked when
293
           the MASTER_DISABLE bit is set */
294
        if (!(s->intregm_disabled & MASTER_DISABLE)) {
295
            pil_pending |= s->slaves[i].intreg_pending &
296
                (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
297
        }
298

    
299
        /* Add soft interrupts */
300
        pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
301

    
302
        if (set_irqs) {
303
            for (j = MAX_PILS; j > 0; j--) {
304
                if (pil_pending & (1 << j)) {
305
                    if (!(s->slaves[i].irl_out & (1 << j))) {
306
                        qemu_irq_raise(s->cpu_irqs[i][j]);
307
                    }
308
                } else {
309
                    if (s->slaves[i].irl_out & (1 << j)) {
310
                        qemu_irq_lower(s->cpu_irqs[i][j]);
311
                    }
312
                }
313
            }
314
        }
315
        s->slaves[i].irl_out = pil_pending;
316
    }
317
}
318

    
319
/*
320
 * "irq" here is the bit number in the system interrupt register to
321
 * separate serial and keyboard interrupts sharing a level.
322
 */
323
static void slavio_set_irq(void *opaque, int irq, int level)
324
{
325
    SLAVIO_INTCTLState *s = opaque;
326
    uint32_t mask = 1 << irq;
327
    uint32_t pil = intbit_to_level[irq];
328
    unsigned int i;
329

    
330
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
331
            level);
332
    if (pil > 0) {
333
        if (level) {
334
#ifdef DEBUG_IRQ_COUNT
335
            s->irq_count[pil]++;
336
#endif
337
            s->intregm_pending |= mask;
338
            if (pil == 15) {
339
                for (i = 0; i < MAX_CPUS; i++) {
340
                    s->slaves[i].intreg_pending |= 1 << pil;
341
                }
342
            }
343
        } else {
344
            s->intregm_pending &= ~mask;
345
            if (pil == 15) {
346
                for (i = 0; i < MAX_CPUS; i++) {
347
                    s->slaves[i].intreg_pending &= ~(1 << pil);
348
                }
349
            }
350
        }
351
        slavio_check_interrupts(s, 1);
352
    }
353
}
354

    
355
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
356
{
357
    SLAVIO_INTCTLState *s = opaque;
358

    
359
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
360

    
361
    if (level) {
362
        s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
363
    } else {
364
        s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
365
    }
366

    
367
    slavio_check_interrupts(s, 1);
368
}
369

    
370
static void slavio_set_irq_all(void *opaque, int irq, int level)
371
{
372
    if (irq < 32) {
373
        slavio_set_irq(opaque, irq, level);
374
    } else {
375
        slavio_set_timer_irq_cpu(opaque, irq - 32, level);
376
    }
377
}
378

    
379
static int vmstate_intctl_post_load(void *opaque, int version_id)
380
{
381
    SLAVIO_INTCTLState *s = opaque;
382

    
383
    slavio_check_interrupts(s, 0);
384
    return 0;
385
}
386

    
387
static const VMStateDescription vmstate_intctl_cpu = {
388
    .name ="slavio_intctl_cpu",
389
    .version_id = 1,
390
    .minimum_version_id = 1,
391
    .minimum_version_id_old = 1,
392
    .fields      = (VMStateField []) {
393
        VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
394
        VMSTATE_END_OF_LIST()
395
    }
396
};
397

    
398
static const VMStateDescription vmstate_intctl = {
399
    .name ="slavio_intctl",
400
    .version_id = 1,
401
    .minimum_version_id = 1,
402
    .minimum_version_id_old = 1,
403
    .post_load = vmstate_intctl_post_load,
404
    .fields      = (VMStateField []) {
405
        VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
406
                             vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
407
        VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
408
        VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
409
        VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
410
        VMSTATE_END_OF_LIST()
411
    }
412
};
413

    
414
static void slavio_intctl_reset(DeviceState *d)
415
{
416
    SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev);
417
    int i;
418

    
419
    for (i = 0; i < MAX_CPUS; i++) {
420
        s->slaves[i].intreg_pending = 0;
421
        s->slaves[i].irl_out = 0;
422
    }
423
    s->intregm_disabled = ~MASTER_IRQ_MASK;
424
    s->intregm_pending = 0;
425
    s->target_cpu = 0;
426
    slavio_check_interrupts(s, 0);
427
}
428

    
429
static int slavio_intctl_init1(SysBusDevice *dev)
430
{
431
    SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
432
    int io_memory;
433
    unsigned int i, j;
434

    
435
    qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
436
    io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
437
                                       slavio_intctlm_mem_write, s);
438
    sysbus_init_mmio(dev, INTCTLM_SIZE, io_memory);
439

    
440
    for (i = 0; i < MAX_CPUS; i++) {
441
        for (j = 0; j < MAX_PILS; j++) {
442
            sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
443
        }
444
        io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
445
                                           slavio_intctl_mem_write,
446
                                           &s->slaves[i]);
447
        sysbus_init_mmio(dev, INTCTL_SIZE, io_memory);
448
        s->slaves[i].cpu = i;
449
        s->slaves[i].master = s;
450
    }
451

    
452
    return 0;
453
}
454

    
455
static SysBusDeviceInfo slavio_intctl_info = {
456
    .init = slavio_intctl_init1,
457
    .qdev.name  = "slavio_intctl",
458
    .qdev.size  = sizeof(SLAVIO_INTCTLState),
459
    .qdev.vmsd  = &vmstate_intctl,
460
    .qdev.reset = slavio_intctl_reset,
461
};
462

    
463
static void slavio_intctl_register_devices(void)
464
{
465
    sysbus_register_withprop(&slavio_intctl_info);
466
}
467

    
468
device_init(slavio_intctl_register_devices)