Statistics
| Branch: | Revision:

root / hw / arm_mptimer.c @ 0b7ade1d

History | View | Annotate | Download (9.8 kB)

1
/*
2
 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3
 *
4
 * Copyright (c) 2006-2007 CodeSourcery.
5
 * Copyright (c) 2011 Linaro Limited
6
 * Written by Paul Brook, Peter Maydell
7
 *
8
 * This program is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU General Public License
10
 * as published by the Free Software Foundation; either version
11
 * 2 of the License, or (at your option) any later version.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License along
19
 * with this program; if not, see <http://www.gnu.org/licenses/>.
20
 */
21

    
22
#include "sysbus.h"
23
#include "qemu-timer.h"
24

    
25
/* This device implements the per-cpu private timer and watchdog block
26
 * which is used in both the ARM11MPCore and Cortex-A9MP.
27
 */
28

    
29
#define MAX_CPUS 4
30

    
31
/* State of a single timer or watchdog block */
32
typedef struct {
33
    uint32_t count;
34
    uint32_t load;
35
    uint32_t control;
36
    uint32_t status;
37
    int64_t tick;
38
    QEMUTimer *timer;
39
    qemu_irq irq;
40
    MemoryRegion iomem;
41
} timerblock;
42

    
43
typedef struct {
44
    SysBusDevice busdev;
45
    uint32_t num_cpu;
46
    timerblock timerblock[MAX_CPUS * 2];
47
    MemoryRegion iomem[2];
48
} arm_mptimer_state;
49

    
50
static inline int get_current_cpu(arm_mptimer_state *s)
51
{
52
    if (cpu_single_env->cpu_index >= s->num_cpu) {
53
        hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
54
                 s->num_cpu, cpu_single_env->cpu_index);
55
    }
56
    return cpu_single_env->cpu_index;
57
}
58

    
59
static inline void timerblock_update_irq(timerblock *tb)
60
{
61
    qemu_set_irq(tb->irq, tb->status);
62
}
63

    
64
/* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
65
static inline uint32_t timerblock_scale(timerblock *tb)
66
{
67
    return (((tb->control >> 8) & 0xff) + 1) * 10;
68
}
69

    
70
static void timerblock_reload(timerblock *tb, int restart)
71
{
72
    if (tb->count == 0) {
73
        return;
74
    }
75
    if (restart) {
76
        tb->tick = qemu_get_clock_ns(vm_clock);
77
    }
78
    tb->tick += (int64_t)tb->count * timerblock_scale(tb);
79
    qemu_mod_timer(tb->timer, tb->tick);
80
}
81

    
82
static void timerblock_tick(void *opaque)
83
{
84
    timerblock *tb = (timerblock *)opaque;
85
    tb->status = 1;
86
    if (tb->control & 2) {
87
        tb->count = tb->load;
88
        timerblock_reload(tb, 0);
89
    } else {
90
        tb->count = 0;
91
    }
92
    timerblock_update_irq(tb);
93
}
94

    
95
static uint64_t timerblock_read(void *opaque, target_phys_addr_t addr,
96
                                unsigned size)
97
{
98
    timerblock *tb = (timerblock *)opaque;
99
    int64_t val;
100
    addr &= 0x1f;
101
    switch (addr) {
102
    case 0: /* Load */
103
        return tb->load;
104
    case 4: /* Counter.  */
105
        if (((tb->control & 1) == 0) || (tb->count == 0)) {
106
            return 0;
107
        }
108
        /* Slow and ugly, but hopefully won't happen too often.  */
109
        val = tb->tick - qemu_get_clock_ns(vm_clock);
110
        val /= timerblock_scale(tb);
111
        if (val < 0) {
112
            val = 0;
113
        }
114
        return val;
115
    case 8: /* Control.  */
116
        return tb->control;
117
    case 12: /* Interrupt status.  */
118
        return tb->status;
119
    default:
120
        return 0;
121
    }
122
}
123

