Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 0bf9e31a

History | View | Annotate | Download (100.7 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4
#if !defined(CONFIG_USER_ONLY)
5
#include "softmmu_exec.h"
6
#endif /* !defined(CONFIG_USER_ONLY) */
7

    
8
//#define DEBUG_MMU
9
//#define DEBUG_MXCC
10
//#define DEBUG_UNALIGNED
11
//#define DEBUG_UNASSIGNED
12
//#define DEBUG_ASI
13
//#define DEBUG_PCALL
14

    
15
#ifdef DEBUG_MMU
16
#define DPRINTF_MMU(fmt, ...)                                   \
17
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18
#else
19
#define DPRINTF_MMU(fmt, ...) do {} while (0)
20
#endif
21

    
22
#ifdef DEBUG_MXCC
23
#define DPRINTF_MXCC(fmt, ...)                                  \
24
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25
#else
26
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
27
#endif
28

    
29
#ifdef DEBUG_ASI
30
#define DPRINTF_ASI(fmt, ...)                                   \
31
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32
#endif
33

    
34
#ifdef TARGET_SPARC64
35
#ifndef TARGET_ABI32
36
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
37
#else
38
#define AM_CHECK(env1) (1)
39
#endif
40
#endif
41

    
42
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43
// Calculates TSB pointer value for fault page size 8k or 64k
44
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45
                                       uint64_t tag_access_register,
46
                                       int page_size)
47
{
48
    uint64_t tsb_base = tsb_register & ~0x1fffULL;
49
    int tsb_split = (env->dmmuregs[5] & 0x1000ULL) ? 1 : 0;
50
    int tsb_size  = env->dmmuregs[5] & 0xf;
51

    
52
    // discard lower 13 bits which hold tag access context
53
    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
54

    
55
    // now reorder bits
56
    uint64_t tsb_base_mask = ~0x1fffULL;
57
    uint64_t va = tag_access_va;
58

    
59
    // move va bits to correct position
60
    if (page_size == 8*1024) {
61
        va >>= 9;
62
    } else if (page_size == 64*1024) {
63
        va >>= 12;
64
    }
65

    
66
    if (tsb_size) {
67
        tsb_base_mask <<= tsb_size;
68
    }
69

    
70
    // calculate tsb_base mask and adjust va if split is in use
71
    if (tsb_split) {
72
        if (page_size == 8*1024) {
73
            va &= ~(1ULL << (13 + tsb_size));
74
        } else if (page_size == 64*1024) {
75
            va |= (1ULL << (13 + tsb_size));
76
        }
77
        tsb_base_mask <<= 1;
78
    }
79

    
80
    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
81
}
82

    
83
// Calculates tag target register value by reordering bits
84
// in tag access register
85
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
86
{
87
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
88
}
89

    
90
#endif
91

    
92
static inline void address_mask(CPUState *env1, target_ulong *addr)
93
{
94
#ifdef TARGET_SPARC64
95
    if (AM_CHECK(env1))
96
        *addr &= 0xffffffffULL;
97
#endif
98
}
99

    
100
static void raise_exception(int tt)
101
{
102
    env->exception_index = tt;
103
    cpu_loop_exit();
104
}
105

    
106
void HELPER(raise_exception)(int tt)
107
{
108
    raise_exception(tt);
109
}
110

    
111
static inline void set_cwp(int new_cwp)
112
{
113
    cpu_set_cwp(env, new_cwp);
114
}
115

    
116
void helper_check_align(target_ulong addr, uint32_t align)
117
{
118
    if (addr & align) {
119
#ifdef DEBUG_UNALIGNED
120
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
121
           "\n", addr, env->pc);
122
#endif
123
        raise_exception(TT_UNALIGNED);
124
    }
125
}
126

    
127
#define F_HELPER(name, p) void helper_f##name##p(void)
128

    
129
#define F_BINOP(name)                                           \
130
    float32 helper_f ## name ## s (float32 src1, float32 src2)  \
131
    {                                                           \
132
        return float32_ ## name (src1, src2, &env->fp_status);  \
133
    }                                                           \
134
    F_HELPER(name, d)                                           \
135
    {                                                           \
136
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
137
    }                                                           \
138
    F_HELPER(name, q)                                           \
139
    {                                                           \
140
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
141
    }
142

    
143
F_BINOP(add);
144
F_BINOP(sub);
145
F_BINOP(mul);
146
F_BINOP(div);
147
#undef F_BINOP
148

    
149
void helper_fsmuld(float32 src1, float32 src2)
150
{
151
    DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
152
                      float32_to_float64(src2, &env->fp_status),
153
                      &env->fp_status);
154
}
155

    
156
void helper_fdmulq(void)
157
{
158
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
159
                       float64_to_float128(DT1, &env->fp_status),
160
                       &env->fp_status);
161
}
162

    
163
float32 helper_fnegs(float32 src)
164
{
165
    return float32_chs(src);
166
}
167

    
168
#ifdef TARGET_SPARC64
169
F_HELPER(neg, d)
170
{
171
    DT0 = float64_chs(DT1);
172
}
173

    
174
F_HELPER(neg, q)
175
{
176
    QT0 = float128_chs(QT1);
177
}
178
#endif
179

    
180
/* Integer to float conversion.  */
181
float32 helper_fitos(int32_t src)
182
{
183
    return int32_to_float32(src, &env->fp_status);
184
}
185

    
186
void helper_fitod(int32_t src)
187
{
188
    DT0 = int32_to_float64(src, &env->fp_status);
189
}
190

    
191
void helper_fitoq(int32_t src)
192
{
193
    QT0 = int32_to_float128(src, &env->fp_status);
194
}
195

    
196
#ifdef TARGET_SPARC64
197
float32 helper_fxtos(void)
198
{
199
    return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
200
}
201

    
202
F_HELPER(xto, d)
203
{
204
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
205
}
206

    
207
F_HELPER(xto, q)
208
{
209
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
210
}
211
#endif
212
#undef F_HELPER
213

    
214
/* floating point conversion */
215
float32 helper_fdtos(void)
216
{
217
    return float64_to_float32(DT1, &env->fp_status);
218
}
219

    
220
void helper_fstod(float32 src)
221
{
222
    DT0 = float32_to_float64(src, &env->fp_status);
223
}
224

    
225
float32 helper_fqtos(void)
226
{
227
    return float128_to_float32(QT1, &env->fp_status);
228
}
229

    
230
void helper_fstoq(float32 src)
231
{
232
    QT0 = float32_to_float128(src, &env->fp_status);
233
}
234

    
235
void helper_fqtod(void)
236
{
237
    DT0 = float128_to_float64(QT1, &env->fp_status);
238
}
239

    
240
void helper_fdtoq(void)
241
{
242
    QT0 = float64_to_float128(DT1, &env->fp_status);
243
}
244

    
245
/* Float to integer conversion.  */
246
int32_t helper_fstoi(float32 src)
247
{
248
    return float32_to_int32_round_to_zero(src, &env->fp_status);
249
}
250

    
251
int32_t helper_fdtoi(void)
252
{
253
    return float64_to_int32_round_to_zero(DT1, &env->fp_status);
254
}
255

    
256
int32_t helper_fqtoi(void)
257
{
258
    return float128_to_int32_round_to_zero(QT1, &env->fp_status);
259
}
260

    
261
#ifdef TARGET_SPARC64
262
void helper_fstox(float32 src)
263
{
264
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
265
}
266

    
267
void helper_fdtox(void)
268
{
269
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
270
}
271

    
272
void helper_fqtox(void)
273
{
274
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
275
}
276

    
277
void helper_faligndata(void)
278
{
279
    uint64_t tmp;
280

    
281
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
282
    /* on many architectures a shift of 64 does nothing */
283
    if ((env->gsr & 7) != 0) {
284
        tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
285
    }
286
    *((uint64_t *)&DT0) = tmp;
287
}
288

    
289
#ifdef WORDS_BIGENDIAN
290
#define VIS_B64(n) b[7 - (n)]
291
#define VIS_W64(n) w[3 - (n)]
292
#define VIS_SW64(n) sw[3 - (n)]
293
#define VIS_L64(n) l[1 - (n)]
294
#define VIS_B32(n) b[3 - (n)]
295
#define VIS_W32(n) w[1 - (n)]
296
#else
297
#define VIS_B64(n) b[n]
298
#define VIS_W64(n) w[n]
299
#define VIS_SW64(n) sw[n]
300
#define VIS_L64(n) l[n]
301
#define VIS_B32(n) b[n]
302
#define VIS_W32(n) w[n]
303
#endif
304

    
305
typedef union {
306
    uint8_t b[8];
307
    uint16_t w[4];
308
    int16_t sw[4];
309
    uint32_t l[2];
310
    float64 d;
311
} vis64;
312

    
313
typedef union {
314
    uint8_t b[4];
315
    uint16_t w[2];
316
    uint32_t l;
317
    float32 f;
318
} vis32;
319

    
320
void helper_fpmerge(void)
321
{
322
    vis64 s, d;
323

    
324
    s.d = DT0;
325
    d.d = DT1;
326

    
327
    // Reverse calculation order to handle overlap
328
    d.VIS_B64(7) = s.VIS_B64(3);
329
    d.VIS_B64(6) = d.VIS_B64(3);
330
    d.VIS_B64(5) = s.VIS_B64(2);
331
    d.VIS_B64(4) = d.VIS_B64(2);
332
    d.VIS_B64(3) = s.VIS_B64(1);
333
    d.VIS_B64(2) = d.VIS_B64(1);
334
    d.VIS_B64(1) = s.VIS_B64(0);
335
    //d.VIS_B64(0) = d.VIS_B64(0);
336

    
337
    DT0 = d.d;
338
}
339

    
340
void helper_fmul8x16(void)
341
{
342
    vis64 s, d;
343
    uint32_t tmp;
344

    
345
    s.d = DT0;
346
    d.d = DT1;
347

    
348
#define PMUL(r)                                                 \
349
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
350
    if ((tmp & 0xff) > 0x7f)                                    \
351
        tmp += 0x100;                                           \
352
    d.VIS_W64(r) = tmp >> 8;
353

    
354
    PMUL(0);
355
    PMUL(1);
356
    PMUL(2);
357
    PMUL(3);
358
#undef PMUL
359

    
360
    DT0 = d.d;
361
}
362

    
363
void helper_fmul8x16al(void)
364
{
365
    vis64 s, d;
366
    uint32_t tmp;
367

    
368
    s.d = DT0;
369
    d.d = DT1;
370

    
371
#define PMUL(r)                                                 \
372
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
373
    if ((tmp & 0xff) > 0x7f)                                    \
374
        tmp += 0x100;                                           \
375
    d.VIS_W64(r) = tmp >> 8;
376

    
377
    PMUL(0);
378
    PMUL(1);
379
    PMUL(2);
380
    PMUL(3);
381
#undef PMUL
382

    
383
    DT0 = d.d;
384
}
385

    
386
void helper_fmul8x16au(void)
387
{
388
    vis64 s, d;
389
    uint32_t tmp;
390