    
124
static void timerblock_write(void *opaque, target_phys_addr_t addr,
125
                             uint64_t value, unsigned size)
126
{
127
    timerblock *tb = (timerblock *)opaque;
128
    int64_t old;
129
    addr &= 0x1f;
130
    switch (addr) {
131
    case 0: /* Load */
132
        tb->load = value;
133
        /* Fall through.  */
134
    case 4: /* Counter.  */
135
        if ((tb->control & 1) && tb->count) {
136
            /* Cancel the previous timer.  */
137
            qemu_del_timer(tb->timer);
138
        }
139
        tb->count = value;
140
        if (tb->control & 1) {
141
            timerblock_reload(tb, 1);
142
        }
143
        break;
144
    case 8: /* Control.  */
145
        old = tb->control;
146
        tb->control = value;
147
        if (((old & 1) == 0) && (value & 1)) {
148
            if (tb->count == 0 && (tb->control & 2)) {
149
                tb->count = tb->load;
150
            }
151
            timerblock_reload(tb, 1);
152
        }
153
        break;
154
    case 12: /* Interrupt status.  */
155
        tb->status &= ~value;
156
        timerblock_update_irq(tb);
157
        break;
158
    }
159
}
160

    
161
/* Wrapper functions to implement the "read timer/watchdog for
162
 * the current CPU" memory regions.
163
 */
164
static uint64_t arm_thistimer_read(void *opaque, target_phys_addr_t addr,
165
                                   unsigned size)
166
{
167
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
168
    int id = get_current_cpu(s);
169
    return timerblock_read(&s->timerblock[id * 2], addr, size);
170
}
171

    
172
static void arm_thistimer_write(void *opaque, target_phys_addr_t addr,
173
                                uint64_t value, unsigned size)
174
{
175
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
176
    int id = get_current_cpu(s);
177
    timerblock_write(&s->timerblock[id * 2], addr, value, size);
178
}
179

    
180
static uint64_t arm_thiswdog_read(void *opaque, target_phys_addr_t addr,
181
                                  unsigned size)
182
{
183
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
184
    int id = get_current_cpu(s);
185
    return timerblock_read(&s->timerblock[id * 2 + 1], addr, size);
186
}
187

    
188
static void arm_thiswdog_write(void *opaque, target_phys_addr_t addr,
189
                               uint64_t value, unsigned size)
190
{
191
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
192
    int id = get_current_cpu(s);
193
    timerblock_write(&s->timerblock[id * 2 + 1], addr, value, size);
194
}
195

    
196
static const MemoryRegionOps arm_thistimer_ops = {
197
    .read = arm_thistimer_read,
198
    .write = arm_thistimer_write,
199
    .valid = {
200
        .min_access_size = 4,
201
        .max_access_size = 4,
202
    },
203
    .endianness = DEVICE_NATIVE_ENDIAN,
204
};
205

    
206
static const MemoryRegionOps arm_thiswdog_ops = {
207
    .read = arm_thiswdog_read,
208
    .write = arm_thiswdog_write,
209
    .valid = {
210
        .min_access_size = 4,
211
        .max_access_size = 4,
212
    },
213
    .endianness = DEVICE_NATIVE_ENDIAN,
214
};
215

    
216
static const MemoryRegionOps timerblock_ops = {
217
    .read = timerblock_read,
218
    .write = timerblock_write,
219
    .valid = {
220
        .min_access_size = 4,
221
        .max_access_size = 4,
222
    },
223
    .endianness = DEVICE_NATIVE_ENDIAN,
224
};
225

    
226
static void timerblock_reset(timerblock *tb)
227
{
228
    tb->count = 0;
229
    tb->load = 0;
230
    tb->control = 0;
231
    tb->status = 0;
232
    tb->tick = 0;
233
}
234

    
235
static void arm_mptimer_reset(DeviceState *dev)
236
{
237
    arm_mptimer_state *s =
238
        FROM_SYSBUS(arm_mptimer_state, sysbus_from_qdev(dev));
239
    int i;
240
    /* We reset every timer in the array, not just the ones we're using,
241
     * because vmsave will look at every array element.
242
     */
243
    for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
244
        timerblock_reset(&s->timerblock[i]);
245
    }
246
}
247

    
248
static int arm_mptimer_init(SysBusDevice *dev)
249
{
250
    arm_mptimer_state *s = FROM_SYSBUS(arm_mptimer_state, dev);
251
    int i;
252
    if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
253
        hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
254
    }
255
    /* We implement one timer and one watchdog block per CPU, and
256
     * expose multiple MMIO regions:
257
     *  * region 0 is "timer for this core"
258
     *  * region 1 is "watchdog for this core"
259
     *  * region 2 is "timer for core 0"
260
     *  * region 3 is "watchdog for core 0"
261
     *  * region 4 is "timer for core 1"
262
     *  * region 5 is "watchdog for core 1"
263
     * and so on.
264
     * The outgoing interrupt lines are
265
     *  * timer for core 0
266
     *  * watchdog for core 0
267
     *  * timer for core 1
268
     *  * watchdog for core 1
269
     * and so on.
270
     */
271
    memory_region_init_io(&s->iomem[0], &arm_thistimer_ops, s,
272
                          "arm_mptimer_timer", 0x20);
273
    sysbus_init_mmio(dev, &s->iomem[0]);
274
    memory_region_init_io(&s->iomem[1], &arm_thiswdog_ops, s,
275
                          "arm_mptimer_wdog", 0x20);
276
    sysbus_init_mmio(dev, &s->iomem[1]);
277
    for (i = 0; i < (s->num_cpu * 2); i++) {
278
        timerblock *tb = &s->timerblock[i];
279
        tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
280
        sysbus_init_irq(dev, &tb->irq);
281
        memory_region_init_io(&tb->iomem, &timerblock_ops, tb,
282
                              "arm_mptimer_timerblock", 0x20);
283
        sysbus_init_mmio(dev, &tb->iomem);
284
    }
285

    
286
    return 0;
287
}
288

    
289
static const VMStateDescription vmstate_timerblock = {
290
    .name = "arm_mptimer_timerblock",
291
    .version_id = 1,
292
    .minimum_version_id = 1,
293
    .fields = (VMStateField[]) {
294
        VMSTATE_UINT32(count, timerblock),
295
        VMSTATE_UINT32(load, timerblock),
296
        VMSTATE_UINT32(control, timerblock),
297
        VMSTATE_UINT32(status, timerblock),
298
        VMSTATE_INT64(tick, timerblock),
299
        VMSTATE_END_OF_LIST()
300
    }
301
};
302

    
303
static const VMStateDescription vmstate_arm_mptimer = {
304
    .name = "arm_mptimer",
305
    .version_id = 1,
306
    .minimum_version_id = 1,
307
    .fields = (VMStateField[]) {
308
        VMSTATE_STRUCT_ARRAY(timerblock, arm_mptimer_state, (MAX_CPUS * 2),
309
                             1, vmstate_timerblock, timerblock),
310
        VMSTATE_END_OF_LIST()
311
    }
312
};
313

    
314
static Property arm_mptimer_properties[] = {
315
    DEFINE_PROP_UINT32("num-cpu", arm_mptimer_state, num_cpu, 0),
316
    DEFINE_PROP_END_OF_LIST()
317
};
318

    
319
static void arm_mptimer_class_init(ObjectClass *klass, void *data)
320
{
321
    DeviceClass *dc = DEVICE_CLASS(klass);
322
    SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
323

    
324
    sbc->init = arm_mptimer_init;
325
    dc->vmsd = &vmstate_arm_mptimer;
326
    dc->reset = arm_mptimer_reset;
327
    dc->no_user = 1;
328
    dc->props = arm_mptimer_properties;
329
}
330

    
331
static TypeInfo arm_mptimer_info = {
332
    .name          = "arm_mptimer",
333
    .parent        = TYPE_SYS_BUS_DEVICE,
334
    .instance_size = sizeof(arm_mptimer_state),
335
    .class_init    = arm_mptimer_class_init,
336
};
337

    
338
static void arm_mptimer_register_types(void)
339
{
340
    type_register_static(&arm_mptimer_info);
341
}
342

    
343
type_init(arm_mptimer_register_types)