    
391
    s.d = DT0;
392
    d.d = DT1;
393

    
394
#define PMUL(r)                                                 \
395
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
396
    if ((tmp & 0xff) > 0x7f)                                    \
397
        tmp += 0x100;                                           \
398
    d.VIS_W64(r) = tmp >> 8;
399

    
400
    PMUL(0);
401
    PMUL(1);
402
    PMUL(2);
403
    PMUL(3);
404
#undef PMUL
405

    
406
    DT0 = d.d;
407
}
408

    
409
void helper_fmul8sux16(void)
410
{
411
    vis64 s, d;
412
    uint32_t tmp;
413

    
414
    s.d = DT0;
415
    d.d = DT1;
416

    
417
#define PMUL(r)                                                         \
418
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
419
    if ((tmp & 0xff) > 0x7f)                                            \
420
        tmp += 0x100;                                                   \
421
    d.VIS_W64(r) = tmp >> 8;
422

    
423
    PMUL(0);
424
    PMUL(1);
425
    PMUL(2);
426
    PMUL(3);
427
#undef PMUL
428

    
429
    DT0 = d.d;
430
}
431

    
432
void helper_fmul8ulx16(void)
433
{
434
    vis64 s, d;
435
    uint32_t tmp;
436

    
437
    s.d = DT0;
438
    d.d = DT1;
439

    
440
#define PMUL(r)                                                         \
441
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
442
    if ((tmp & 0xff) > 0x7f)                                            \
443
        tmp += 0x100;                                                   \
444
    d.VIS_W64(r) = tmp >> 8;
445

    
446
    PMUL(0);
447
    PMUL(1);
448
    PMUL(2);
449
    PMUL(3);
450
#undef PMUL
451

    
452
    DT0 = d.d;
453
}
454

    
455
void helper_fmuld8sux16(void)
456
{
457
    vis64 s, d;
458
    uint32_t tmp;
459

    
460
    s.d = DT0;
461
    d.d = DT1;
462

    
463
#define PMUL(r)                                                         \
464
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
465
    if ((tmp & 0xff) > 0x7f)                                            \
466
        tmp += 0x100;                                                   \
467
    d.VIS_L64(r) = tmp;
468

    
469
    // Reverse calculation order to handle overlap
470
    PMUL(1);
471
    PMUL(0);
472
#undef PMUL
473

    
474
    DT0 = d.d;
475
}
476

    
477
void helper_fmuld8ulx16(void)
478
{
479
    vis64 s, d;
480
    uint32_t tmp;
481

    
482
    s.d = DT0;
483
    d.d = DT1;
484

    
485
#define PMUL(r)                                                         \
486
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
487
    if ((tmp & 0xff) > 0x7f)                                            \
488
        tmp += 0x100;                                                   \
489
    d.VIS_L64(r) = tmp;
490

    
491
    // Reverse calculation order to handle overlap
492
    PMUL(1);
493
    PMUL(0);
494
#undef PMUL
495

    
496
    DT0 = d.d;
497
}
498

    
499
void helper_fexpand(void)
500
{
501
    vis32 s;
502
    vis64 d;
503

    
504
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
505
    d.d = DT1;
506
    d.VIS_W64(0) = s.VIS_B32(0) << 4;
507
    d.VIS_W64(1) = s.VIS_B32(1) << 4;
508
    d.VIS_W64(2) = s.VIS_B32(2) << 4;
509
    d.VIS_W64(3) = s.VIS_B32(3) << 4;
510

    
511
    DT0 = d.d;
512
}
513

    
514
#define VIS_HELPER(name, F)                             \
515
    void name##16(void)                                 \
516
    {                                                   \
517
        vis64 s, d;                                     \
518
                                                        \
519
        s.d = DT0;                                      \
520
        d.d = DT1;                                      \
521
                                                        \
522
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
523
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
524
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
525
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
526
                                                        \
527
        DT0 = d.d;                                      \
528
    }                                                   \
529
                                                        \
530
    uint32_t name##16s(uint32_t src1, uint32_t src2)    \
531
    {                                                   \
532
        vis32 s, d;                                     \
533
                                                        \
534
        s.l = src1;                                     \
535
        d.l = src2;                                     \
536
                                                        \
537
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
538
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
539
                                                        \
540
        return d.l;                                     \
541
    }                                                   \
542
                                                        \
543
    void name##32(void)                                 \
544
    {                                                   \
545
        vis64 s, d;                                     \
546
                                                        \
547
        s.d = DT0;                                      \
548
        d.d = DT1;                                      \
549
                                                        \
550
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
551
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
552
                                                        \
553
        DT0 = d.d;                                      \
554
    }                                                   \
555
                                                        \
556
    uint32_t name##32s(uint32_t src1, uint32_t src2)    \
557
    {                                                   \
558
        vis32 s, d;                                     \
559
                                                        \
560
        s.l = src1;                                     \
561
        d.l = src2;                                     \
562
                                                        \
563
        d.l = F(d.l, s.l);                              \
564
                                                        \
565
        return d.l;                                     \
566
    }
567

    
568
#define FADD(a, b) ((a) + (b))
569
#define FSUB(a, b) ((a) - (b))
570
VIS_HELPER(helper_fpadd, FADD)
571
VIS_HELPER(helper_fpsub, FSUB)
572

    
573
#define VIS_CMPHELPER(name, F)                                        \
574
    void name##16(void)                                           \
575
    {                                                             \
576
        vis64 s, d;                                               \
577
                                                                  \
578
        s.d = DT0;                                                \
579
        d.d = DT1;                                                \
580
                                                                  \
581
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
582
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
583
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
584
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
585
                                                                  \
586
        DT0 = d.d;                                                \
587
    }                                                             \
588
                                                                  \
589
    void name##32(void)                                           \
590
    {                                                             \
591
        vis64 s, d;                                               \
592
                                                                  \
593
        s.d = DT0;                                                \
594
        d.d = DT1;                                                \
595
                                                                  \
596
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
597
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
598
                                                                  \
599
        DT0 = d.d;                                                \
600
    }
601

    
602
#define FCMPGT(a, b) ((a) > (b))
603
#define FCMPEQ(a, b) ((a) == (b))
604
#define FCMPLE(a, b) ((a) <= (b))
605
#define FCMPNE(a, b) ((a) != (b))
606

    
607
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
608
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
609
VIS_CMPHELPER(helper_fcmple, FCMPLE)
610
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
611
#endif
612

    
613
void helper_check_ieee_exceptions(void)
614
{
615
    target_ulong status;
616

    
617
    status = get_float_exception_flags(&env->fp_status);
618
    if (status) {
619
        /* Copy IEEE 754 flags into FSR */
620
        if (status & float_flag_invalid)
621
            env->fsr |= FSR_NVC;
622
        if (status & float_flag_overflow)
623
            env->fsr |= FSR_OFC;
624
        if (status & float_flag_underflow)
625
            env->fsr |= FSR_UFC;
626
        if (status & float_flag_divbyzero)
627
            env->fsr |= FSR_DZC;
628
        if (status & float_flag_inexact)
629
            env->fsr |= FSR_NXC;
630

    
631
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
632
            /* Unmasked exception, generate a trap */
633
            env->fsr |= FSR_FTT_IEEE_EXCP;
634
            raise_exception(TT_FP_EXCP);
635
        } else {
636
            /* Accumulate exceptions */
637
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
638
        }
639
    }
640
}
641

    
642
void helper_clear_float_exceptions(void)
643
{
644
    set_float_exception_flags(0, &env->fp_status);
645
}
646

    
647
float32 helper_fabss(float32 src)
648
{
649
    return float32_abs(src);
650
}
651

    
652
#ifdef TARGET_SPARC64
653
void helper_fabsd(void)
654
{
655
    DT0 = float64_abs(DT1);
656
}
657

    
658
void helper_fabsq(void)
659
{
660
    QT0 = float128_abs(QT1);
661
}
662
#endif
663

    
664
float32 helper_fsqrts(float32 src)
665
{
666
    return float32_sqrt(src, &env->fp_status);
667
}
668

    
669
void helper_fsqrtd(void)
670
{
671
    DT0 = float64_sqrt(DT1, &env->fp_status);
672
}
673

    
674
void helper_fsqrtq(void)
675
{
676
    QT0 = float128_sqrt(QT1, &env->fp_status);
677
}
678

    
679
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
680
    void glue(helper_, name) (void)                                     \
681
    {                                                                   \
682
        target_ulong new_fsr;                                           \
683
                                                                        \
684
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
685
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
686
        case float_relation_unordered:                                  \
687
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
688
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
689
                env->fsr |= new_fsr;                                    \
690
                env->fsr |= FSR_NVC;                                    \
691
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
692
                raise_exception(TT_FP_EXCP);                            \
693
            } else {                                                    \
694
                env->fsr |= FSR_NVA;                                    \
695
            }                                                           \
696
            break;                                                      \
697
        case float_relation_less:                                       \
698
            new_fsr = FSR_FCC0 << FS;                                   \
699
            break;                                                      \
700
        case float_relation_greater:                                    \
701
            new_fsr = FSR_FCC1 << FS;                                   \
702
            break;                                                      \
703
        default:                                                        \
704
            new_fsr = 0;                                                \
705
            break;                                                      \
706
        }                                                               \
707
        env->fsr |= new_fsr;                                            \
708
    }
709
#define GEN_FCMPS(name, size, FS, TRAP)                                 \
710
    void glue(helper_, name)(float32 src1, float32 src2)                \
711
    {                                                                   \
712
        target_ulong new_fsr;                                           \
713
                                                                        \
714
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
715
        switch (glue(size, _compare) (src1, src2, &env->fp_status)) {   \
716
        case float_relation_unordered:                                  \
717
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
718
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
719
                env->fsr |= new_fsr;                                    \
720
                env->fsr |= FSR_NVC;                                    \
721
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
722
                raise_exception(TT_FP_EXCP);                            \
723
            } else {                                                    \
724
                env->fsr |= FSR_NVA;                                    \
725
            }                                                           \
726
            break;                                                      \
727
        case float_relation_less:                                       \
728
            new_fsr = FSR_FCC0 << FS;                                   \
729
            break;                                                      \
730
        case float_relation_greater:                                    \
731
            new_fsr = FSR_FCC1 << FS;                                   \
732
            break;                                                      \
733
        default:                                                        \
734
            new_fsr = 0;                                                \
735
            break;                                                      \
736
        }                                                               \
737
        env->fsr |= new_fsr;                                            \
738
    }
739

    
740
GEN_FCMPS(fcmps, float32, 0, 0);
741
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
742

    
743
GEN_FCMPS(fcmpes, float32, 0, 1);
744
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
745

    
746
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
747
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
748

    
749
static uint32_t compute_all_flags(void)
750
{
751
    return env->psr & PSR_ICC;
752
}
753

    
754
static uint32_t compute_C_flags(void)
755
{
756
    return env->psr & PSR_CARRY;
757
}
758

    
759
static inline uint32_t get_NZ_icc(target_ulong dst)
760
{
761
    uint32_t ret = 0;
762

    
763
    if (!(dst & 0xffffffffULL))
764
        ret |= PSR_ZERO;
765
    if ((int32_t) (dst & 0xffffffffULL) < 0)
766
        ret |= PSR_NEG;
767
    return ret;
768
}
769

    
770
#ifdef TARGET_SPARC64
771
static uint32_t compute_all_flags_xcc(void)
772
{
773
    return env->xcc & PSR_ICC;
774
}
775

    
776
static uint32_t compute_C_flags_xcc(void)
777
{
778
    return env->xcc & PSR_CARRY;
779
}
780

    
781
static inline uint32_t get_NZ_xcc(target_ulong dst)
782
{
783
    uint32_t ret = 0;
784

    
785
    if (!dst)
786
        ret |= PSR_ZERO;
787
    if ((int64_t)dst < 0)
788
        ret |= PSR_NEG;
789
    return ret;
790
}
791
#endif
792

    
793
static inline uint32_t get_V_div_icc(target_ulong src2)
794
{
795
    uint32_t ret = 0;
796

    
797
    if (src2 != 0)
798
        ret |= PSR_OVF;
799
    return ret;
800
}
801

    
802
static uint32_t compute_all_div(void)
803
{
804
    uint32_t ret;
805

    
806
    ret = get_NZ_icc(CC_DST);
807
    ret |= get_V_div_icc(CC_SRC2);
808
    return ret;
809
}
810

    
811
static uint32_t compute_C_div(void)
812
{
813
    return 0;
814
}
815

    
816
static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
817
{
818
    uint32_t ret = 0;
819

    
820
    if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
821
        ret |= PSR_CARRY;
822
    return ret;
823
}
824

    
825
static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
826
                                         target_ulong src2)
827
{
828
    uint32_t ret = 0;
829

    
830
    if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
831
        ret |= PSR_OVF;
832
    return ret;
833
}
834

    
835
static uint32_t compute_all_add(void)
836
{
837
    uint32_t ret;
838

    
839
    ret = get_NZ_icc(CC_DST);
840
    ret |= get_C_add_icc(CC_DST, CC_SRC);
841
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
842
    return ret;
843
}
844

    
845
static uint32_t compute_C_add(void)
846
{
847
    return get_C_add_icc(CC_DST, CC_SRC);
848
}
849

    
850
#ifdef TARGET_SPARC64
851
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
852
{
853
    uint32_t ret = 0;
854

    
855
    if (dst < src1)
856
        ret |= PSR_CARRY;
857
    return ret;
858
}
859

    
860
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
861
                                         target_ulong src2)
862
{
863
    uint32_t ret = 0;
864

    
865
    if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
866
        ret |= PSR_OVF;
867
    return ret;
868
}
869

    
870
static uint32_t compute_all_add_xcc(void)
871
{
872
    uint32_t ret;
873

    
874
    ret = get_NZ_xcc(CC_DST);
875
    ret |= get_C_add_xcc(CC_DST, CC_SRC);
876
    ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
877
    return ret;
878
}
879

    
880
static uint32_t compute_C_add_xcc(void)
881
{
882
    return get_C_add_xcc(CC_DST, CC_SRC);
883
}
884
#endif
885

    
886
static uint32_t compute_all_addx(void)
887
{
888
    uint32_t ret;
889

    
890
    ret = get_NZ_icc(CC_DST);
891
    ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
892
    ret |= get_C_add_icc(CC_DST, CC_SRC);
893
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
894
    return ret;
895
}
896

    
897
static uint32_t compute_C_addx(void)
898
{
899
    uint32_t ret;
900

    
901
    ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
902
    ret |= get_C_add_icc(CC_DST, CC_SRC);
903
    return ret;
904
}
905

    
906
#ifdef TARGET_SPARC64
907
static uint32_t compute_all_addx_xcc(void)
908
{
909
    uint32_t ret;
910

    
911
    ret = get_NZ_xcc(CC_DST);
912
    ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
913
    ret |= get_C_add_xcc(CC_DST, CC_SRC);
914
    ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
915
    return ret;
916
}
917

    
918
static uint32_t compute_C_addx_xcc(void)
919
{
920
    uint32_t ret;
921

    
922
    ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
923
    ret |= get_C_add_xcc(CC_DST, CC_SRC);
924
    return ret;
925
}
926
#endif
927

    
928
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
929
{
930
    uint32_t ret = 0;
931

    
932
    if ((src1 | src2) & 0x3)
933
        ret |= PSR_OVF;
934
    return ret;
935
}
936

    
937
static uint32_t compute_all_tadd(void)
938
{
939
    uint32_t ret;
940

    
941
    ret = get_NZ_icc(CC_DST);
942
    ret |= get_C_add_icc(CC_DST, CC_SRC);
943
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
944
    ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
945
    return ret;
946
}
947

    
948
static uint32_t compute_C_tadd(void)
949
{
950
    return get_C_add_icc(CC_DST, CC_SRC);
951
}
952

    
953
static uint32_t compute_all_taddtv(void)
954
{
955
    uint32_t ret;
956

    
957
    ret = get_NZ_icc(CC_DST);
958
    ret |= get_C_add_icc(CC_DST, CC_SRC);
959
    return ret;
960
}
961

    
962
static uint32_t compute_C_taddtv(void)
963
{
964
    return get_C_add_icc(CC_DST, CC_SRC);
965
}
966

    
967
static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
968
{
969
    uint32_t ret = 0;
970

    
971
    if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
972
        ret |= PSR_CARRY;
973
    return ret;
974
}
975

    
976
static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
977
                                     target_ulong src2)
978
{
979
    uint32_t ret = 0;
980

    
981
    if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
982
        ret |= PSR_OVF;
983
    return ret;
984
}
985

    
986
static uint32_t compute_all_sub(void)
987
{
988
    uint32_t ret;
989

    
990
    ret = get_NZ_icc(CC_DST);
991
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
992
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
993
    return ret;
994
}
995

    
996
static uint32_t compute_C_sub(void)
997
{
998
    return get_C_sub_icc(CC_SRC, CC_SRC2);
999
}
1000

    
1001
#ifdef TARGET_SPARC64
1002
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1003
{
1004
    uint32_t ret = 0;
1005

    
1006
    if (src1 < src2)
1007
        ret |= PSR_CARRY;
1008
    return ret;
1009
}
1010

    
1011
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1012
                                     target_ulong src2)
1013
{
1014
    uint32_t ret = 0;
1015

    
1016
    if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1017
        ret |= PSR_OVF;
1018
    return ret;
1019
}
1020

    
1021
static uint32_t compute_all_sub_xcc(void)
1022
{
1023
    uint32_t ret;
1024

    
1025
    ret = get_NZ_xcc(CC_DST);
1026
    ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1027
    ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1028
    return ret;
1029
}
1030

    
1031
static uint32_t compute_C_sub_xcc(void)
1032
{
1033
    return get_C_sub_xcc(CC_SRC, CC_SRC2);
1034
}
1035
#endif
1036

    
1037
static uint32_t compute_all_subx(void)
1038
{
1039
    uint32_t ret;
1040

    
1041
    ret = get_NZ_icc(CC_DST);
1042
    ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1043
    ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1044
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1045
    return ret;
1046
}
1047

    
1048
static uint32_t compute_C_subx(void)
1049
{
1050
    uint32_t ret;
1051

    
1052
    ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1053
    ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1054
    return ret;
1055
}
1056

    
1057
#ifdef TARGET_SPARC64
1058
static uint32_t compute_all_subx_xcc(void)
1059
{
1060
    uint32_t ret;
1061

    
1062
    ret = get_NZ_xcc(CC_DST);
1063
    ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1064
    ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1065
    ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1066
    return ret;
1067
}
1068

    
1069
static uint32_t compute_C_subx_xcc(void)
1070
{
1071
    uint32_t ret;
1072

    
1073
    ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1074
    ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1075
    return ret;
1076
}
1077
#endif
1078

    
1079
static uint32_t compute_all_tsub(void)
1080
{
1081
    uint32_t ret;
1082

    
1083
    ret = get_NZ_icc(CC_DST);
1084
    ret |= get_C_sub_icc(CC_DST, CC_SRC);
1085
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1086
    ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1087
    return ret;
1088
}
1089

    
1090
static uint32_t compute_C_tsub(void)
1091
{
1092
    return get_C_sub_icc(CC_DST, CC_SRC);
1093
}
1094

    
1095
static uint32_t compute_all_tsubtv(void)
1096
{
1097
    uint32_t ret;
1098

    
1099
    ret = get_NZ_icc(CC_DST);
1100
    ret |= get_C_sub_icc(CC_DST, CC_SRC);
1101
    return ret;
1102
}
1103

    
1104
static uint32_t compute_C_tsubtv(void)
1105
{
1106
    return get_C_sub_icc(CC_DST, CC_SRC);
1107
}
1108

    
1109
static uint32_t compute_all_logic(void)
1110
{
1111
    return get_NZ_icc(CC_DST);
1112
}
1113

    
1114
static uint32_t compute_C_logic(void)
1115
{
1116
    return 0;
1117
}
1118

    
1119
#ifdef TARGET_SPARC64
1120
static uint32_t compute_all_logic_xcc(void)
1121
{
1122
    return get_NZ_xcc(CC_DST);
1123
}
1124
#endif
1125

    
1126
typedef struct CCTable {
1127
    uint32_t (*compute_all)(void); /* return all the flags */
1128
    uint32_t (*compute_c)(void);  /* return the C flag */
1129
} CCTable;
1130

    
1131
static const CCTable icc_table[CC_OP_NB] = {
1132
    /* CC_OP_DYNAMIC should never happen */
1133
    [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1134
    [CC_OP_DIV] = { compute_all_div, compute_C_div },
1135
    [CC_OP_ADD] = { compute_all_add, compute_C_add },
1136
    [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1137
    [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1138
    [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1139
    [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1140
    [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1141
    [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1142
    [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1143
    [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1144
};
1145

    
1146
#ifdef TARGET_SPARC64
1147
static const CCTable xcc_table[CC_OP_NB] = {
1148
    /* CC_OP_DYNAMIC should never happen */
1149
    [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1150
    [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1151
    [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1152
    [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1153
    [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1154
    [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1155
    [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1156
    [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1157
    [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1158
    [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1159
    [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1160
};
1161
#endif
1162

    
1163
void helper_compute_psr(void)
1164
{
1165
    uint32_t new_psr;
1166

    
1167
    new_psr = icc_table[CC_OP].compute_all();
1168
    env->psr = new_psr;
1169
#ifdef TARGET_SPARC64
1170
    new_psr = xcc_table[CC_OP].compute_all();
1171
    env->xcc = new_psr;
1172
#endif
1173
    CC_OP = CC_OP_FLAGS;
1174
}
1175

    
1176
uint32_t helper_compute_C_icc(void)
1177
{
1178
    uint32_t ret;
1179

    
1180
    ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1181
    return ret;
1182
}
1183

    
1184
#ifdef TARGET_SPARC64
1185
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1186
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1187
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1188

    
1189
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1190
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1191
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1192

    
1193
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1194
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1195
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1196

    
1197
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1198
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1199
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1200

    
1201
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1202
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1203
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1204

    
1205
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1206
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1207
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1208
#endif
1209
#undef GEN_FCMPS
1210

    
1211
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1212
    defined(DEBUG_MXCC)
1213
static void dump_mxcc(CPUState *env)
1214
{
1215
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1216
           "\n",
1217
           env->mxccdata[0], env->mxccdata[1],
1218
           env->mxccdata[2], env->mxccdata[3]);
1219
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1220
           "\n"
1221
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1222
           "\n",
1223
           env->mxccregs[0], env->mxccregs[1],
1224
           env->mxccregs[2], env->mxccregs[3],
1225
           env->mxccregs[4], env->mxccregs[5],
1226
           env->mxccregs[6], env->mxccregs[7]);
1227
}
1228
#endif
1229

    
1230
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1231
    && defined(DEBUG_ASI)
1232
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1233
                     uint64_t r1)
1234
{
1235
    switch (size)
1236
    {
1237
    case 1:
1238
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1239
                    addr, asi, r1 & 0xff);
1240
        break;
1241
    case 2:
1242
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1243
                    addr, asi, r1 & 0xffff);
1244
        break;
1245
    case 4:
1246
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1247
                    addr, asi, r1 & 0xffffffff);
1248
        break;
1249
    case 8:
1250
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1251
                    addr, asi, r1);
1252
        break;
1253
    }
1254
}
1255
#endif
1256

    
1257
#ifndef TARGET_SPARC64
1258
#ifndef CONFIG_USER_ONLY
1259
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1260
{
1261
    uint64_t ret = 0;
1262
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1263
    uint32_t last_addr = addr;
1264
#endif
1265

    
1266
    helper_check_align(addr, size - 1);
1267
    switch (asi) {
1268
    case 2: /* SuperSparc MXCC registers */
1269
        switch (addr) {
1270
        case 0x01c00a00: /* MXCC control register */
1271
            if (size == 8)
1272
                ret = env->mxccregs[3];
1273
            else
1274
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1275
                             size);
1276
            break;
1277
        case 0x01c00a04: /* MXCC control register */
1278
            if (size == 4)
1279
                ret = env->mxccregs[3];
1280
            else
1281
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1282
                             size);
1283
            break;
1284
        case 0x01c00c00: /* Module reset register */
1285
            if (size == 8) {
1286
                ret = env->mxccregs[5];
1287
                // should we do something here?
1288
            } else
1289
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1290
                             size);
1291
            break;
1292
        case 0x01c00f00: /* MBus port address register */
1293
            if (size == 8)
1294
                ret = env->mxccregs[7];
1295
            else
1296
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1297
                             size);
1298
            break;
1299
        default:
1300
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1301
                         size);
1302
            break;
1303
        }
1304
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1305
                     "addr = %08x -> ret = %" PRIx64 ","
1306
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1307
#ifdef DEBUG_MXCC
1308
        dump_mxcc(env);
1309
#endif
1310
        break;
1311
    case 3: /* MMU probe */
1312
        {
1313
            int mmulev;
1314

    
1315
            mmulev = (addr >> 8) & 15;
1316
            if (mmulev > 4)
1317
                ret = 0;
1318
            else
1319
                ret = mmu_probe(env, addr, mmulev);
1320
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1321
                        addr, mmulev, ret);
1322
        }
1323
        break;
1324
    case 4: /* read MMU regs */
1325
        {
1326
            int reg = (addr >> 8) & 0x1f;
1327

    
1328
            ret = env->mmuregs[reg];
1329
            if (reg == 3) /* Fault status cleared on read */
1330
                env->mmuregs[3] = 0;
1331
            else if (reg == 0x13) /* Fault status read */
1332
                ret = env->mmuregs[3];
1333
            else if (reg == 0x14) /* Fault address read */
1334
                ret = env->mmuregs[4];
1335
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1336
        }
1337
        break;
1338
    case 5: // Turbosparc ITLB Diagnostic
1339
    case 6: // Turbosparc DTLB Diagnostic
1340
    case 7: // Turbosparc IOTLB Diagnostic
1341
        break;
1342
    case 9: /* Supervisor code access */
1343
        switch(size) {
1344
        case 1:
1345
            ret = ldub_code(addr);
1346
            break;
1347
        case 2:
1348
            ret = lduw_code(addr);
1349
            break;
1350
        default:
1351
        case 4:
1352
            ret = ldl_code(addr);
1353
            break;
1354
        case 8:
1355
            ret = ldq_code(addr);
1356
            break;
1357
        }
1358
        break;
1359
    case 0xa: /* User data access */
1360
        switch(size) {
1361
        case 1:
1362
            ret = ldub_user(addr);
1363
            break;
1364
        case 2:
1365
            ret = lduw_user(addr);
1366
            break;
1367
        default:
1368
        case 4:
1369
            ret = ldl_user(addr);
1370
            break;
1371
        case 8:
1372
            ret = ldq_user(addr);
1373
            break;
1374
        }
1375
        break;
1376
    case 0xb: /* Supervisor data access */
1377
        switch(size) {
1378
        case 1:
1379
            ret = ldub_kernel(addr);
1380
            break;
1381
        case 2:
1382
            ret = lduw_kernel(addr);
1383
            break;
1384
        default:
1385
        case 4:
1386
            ret = ldl_kernel(addr);
1387
            break;
1388
        case 8:
1389
            ret = ldq_kernel(addr);
1390
            break;
1391
        }
1392
        break;
1393
    case 0xc: /* I-cache tag */
1394
    case 0xd: /* I-cache data */
1395
    case 0xe: /* D-cache tag */
1396
    case 0xf: /* D-cache data */
1397
        break;
1398
    case 0x20: /* MMU passthrough */
1399
        switch(size) {
1400
        case 1:
1401
            ret = ldub_phys(addr);
1402
            break;
1403
        case 2:
1404
            ret = lduw_phys(addr);
1405
            break;
1406
        default:
1407
        case 4:
1408
            ret = ldl_phys(addr);
1409
            break;
1410
        case 8:
1411
            ret = ldq_phys(addr);
1412
            break;
1413
        }
1414
        break;
1415
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1416
        switch(size) {
1417
        case 1:
1418
            ret = ldub_phys((target_phys_addr_t)addr
1419
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1420
            break;
1421
        case 2:
1422
            ret = lduw_phys((target_phys_addr_t)addr
1423
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1424
            break;
1425
        default:
1426
        case 4:
1427
            ret = ldl_phys((target_phys_addr_t)addr
1428
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1429
            break;
1430
        case 8:
1431
            ret = ldq_phys((target_phys_addr_t)addr
1432
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1433
            break;
1434
        }
1435
        break;
1436
    case 0x30: // Turbosparc secondary cache diagnostic
1437
    case 0x31: // Turbosparc RAM snoop
1438
    case 0x32: // Turbosparc page table descriptor diagnostic
1439
    case 0x39: /* data cache diagnostic register */
1440
        ret = 0;
1441
        break;
1442
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1443
        {
1444
            int reg = (addr >> 8) & 3;
1445

    
1446
            switch(reg) {
1447
            case 0: /* Breakpoint Value (Addr) */
1448
                ret = env->mmubpregs[reg];
1449
                break;
1450
            case 1: /* Breakpoint Mask */
1451
                ret = env->mmubpregs[reg];
1452
                break;
1453
            case 2: /* Breakpoint Control */
1454
                ret = env->mmubpregs[reg];
1455
                break;
1456
            case 3: /* Breakpoint Status */
1457
                ret = env->mmubpregs[reg];
1458
                env->mmubpregs[reg] = 0ULL;
1459
                break;
1460
            }
1461
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1462
                        ret);
1463
        }
1464
        break;
1465
    case 8: /* User code access, XXX */
1466
    default:
1467
        do_unassigned_access(addr, 0, 0, asi, size);
1468
        ret = 0;
1469
        break;
1470
    }
1471
    if (sign) {
1472
        switch(size) {
1473
        case 1:
1474
            ret = (int8_t) ret;
1475
            break;
1476
        case 2:
1477
            ret = (int16_t) ret;
1478
            break;
1479
        case 4:
1480
            ret = (int32_t) ret;
1481
            break;
1482
        default:
1483
            break;
1484
        }
1485
    }
1486
#ifdef DEBUG_ASI
1487
    dump_asi("read ", last_addr, asi, size, ret);
1488
#endif
1489
    return ret;
1490
}
1491

    
1492
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1493
{
1494
    helper_check_align(addr, size - 1);
1495
    switch(asi) {
1496
    case 2: /* SuperSparc MXCC registers */
1497
        switch (addr) {
1498
        case 0x01c00000: /* MXCC stream data register 0 */
1499
            if (size == 8)
1500
                env->mxccdata[0] = val;
1501
            else
1502
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1503
                             size);
1504
            break;
1505
        case 0x01c00008: /* MXCC stream data register 1 */
1506
            if (size == 8)
1507
                env->mxccdata[1] = val;
1508
            else
1509
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1510
                             size);
1511
            break;
1512
        case 0x01c00010: /* MXCC stream data register 2 */
1513
            if (size == 8)
1514
                env->mxccdata[2] = val;
1515
            else
1516
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1517
                             size);
1518
            break;
1519
        case 0x01c00018: /* MXCC stream data register 3 */
1520
            if (size == 8)
1521
                env->mxccdata[3] = val;
1522
            else
1523
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1524
                             size);
1525
            break;
1526
        case 0x01c00100: /* MXCC stream source */
1527
            if (size == 8)
1528
                env->mxccregs[0] = val;
1529
            else
1530
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1531
                             size);
1532
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1533
                                        0);
1534
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1535
                                        8);
1536
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1537
                                        16);
1538
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1539
                                        24);
1540
            break;
1541
        case 0x01c00200: /* MXCC stream destination */
1542
            if (size == 8)
1543
                env->mxccregs[1] = val;
1544
            else
1545
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1546
                             size);
1547
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1548
                     env->mxccdata[0]);
1549
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1550
                     env->mxccdata[1]);
1551
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1552
                     env->mxccdata[2]);
1553
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1554
                     env->mxccdata[3]);
1555
            break;
1556
        case 0x01c00a00: /* MXCC control register */
1557
            if (size == 8)
1558
                env->mxccregs[3] = val;
1559
            else
1560
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1561
                             size);
1562
            break;
1563
        case 0x01c00a04: /* MXCC control register */
1564
            if (size == 4)
1565
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1566
                    | val;
1567
            else
1568
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1569
                             size);
1570
            break;
1571
        case 0x01c00e00: /* MXCC error register  */
1572
            // writing a 1 bit clears the error
1573
            if (size == 8)
1574
                env->mxccregs[6] &= ~val;
1575
            else
1576
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1577
                             size);
1578
            break;
1579
        case 0x01c00f00: /* MBus port address register */
1580
            if (size == 8)
1581
                env->mxccregs[7] = val;
1582
            else
1583
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1584
                             size);
1585
            break;
1586
        default:
1587
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1588
                         size);
1589
            break;
1590
        }
1591
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1592
                     asi, size, addr, val);
1593
#ifdef DEBUG_MXCC
1594
        dump_mxcc(env);
1595
#endif
1596
        break;
1597
    case 3: /* MMU flush */
1598
        {
1599
            int mmulev;
1600

    
1601
            mmulev = (addr >> 8) & 15;
1602
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1603
            switch (mmulev) {
1604
            case 0: // flush page
1605
                tlb_flush_page(env, addr & 0xfffff000);
1606
                break;
1607
            case 1: // flush segment (256k)
1608
            case 2: // flush region (16M)
1609
            case 3: // flush context (4G)
1610
            case 4: // flush entire
1611
                tlb_flush(env, 1);
1612
                break;
1613
            default:
1614
                break;
1615
            }
1616
#ifdef DEBUG_MMU
1617
            dump_mmu(env);
1618
#endif
1619
        }
1620
        break;
1621
    case 4: /* write MMU regs */
1622
        {
1623
            int reg = (addr >> 8) & 0x1f;
1624
            uint32_t oldreg;
1625

    
1626
            oldreg = env->mmuregs[reg];
1627
            switch(reg) {
1628
            case 0: // Control Register
1629
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1630
                                    (val & 0x00ffffff);
1631
                // Mappings generated during no-fault mode or MMU
1632
                // disabled mode are invalid in normal mode
1633
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1634
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1635
                    tlb_flush(env, 1);
1636
                break;
1637
            case 1: // Context Table Pointer Register
1638
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1639
                break;
1640
            case 2: // Context Register
1641
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1642
                if (oldreg != env->mmuregs[reg]) {
1643
                    /* we flush when the MMU context changes because
1644
                       QEMU has no MMU context support */
1645
                    tlb_flush(env, 1);
1646
                }
1647
                break;
1648
            case 3: // Synchronous Fault Status Register with Clear
1649
            case 4: // Synchronous Fault Address Register
1650
                break;
1651
            case 0x10: // TLB Replacement Control Register
1652
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1653
                break;
1654
            case 0x13: // Synchronous Fault Status Register with Read and Clear
1655
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1656
                break;
1657
            case 0x14: // Synchronous Fault Address Register
1658
                env->mmuregs[4] = val;
1659
                break;
1660
            default:
1661
                env->mmuregs[reg] = val;
1662
                break;
1663
            }
1664
            if (oldreg != env->mmuregs[reg]) {
1665
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1666
                            reg, oldreg, env->mmuregs[reg]);
1667
            }
1668
#ifdef DEBUG_MMU
1669
            dump_mmu(env);
1670
#endif
1671
        }
1672
        break;
1673
    case 5: // Turbosparc ITLB Diagnostic
1674
    case 6: // Turbosparc DTLB Diagnostic
1675
    case 7: // Turbosparc IOTLB Diagnostic
1676
        break;
1677
    case 0xa: /* User data access */
1678
        switch(size) {
1679
        case 1:
1680
            stb_user(addr, val);
1681
            break;
1682
        case 2:
1683
            stw_user(addr, val);
1684
            break;
1685
        default:
1686
        case 4:
1687
            stl_user(addr, val);
1688
            break;
1689
        case 8:
1690
            stq_user(addr, val);
1691
            break;
1692
        }
1693
        break;
1694
    case 0xb: /* Supervisor data access */
1695
        switch(size) {
1696
        case 1:
1697
            stb_kernel(addr, val);
1698
            break;
1699
        case 2:
1700
            stw_kernel(addr, val);
1701
            break;
1702
        default:
1703
        case 4:
1704
            stl_kernel(addr, val);
1705
            break;
1706
        case 8:
1707
            stq_kernel(addr, val);
1708
            break;
1709
        }
1710
        break;
1711
    case 0xc: /* I-cache tag */
1712
    case 0xd: /* I-cache data */
1713
    case 0xe: /* D-cache tag */
1714
    case 0xf: /* D-cache data */
1715
    case 0x10: /* I/D-cache flush page */
1716
    case 0x11: /* I/D-cache flush segment */
1717
    case 0x12: /* I/D-cache flush region */
1718
    case 0x13: /* I/D-cache flush context */
1719
    case 0x14: /* I/D-cache flush user */
1720
        break;
1721
    case 0x17: /* Block copy, sta access */
1722
        {
1723
            // val = src
1724
            // addr = dst
1725
            // copy 32 bytes
1726
            unsigned int i;
1727
            uint32_t src = val & ~3, dst = addr & ~3, temp;
1728

    
1729
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1730
                temp = ldl_kernel(src);
1731
                stl_kernel(dst, temp);
1732
            }
1733
        }
1734
        break;
1735
    case 0x1f: /* Block fill, stda access */
1736
        {
1737
            // addr = dst
1738
            // fill 32 bytes with val
1739
            unsigned int i;
1740
            uint32_t dst = addr & 7;
1741

    
1742
            for (i = 0; i < 32; i += 8, dst += 8)
1743
                stq_kernel(dst, val);
1744
        }
1745
        break;
1746
    case 0x20: /* MMU passthrough */
1747
        {
1748
            switch(size) {
1749
            case 1:
1750
                stb_phys(addr, val);
1751
                break;
1752
            case 2:
1753
                stw_phys(addr, val);
1754
                break;
1755
            case 4:
1756
            default:
1757
                stl_phys(addr, val);
1758
                break;
1759
            case 8:
1760
                stq_phys(addr, val);
1761
                break;
1762
            }
1763
        }
1764
        break;
1765
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1766
        {
1767
            switch(size) {
1768
            case 1:
1769
                stb_phys((target_phys_addr_t)addr
1770
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1771
                break;
1772
            case 2:
1773
                stw_phys((target_phys_addr_t)addr
1774
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1775
                break;
1776
            case 4:
1777
            default:
1778
                stl_phys((target_phys_addr_t)addr
1779
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1780
                break;
1781
            case 8:
1782
                stq_phys((target_phys_addr_t)addr
1783
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1784
                break;
1785
            }
1786
        }
1787
        break;
1788
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1789
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
1790
               // Turbosparc snoop RAM
1791
    case 0x32: // store buffer control or Turbosparc page table
1792
               // descriptor diagnostic
1793
    case 0x36: /* I-cache flash clear */
1794
    case 0x37: /* D-cache flash clear */
1795
    case 0x4c: /* breakpoint action */
1796
        break;
1797
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1798
        {
1799
            int reg = (addr >> 8) & 3;
1800

    
1801
            switch(reg) {
1802
            case 0: /* Breakpoint Value (Addr) */
1803
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1804
                break;
1805
            case 1: /* Breakpoint Mask */
1806
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1807
                break;
1808
            case 2: /* Breakpoint Control */
1809
                env->mmubpregs[reg] = (val & 0x7fULL);
1810
                break;
1811
            case 3: /* Breakpoint Status */
1812
                env->mmubpregs[reg] = (val & 0xfULL);
1813
                break;
1814
            }
1815
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1816
                        env->mmuregs[reg]);
1817
        }
1818
        break;
1819
    case 8: /* User code access, XXX */
1820
    case 9: /* Supervisor code access, XXX */
1821
    default:
1822
        do_unassigned_access(addr, 1, 0, asi, size);
1823
        break;
1824
    }
1825
#ifdef DEBUG_ASI
1826
    dump_asi("write", addr, asi, size, val);
1827
#endif
1828
}
1829

    
1830
#endif /* CONFIG_USER_ONLY */
1831
#else /* TARGET_SPARC64 */
1832

    
1833
#ifdef CONFIG_USER_ONLY
1834
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1835
{
1836
    uint64_t ret = 0;
1837
#if defined(DEBUG_ASI)
1838
    target_ulong last_addr = addr;
1839
#endif
1840

    
1841
    if (asi < 0x80)
1842
        raise_exception(TT_PRIV_ACT);
1843

    
1844
    helper_check_align(addr, size - 1);
1845
    address_mask(env, &addr);
1846

    
1847
    switch (asi) {
1848
    case 0x82: // Primary no-fault
1849
    case 0x8a: // Primary no-fault LE
1850
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1851
#ifdef DEBUG_ASI
1852
            dump_asi("read ", last_addr, asi, size, ret);
1853
#endif
1854
            return 0;
1855
        }
1856
        // Fall through
1857
    case 0x80: // Primary
1858
    case 0x88: // Primary LE
1859
        {
1860
            switch(size) {
1861
            case 1:
1862
                ret = ldub_raw(addr);
1863
                break;
1864
            case 2:
1865
                ret = lduw_raw(addr);
1866
                break;
1867
            case 4:
1868
                ret = ldl_raw(addr);
1869
                break;
1870
            default:
1871
            case 8:
1872
                ret = ldq_raw(addr);
1873
                break;
1874
            }
1875
        }
1876
        break;
1877
    case 0x83: // Secondary no-fault
1878
    case 0x8b: // Secondary no-fault LE
1879
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1880
#ifdef DEBUG_ASI
1881
            dump_asi("read ", last_addr, asi, size, ret);
1882
#endif
1883
            return 0;
1884
        }
1885
        // Fall through
1886
    case 0x81: // Secondary
1887
    case 0x89: // Secondary LE
1888
        // XXX
1889
        break;
1890
    default:
1891
        break;
1892
    }
1893

    
1894
    /* Convert from little endian */
1895
    switch (asi) {
1896
    case 0x88: // Primary LE
1897
    case 0x89: // Secondary LE
1898
    case 0x8a: // Primary no-fault LE
1899
    case 0x8b: // Secondary no-fault LE
1900
        switch(size) {
1901
        case 2:
1902
            ret = bswap16(ret);
1903
            break;
1904
        case 4:
1905
            ret = bswap32(ret);
1906
            break;
1907
        case 8:
1908
            ret = bswap64(ret);
1909
            break;
1910
        default:
1911
            break;
1912
        }
1913
    default:
1914
        break;
1915
    }
1916

    
1917
    /* Convert to signed number */
1918
    if (sign) {
1919
        switch(size) {
1920
        case 1:
1921
            ret = (int8_t) ret;
1922
            break;
1923
        case 2:
1924
            ret = (int16_t) ret;
1925
            break;
1926
        case 4:
1927
            ret = (int32_t) ret;
1928
            break;
1929
        default:
1930
            break;
1931
        }
1932
    }
1933
#ifdef DEBUG_ASI
1934
    dump_asi("read ", last_addr, asi, size, ret);
1935
#endif
1936
    return ret;
1937
}
1938

    
1939
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1940
{
1941
#ifdef DEBUG_ASI
1942
    dump_asi("write", addr, asi, size, val);
1943
#endif
1944
    if (asi < 0x80)
1945
        raise_exception(TT_PRIV_ACT);
1946

    
1947
    helper_check_align(addr, size - 1);
1948
    address_mask(env, &addr);
1949

    
1950
    /* Convert to little endian */
1951
    switch (asi) {
1952
    case 0x88: // Primary LE
1953
    case 0x89: // Secondary LE
1954
        switch(size) {
1955
        case 2:
1956
            val = bswap16(val);
1957
            break;
1958
        case 4:
1959
            val = bswap32(val);
1960
            break;
1961
        case 8:
1962
            val = bswap64(val);
1963
            break;
1964
        default:
1965
            break;
1966
        }
1967
    default:
1968
        break;
1969
    }
1970

    
1971
    switch(asi) {
1972
    case 0x80: // Primary
1973
    case 0x88: // Primary LE
1974
        {
1975
            switch(size) {
1976
            case 1:
1977
                stb_raw(addr, val);
1978
                break;
1979
            case 2:
1980
                stw_raw(addr, val);
1981
                break;
1982
            case 4:
1983
                stl_raw(addr, val);
1984
                break;
1985
            case 8:
1986
            default:
1987
                stq_raw(addr, val);
1988
                break;
1989
            }
1990
        }
1991
        break;
1992
    case 0x81: // Secondary
1993
    case 0x89: // Secondary LE
1994
        // XXX
1995
        return;
1996

    
1997
    case 0x82: // Primary no-fault, RO
1998
    case 0x83: // Secondary no-fault, RO
1999
    case 0x8a: // Primary no-fault LE, RO
2000
    case 0x8b: // Secondary no-fault LE, RO
2001
    default:
2002
        do_unassigned_access(addr, 1, 0, 1, size);
2003
        return;
2004
    }
2005
}
2006

    
2007
#else /* CONFIG_USER_ONLY */
2008

    
2009
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2010
{
2011
    uint64_t ret = 0;
2012
#if defined(DEBUG_ASI)
2013
    target_ulong last_addr = addr;
2014
#endif
2015

    
2016
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2017
        || ((env->def->features & CPU_FEATURE_HYPV)
2018
            && asi >= 0x30 && asi < 0x80
2019
            && !(env->hpstate & HS_PRIV)))
2020
        raise_exception(TT_PRIV_ACT);
2021

    
2022
    helper_check_align(addr, size - 1);
2023
    switch (asi) {
2024
    case 0x82: // Primary no-fault
2025
    case 0x8a: // Primary no-fault LE
2026
        if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2027
#ifdef DEBUG_ASI
2028
            dump_asi("read ", last_addr, asi, size, ret);
2029
#endif
2030
            return 0;
2031
        }
2032
        // Fall through
2033
    case 0x10: // As if user primary
2034
    case 0x18: // As if user primary LE
2035
    case 0x80: // Primary
2036
    case 0x88: // Primary LE
2037
    case 0xe2: // UA2007 Primary block init
2038
    case 0xe3: // UA2007 Secondary block init
2039
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2040
            if ((env->def->features & CPU_FEATURE_HYPV)
2041
                && env->hpstate & HS_PRIV) {
2042
                switch(size) {
2043
                case 1:
2044
                    ret = ldub_hypv(addr);
2045
                    break;
2046
                case 2:
2047
                    ret = lduw_hypv(addr);
2048
                    break;
2049
                case 4:
2050
                    ret = ldl_hypv(addr);
2051
                    break;
2052
                default:
2053
                case 8:
2054
                    ret = ldq_hypv(addr);
2055
                    break;
2056
                }
2057
            } else {
2058
                switch(size) {
2059
                case 1:
2060
                    ret = ldub_kernel(addr);
2061
                    break;
2062
                case 2:
2063
                    ret = lduw_kernel(addr);
2064
                    break;
2065
                case 4:
2066
                    ret = ldl_kernel(addr);
2067
                    break;
2068
                default:
2069
                case 8:
2070
                    ret = ldq_kernel(addr);
2071
                    break;
2072
                }
2073
            }
2074
        } else {
2075
            switch(size) {
2076
            case 1:
2077
                ret = ldub_user(addr);
2078
                break;
2079
            case 2:
2080
                ret = lduw_user(addr);
2081
                break;
2082
            case 4:
2083
                ret = ldl_user(addr);
2084
                break;
2085
            default:
2086
            case 8:
2087
                ret = ldq_user(addr);
2088
                break;
2089
            }
2090
        }
2091
        break;
2092
    case 0x14: // Bypass
2093
    case 0x15: // Bypass, non-cacheable
2094
    case 0x1c: // Bypass LE
2095
    case 0x1d: // Bypass, non-cacheable LE
2096
        {
2097
            switch(size) {
2098
            case 1:
2099
                ret = ldub_phys(addr);
2100
                break;
2101
            case 2:
2102
                ret = lduw_phys(addr);
2103
                break;
2104
            case 4:
2105
                ret = ldl_phys(addr);
2106
                break;
2107
            default:
2108
            case 8:
2109
                ret = ldq_phys(addr);
2110
                break;
2111
            }
2112
            break;
2113
        }
2114
    case 0x24: // Nucleus quad LDD 128 bit atomic
2115
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2116
        //  Only ldda allowed
2117
        raise_exception(TT_ILL_INSN);
2118
        return 0;
2119
    case 0x83: // Secondary no-fault
2120
    case 0x8b: // Secondary no-fault LE
2121
        if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2122
#ifdef DEBUG_ASI
2123
            dump_asi("read ", last_addr, asi, size, ret);
2124
#endif
2125
            return 0;
2126
        }
2127
        // Fall through
2128
    case 0x04: // Nucleus
2129
    case 0x0c: // Nucleus Little Endian (LE)
2130
    case 0x11: // As if user secondary
2131
    case 0x19: // As if user secondary LE
2132
    case 0x4a: // UPA config
2133
    case 0x81: // Secondary
2134
    case 0x89: // Secondary LE
2135
        // XXX
2136
        break;
2137
    case 0x45: // LSU
2138
        ret = env->lsu;
2139
        break;
2140
    case 0x50: // I-MMU regs
2141
        {
2142
            int reg = (addr >> 3) & 0xf;
2143

    
2144
            if (reg == 0) {
2145
                // I-TSB Tag Target register
2146
                ret = ultrasparc_tag_target(env->immuregs[6]);
2147
            } else {
2148
                ret = env->immuregs[reg];
2149
            }
2150

    
2151
            break;
2152
        }
2153
    case 0x51: // I-MMU 8k TSB pointer
2154
        {
2155
            // env->immuregs[5] holds I-MMU TSB register value
2156
            // env->immuregs[6] holds I-MMU Tag Access register value
2157
            ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2158
                                         8*1024);
2159
            break;
2160
        }
2161
    case 0x52: // I-MMU 64k TSB pointer
2162
        {
2163
            // env->immuregs[5] holds I-MMU TSB register value
2164
            // env->immuregs[6] holds I-MMU Tag Access register value
2165
            ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2166
                                         64*1024);
2167
            break;
2168
        }
2169
    case 0x55: // I-MMU data access
2170
        {
2171
            int reg = (addr >> 3) & 0x3f;
2172

    
2173
            ret = env->itlb_tte[reg];
2174
            break;
2175
        }
2176
    case 0x56: // I-MMU tag read
2177
        {
2178
            int reg = (addr >> 3) & 0x3f;
2179

    
2180
            ret = env->itlb_tag[reg];
2181
            break;
2182
        }
2183
    case 0x58: // D-MMU regs
2184
        {
2185
            int reg = (addr >> 3) & 0xf;
2186

    
2187
            if (reg == 0) {
2188
                // D-TSB Tag Target register
2189
                ret = ultrasparc_tag_target(env->dmmuregs[6]);
2190
            } else {
2191
                ret = env->dmmuregs[reg];
2192
            }
2193
            break;
2194
        }
2195
    case 0x59: // D-MMU 8k TSB pointer
2196
        {
2197
            // env->dmmuregs[5] holds D-MMU TSB register value
2198
            // env->dmmuregs[6] holds D-MMU Tag Access register value
2199
            ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2200
                                         8*1024);
2201
            break;
2202
        }
2203
    case 0x5a: // D-MMU 64k TSB pointer
2204
        {
2205
            // env->dmmuregs[5] holds D-MMU TSB register value
2206
            // env->dmmuregs[6] holds D-MMU Tag Access register value
2207
            ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2208
                                         64*1024);
2209
            break;
2210
        }
2211
    case 0x5d: // D-MMU data access
2212
        {
2213
            int reg = (addr >> 3) & 0x3f;
2214

    
2215
            ret = env->dtlb_tte[reg];
2216
            break;
2217
        }
2218
    case 0x5e: // D-MMU tag read
2219
        {
2220
            int reg = (addr >> 3) & 0x3f;
2221

    
2222
            ret = env->dtlb_tag[reg];
2223
            break;
2224
        }
2225
    case 0x46: // D-cache data
2226
    case 0x47: // D-cache tag access
2227
    case 0x4b: // E-cache error enable
2228
    case 0x4c: // E-cache asynchronous fault status
2229
    case 0x4d: // E-cache asynchronous fault address
2230
    case 0x4e: // E-cache tag data
2231
    case 0x66: // I-cache instruction access
2232
    case 0x67: // I-cache tag access
2233
    case 0x6e: // I-cache predecode
2234
    case 0x6f: // I-cache LRU etc.
2235
    case 0x76: // E-cache tag
2236
    case 0x7e: // E-cache tag
2237
        break;
2238
    case 0x5b: // D-MMU data pointer
2239
    case 0x48: // Interrupt dispatch, RO
2240
    case 0x49: // Interrupt data receive
2241
    case 0x7f: // Incoming interrupt vector, RO
2242
        // XXX
2243
        break;
2244
    case 0x54: // I-MMU data in, WO
2245
    case 0x57: // I-MMU demap, WO
2246
    case 0x5c: // D-MMU data in, WO
2247
    case 0x5f: // D-MMU demap, WO
2248
    case 0x77: // Interrupt vector, WO
2249
    default:
2250
        do_unassigned_access(addr, 0, 0, 1, size);
2251
        ret = 0;
2252
        break;
2253
    }
2254

    
2255
    /* Convert from little endian */
2256
    switch (asi) {
2257
    case 0x0c: // Nucleus Little Endian (LE)
2258
    case 0x18: // As if user primary LE
2259
    case 0x19: // As if user secondary LE
2260
    case 0x1c: // Bypass LE
2261
    case 0x1d: // Bypass, non-cacheable LE
2262
    case 0x88: // Primary LE
2263
    case 0x89: // Secondary LE
2264
    case 0x8a: // Primary no-fault LE
2265
    case 0x8b: // Secondary no-fault LE
2266
        switch(size) {
2267
        case 2:
2268
            ret = bswap16(ret);
2269
            break;
2270
        case 4:
2271
            ret = bswap32(ret);
2272
            break;
2273
        case 8:
2274
            ret = bswap64(ret);
2275
            break;
2276
        default:
2277
            break;
2278
        }
2279
    default:
2280
        break;
2281
    }
2282

    
2283
    /* Convert to signed number */
2284
    if (sign) {
2285
        switch(size) {
2286
        case 1:
2287
            ret = (int8_t) ret;
2288
            break;
2289
        case 2:
2290
            ret = (int16_t) ret;
2291
            break;
2292
        case 4:
2293
            ret = (int32_t) ret;
2294
            break;
2295
        default:
2296
            break;
2297
        }
2298
    }
2299
#ifdef DEBUG_ASI
2300
    dump_asi("read ", last_addr, asi, size, ret);
2301
#endif
2302
    return ret;
2303
}
2304

    
2305
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2306
{
2307
#ifdef DEBUG_ASI
2308
    dump_asi("write", addr, asi, size, val);
2309
#endif
2310
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2311
        || ((env->def->features & CPU_FEATURE_HYPV)
2312
            && asi >= 0x30 && asi < 0x80
2313
            && !(env->hpstate & HS_PRIV)))
2314
        raise_exception(TT_PRIV_ACT);
2315

    
2316
    helper_check_align(addr, size - 1);
2317
    /* Convert to little endian */
2318
    switch (asi) {
2319
    case 0x0c: // Nucleus Little Endian (LE)
2320
    case 0x18: // As if user primary LE
2321
    case 0x19: // As if user secondary LE
2322
    case 0x1c: // Bypass LE
2323
    case 0x1d: // Bypass, non-cacheable LE
2324
    case 0x88: // Primary LE
2325
    case 0x89: // Secondary LE
2326
        switch(size) {
2327
        case 2:
2328
            val = bswap16(val);
2329
            break;
2330
        case 4:
2331
            val = bswap32(val);
2332
            break;
2333
        case 8:
2334
            val = bswap64(val);
2335
            break;
2336
        default:
2337
            break;
2338
        }
2339
    default:
2340
        break;
2341
    }
2342

    
2343
    switch(asi) {
2344
    case 0x10: // As if user primary
2345
    case 0x18: // As if user primary LE
2346
    case 0x80: // Primary
2347
    case 0x88: // Primary LE
2348
    case 0xe2: // UA2007 Primary block init
2349
    case 0xe3: // UA2007 Secondary block init
2350
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2351
            if ((env->def->features & CPU_FEATURE_HYPV)
2352
                && env->hpstate & HS_PRIV) {
2353
                switch(size) {
2354
                case 1:
2355
                    stb_hypv(addr, val);
2356
                    break;
2357
                case 2:
2358
                    stw_hypv(addr, val);
2359
                    break;
2360
                case 4:
2361
                    stl_hypv(addr, val);
2362
                    break;
2363
                case 8:
2364
                default:
2365
                    stq_hypv(addr, val);
2366
                    break;
2367
                }
2368
            } else {
2369
                switch(size) {
2370
                case 1:
2371
                    stb_kernel(addr, val);
2372
                    break;
2373
                case 2:
2374
                    stw_kernel(addr, val);
2375
                    break;
2376
                case 4:
2377
                    stl_kernel(addr, val);
2378
                    break;
2379
                case 8:
2380
                default:
2381
                    stq_kernel(addr, val);
2382
                    break;
2383
                }
2384
            }
2385
        } else {
2386
            switch(size) {
2387
            case 1:
2388
                stb_user(addr, val);
2389
                break;
2390
            case 2:
2391
                stw_user(addr, val);
2392
                break;
2393
            case 4:
2394
                stl_user(addr, val);
2395
                break;
2396
            case 8:
2397
            default:
2398
                stq_user(addr, val);
2399
                break;
2400
            }
2401
        }
2402
        break;
2403
    case 0x14: // Bypass
2404
    case 0x15: // Bypass, non-cacheable
2405
    case 0x1c: // Bypass LE
2406
    case 0x1d: // Bypass, non-cacheable LE
2407
        {
2408
            switch(size) {
2409
            case 1:
2410
                stb_phys(addr, val);
2411
                break;
2412
            case 2:
2413
                stw_phys(addr, val);
2414
                break;
2415
            case 4:
2416
                stl_phys(addr, val);
2417
                break;
2418
            case 8:
2419
            default:
2420
                stq_phys(addr, val);
2421
                break;
2422
            }
2423
        }
2424
        return;
2425
    case 0x24: // Nucleus quad LDD 128 bit atomic
2426
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2427
        //  Only ldda allowed
2428
        raise_exception(TT_ILL_INSN);
2429
        return;
2430
    case 0x04: // Nucleus
2431
    case 0x0c: // Nucleus Little Endian (LE)
2432
    case 0x11: // As if user secondary
2433
    case 0x19: // As if user secondary LE
2434
    case 0x4a: // UPA config
2435
    case 0x81: // Secondary
2436
    case 0x89: // Secondary LE
2437
        // XXX
2438
        return;
2439
    case 0x45: // LSU
2440
        {
2441
            uint64_t oldreg;
2442

    
2443
            oldreg = env->lsu;
2444
            env->lsu = val & (DMMU_E | IMMU_E);
2445
            // Mappings generated during D/I MMU disabled mode are
2446
            // invalid in normal mode
2447
            if (oldreg != env->lsu) {
2448
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2449
                            oldreg, env->lsu);
2450
#ifdef DEBUG_MMU
2451
                dump_mmu(env);
2452
#endif
2453
                tlb_flush(env, 1);
2454
            }
2455
            return;
2456
        }
2457
    case 0x50: // I-MMU regs
2458
        {
2459
            int reg = (addr >> 3) & 0xf;
2460
            uint64_t oldreg;
2461

    
2462
            oldreg = env->immuregs[reg];
2463
            switch(reg) {
2464
            case 0: // RO
2465
            case 4:
2466
                return;
2467
            case 1: // Not in I-MMU
2468
            case 2:
2469
            case 7:
2470
            case 8:
2471
                return;
2472
            case 3: // SFSR
2473
                if ((val & 1) == 0)
2474
                    val = 0; // Clear SFSR
2475
                break;
2476
            case 5: // TSB access
2477
            case 6: // Tag access
2478
            default:
2479
                break;
2480
            }
2481
            env->immuregs[reg] = val;
2482
            if (oldreg != env->immuregs[reg]) {
2483
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2484
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2485
            }
2486
#ifdef DEBUG_MMU
2487
            dump_mmu(env);
2488
#endif
2489
            return;
2490
        }
2491
    case 0x54: // I-MMU data in
2492
        {
2493
            unsigned int i;
2494

    
2495
            // Try finding an invalid entry
2496
            for (i = 0; i < 64; i++) {
2497
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2498
                    env->itlb_tag[i] = env->immuregs[6];
2499
                    env->itlb_tte[i] = val;
2500
                    return;
2501
                }
2502
            }
2503
            // Try finding an unlocked entry
2504
            for (i = 0; i < 64; i++) {
2505
                if ((env->itlb_tte[i] & 0x40) == 0) {
2506
                    env->itlb_tag[i] = env->immuregs[6];
2507
                    env->itlb_tte[i] = val;
2508
                    return;
2509
                }
2510
            }
2511
            // error state?
2512
            return;
2513
        }
2514
    case 0x55: // I-MMU data access
2515
        {
2516
            // TODO: auto demap
2517

    
2518
            unsigned int i = (addr >> 3) & 0x3f;
2519

    
2520
            env->itlb_tag[i] = env->immuregs[6];
2521
            env->itlb_tte[i] = val;
2522
            return;
2523
        }
2524
    case 0x57: // I-MMU demap
2525
        {
2526
            unsigned int i;
2527

    
2528
            for (i = 0; i < 64; i++) {
2529
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
2530
                    target_ulong mask = 0xffffffffffffe000ULL;
2531

    
2532
                    mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
2533
                    if ((val & mask) == (env->itlb_tag[i] & mask)) {
2534
                        env->itlb_tag[i] = 0;
2535
                        env->itlb_tte[i] = 0;
2536
                    }
2537
                    return;
2538
                }
2539
            }
2540
        }
2541
        return;
2542
    case 0x58: // D-MMU regs
2543
        {
2544
            int reg = (addr >> 3) & 0xf;
2545
            uint64_t oldreg;
2546

    
2547
            oldreg = env->dmmuregs[reg];
2548
            switch(reg) {
2549
            case 0: // RO
2550
            case 4:
2551
                return;
2552
            case 3: // SFSR
2553
                if ((val & 1) == 0) {
2554
                    val = 0; // Clear SFSR, Fault address
2555
                    env->dmmuregs[4] = 0;
2556
                }
2557
                env->dmmuregs[reg] = val;
2558
                break;
2559
            case 1: // Primary context
2560
            case 2: // Secondary context
2561
            case 5: // TSB access
2562
            case 6: // Tag access
2563
            case 7: // Virtual Watchpoint
2564
            case 8: // Physical Watchpoint
2565
            default:
2566
                break;
2567
            }
2568
            env->dmmuregs[reg] = val;
2569
            if (oldreg != env->dmmuregs[reg]) {
2570
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2571
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2572
            }
2573
#ifdef DEBUG_MMU
2574
            dump_mmu(env);
2575
#endif
2576
            return;
2577
        }
2578
    case 0x5c: // D-MMU data in
2579
        {
2580
            unsigned int i;
2581

    
2582
            // Try finding an invalid entry
2583
            for (i = 0; i < 64; i++) {
2584
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2585
                    env->dtlb_tag[i] = env->dmmuregs[6];
2586
                    env->dtlb_tte[i] = val;
2587
                    return;
2588
                }
2589
            }
2590
            // Try finding an unlocked entry
2591
            for (i = 0; i < 64; i++) {
2592
                if ((env->dtlb_tte[i] & 0x40) == 0) {
2593
                    env->dtlb_tag[i] = env->dmmuregs[6];
2594
                    env->dtlb_tte[i] = val;
2595
                    return;
2596
                }
2597
            }
2598
            // error state?
2599
            return;
2600
        }
2601
    case 0x5d: // D-MMU data access
2602
        {
2603
            unsigned int i = (addr >> 3) & 0x3f;
2604

    
2605
            env->dtlb_tag[i] = env->dmmuregs[6];
2606
            env->dtlb_tte[i] = val;
2607
            return;
2608
        }
2609
    case 0x5f: // D-MMU demap
2610
        {
2611
            unsigned int i;
2612

    
2613
            for (i = 0; i < 64; i++) {
2614
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2615
                    target_ulong mask = 0xffffffffffffe000ULL;
2616

    
2617
                    mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2618
                    if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2619
                        env->dtlb_tag[i] = 0;
2620
                        env->dtlb_tte[i] = 0;
2621
                    }
2622
                    return;
2623
                }
2624
            }
2625
        }
2626
        return;
2627
    case 0x49: // Interrupt data receive
2628
        // XXX
2629
        return;
2630
    case 0x46: // D-cache data
2631
    case 0x47: // D-cache tag access
2632
    case 0x4b: // E-cache error enable
2633
    case 0x4c: // E-cache asynchronous fault status
2634
    case 0x4d: // E-cache asynchronous fault address
2635
    case 0x4e: // E-cache tag data
2636
    case 0x66: // I-cache instruction access
2637
    case 0x67: // I-cache tag access
2638
    case 0x6e: // I-cache predecode
2639
    case 0x6f: // I-cache LRU etc.
2640
    case 0x76: // E-cache tag
2641
    case 0x7e: // E-cache tag
2642
        return;
2643
    case 0x51: // I-MMU 8k TSB pointer, RO
2644
    case 0x52: // I-MMU 64k TSB pointer, RO
2645
    case 0x56: // I-MMU tag read, RO
2646
    case 0x59: // D-MMU 8k TSB pointer, RO
2647
    case 0x5a: // D-MMU 64k TSB pointer, RO
2648
    case 0x5b: // D-MMU data pointer, RO
2649
    case 0x5e: // D-MMU tag read, RO
2650
    case 0x48: // Interrupt dispatch, RO
2651
    case 0x7f: // Incoming interrupt vector, RO
2652
    case 0x82: // Primary no-fault, RO
2653
    case 0x83: // Secondary no-fault, RO
2654
    case 0x8a: // Primary no-fault LE, RO
2655
    case 0x8b: // Secondary no-fault LE, RO
2656
    default:
2657
        do_unassigned_access(addr, 1, 0, 1, size);
2658
        return;
2659
    }
2660
}
2661
#endif /* CONFIG_USER_ONLY */
2662

    
2663
void helper_ldda_asi(target_ulong addr, int asi, int rd)
2664
{
2665
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2666
        || ((env->def->features & CPU_FEATURE_HYPV)
2667
            && asi >= 0x30 && asi < 0x80
2668
            && !(env->hpstate & HS_PRIV)))
2669
        raise_exception(TT_PRIV_ACT);
2670

    
2671
    switch (asi) {
2672
    case 0x24: // Nucleus quad LDD 128 bit atomic
2673
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2674
        helper_check_align(addr, 0xf);
2675
        if (rd == 0) {
2676
            env->gregs[1] = ldq_kernel(addr + 8);
2677
            if (asi == 0x2c)
2678
                bswap64s(&env->gregs[1]);
2679
        } else if (rd < 8) {
2680
            env->gregs[rd] = ldq_kernel(addr);
2681
            env->gregs[rd + 1] = ldq_kernel(addr + 8);
2682
            if (asi == 0x2c) {
2683
                bswap64s(&env->gregs[rd]);
2684
                bswap64s(&env->gregs[rd + 1]);
2685
            }
2686
        } else {
2687
            env->regwptr[rd] = ldq_kernel(addr);
2688
            env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2689
            if (asi == 0x2c) {
2690
                bswap64s(&env->regwptr[rd]);
2691
                bswap64s(&env->regwptr[rd + 1]);
2692
            }
2693
        }
2694
        break;
2695
    default:
2696
        helper_check_align(addr, 0x3);
2697
        if (rd == 0)
2698
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2699
        else if (rd < 8) {
2700
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2701
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2702
        } else {
2703
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2704
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2705
        }
2706
        break;
2707
    }
2708
}
2709

    
2710
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2711
{
2712
    unsigned int i;
2713
    target_ulong val;
2714

    
2715
    helper_check_align(addr, 3);
2716
    switch (asi) {
2717
    case 0xf0: // Block load primary
2718
    case 0xf1: // Block load secondary
2719
    case 0xf8: // Block load primary LE
2720
    case 0xf9: // Block load secondary LE
2721
        if (rd & 7) {
2722
            raise_exception(TT_ILL_INSN);
2723
            return;
2724
        }
2725
        helper_check_align(addr, 0x3f);
2726
        for (i = 0; i < 16; i++) {
2727
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2728
                                                         0);
2729
            addr += 4;
2730
        }
2731

    
2732
        return;
2733
    default:
2734
        break;
2735
    }
2736

    
2737
    val = helper_ld_asi(addr, asi, size, 0);
2738
    switch(size) {
2739
    default:
2740
    case 4:
2741
        *((uint32_t *)&env->fpr[rd]) = val;
2742
        break;
2743
    case 8:
2744
        *((int64_t *)&DT0) = val;
2745
        break;
2746
    case 16:
2747
        // XXX
2748
        break;
2749
    }
2750
}
2751

    
2752
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2753
{
2754
    unsigned int i;
2755
    target_ulong val = 0;
2756

    
2757
    helper_check_align(addr, 3);
2758
    switch (asi) {
2759
    case 0xe0: // UA2007 Block commit store primary (cache flush)
2760
    case 0xe1: // UA2007 Block commit store secondary (cache flush)
2761
    case 0xf0: // Block store primary
2762
    case 0xf1: // Block store secondary
2763
    case 0xf8: // Block store primary LE
2764
    case 0xf9: // Block store secondary LE
2765
        if (rd & 7) {
2766
            raise_exception(TT_ILL_INSN);
2767
            return;
2768
        }
2769
        helper_check_align(addr, 0x3f);
2770
        for (i = 0; i < 16; i++) {
2771
            val = *(uint32_t *)&env->fpr[rd++];
2772
            helper_st_asi(addr, val, asi & 0x8f, 4);
2773
            addr += 4;
2774
        }
2775

    
2776
        return;
2777
    default:
2778
        break;
2779
    }
2780

    
2781
    switch(size) {
2782
    default:
2783
    case 4:
2784
        val = *((uint32_t *)&env->fpr[rd]);
2785
        break;
2786
    case 8:
2787
        val = *((int64_t *)&DT0);
2788
        break;
2789
    case 16:
2790
        // XXX
2791
        break;
2792
    }
2793
    helper_st_asi(addr, val, asi, size);
2794
}
2795

    
2796
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2797
                            target_ulong val2, uint32_t asi)
2798
{
2799
    target_ulong ret;
2800

    
2801
    val2 &= 0xffffffffUL;
2802
    ret = helper_ld_asi(addr, asi, 4, 0);
2803
    ret &= 0xffffffffUL;
2804
    if (val2 == ret)
2805
        helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2806
    return ret;
2807
}
2808

    
2809
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2810
                             target_ulong val2, uint32_t asi)
2811
{
2812
    target_ulong ret;
2813

    
2814
    ret = helper_ld_asi(addr, asi, 8, 0);
2815
    if (val2 == ret)
2816
        helper_st_asi(addr, val1, asi, 8);
2817
    return ret;
2818
}
2819
#endif /* TARGET_SPARC64 */
2820

    
2821
#ifndef TARGET_SPARC64
2822
void helper_rett(void)
2823
{
2824
    unsigned int cwp;
2825

    
2826
    if (env->psret == 1)
2827
        raise_exception(TT_ILL_INSN);
2828

    
2829
    env->psret = 1;
2830
    cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2831
    if (env->wim & (1 << cwp)) {
2832
        raise_exception(TT_WIN_UNF);
2833
    }
2834
    set_cwp(cwp);
2835
    env->psrs = env->psrps;
2836
}
2837
#endif
2838

    
2839
target_ulong helper_udiv(target_ulong a, target_ulong b)
2840
{
2841
    uint64_t x0;
2842
    uint32_t x1;
2843

    
2844
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2845
    x1 = b;
2846

    
2847
    if (x1 == 0) {
2848
        raise_exception(TT_DIV_ZERO);
2849
    }
2850

    
2851
    x0 = x0 / x1;
2852
    if (x0 > 0xffffffff) {
2853
        env->cc_src2 = 1;
2854
        return 0xffffffff;
2855
    } else {
2856
        env->cc_src2 = 0;
2857
        return x0;
2858
    }
2859
}
2860

    
2861
target_ulong helper_sdiv(target_ulong a, target_ulong b)
2862
{
2863
    int64_t x0;
2864
    int32_t x1;
2865

    
2866
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2867
    x1 = b;
2868

    
2869
    if (x1 == 0) {
2870
        raise_exception(TT_DIV_ZERO);
2871
    }
2872

    
2873
    x0 = x0 / x1;
2874
    if ((int32_t) x0 != x0) {
2875
        env->cc_src2 = 1;
2876
        return x0 < 0? 0x80000000: 0x7fffffff;
2877
    } else {
2878
        env->cc_src2 = 0;
2879
        return x0;
2880
    }
2881
}
2882

    
2883
void helper_stdf(target_ulong addr, int mem_idx)
2884
{
2885
    helper_check_align(addr, 7);
2886
#if !defined(CONFIG_USER_ONLY)
2887
    switch (mem_idx) {
2888
    case 0:
2889
        stfq_user(addr, DT0);
2890
        break;
2891
    case 1:
2892
        stfq_kernel(addr, DT0);
2893
        break;
2894
#ifdef TARGET_SPARC64
2895
    case 2:
2896
        stfq_hypv(addr, DT0);
2897
        break;
2898
#endif
2899
    default:
2900
        break;
2901
    }
2902
#else
2903
    address_mask(env, &addr);
2904
    stfq_raw(addr, DT0);
2905
#endif
2906
}
2907

    
2908
void helper_lddf(target_ulong addr, int mem_idx)
2909
{
2910
    helper_check_align(addr, 7);
2911
#if !defined(CONFIG_USER_ONLY)
2912
    switch (mem_idx) {
2913
    case 0:
2914
        DT0 = ldfq_user(addr);
2915
        break;
2916
    case 1:
2917
        DT0 = ldfq_kernel(addr);
2918
        break;
2919
#ifdef TARGET_SPARC64
2920
    case 2:
2921
        DT0 = ldfq_hypv(addr);
2922
        break;
2923
#endif
2924
    default:
2925
        break;
2926
    }
2927
#else
2928
    address_mask(env, &addr);
2929
    DT0 = ldfq_raw(addr);
2930
#endif
2931
}
2932

    
2933
void helper_ldqf(target_ulong addr, int mem_idx)
2934
{
2935
    // XXX add 128 bit load
2936
    CPU_QuadU u;
2937

    
2938
    helper_check_align(addr, 7);
2939
#if !defined(CONFIG_USER_ONLY)
2940
    switch (mem_idx) {
2941
    case 0:
2942
        u.ll.upper = ldq_user(addr);
2943
        u.ll.lower = ldq_user(addr + 8);
2944
        QT0 = u.q;
2945
        break;
2946
    case 1:
2947
        u.ll.upper = ldq_kernel(addr);
2948
        u.ll.lower = ldq_kernel(addr + 8);
2949
        QT0 = u.q;
2950
        break;
2951
#ifdef TARGET_SPARC64
2952
    case 2:
2953
        u.ll.upper = ldq_hypv(addr);
2954
        u.ll.lower = ldq_hypv(addr + 8);
2955
        QT0 = u.q;
2956
        break;
2957
#endif
2958
    default:
2959
        break;
2960
    }
2961
#else
2962
    address_mask(env, &addr);
2963
    u.ll.upper = ldq_raw(addr);
2964
    u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2965
    QT0 = u.q;
2966
#endif
2967
}
2968

    
2969
void helper_stqf(target_ulong addr, int mem_idx)
2970
{
2971
    // XXX add 128 bit store
2972
    CPU_QuadU u;
2973

    
2974
    helper_check_align(addr, 7);
2975
#if !defined(CONFIG_USER_ONLY)
2976
    switch (mem_idx) {
2977
    case 0:
2978
        u.q = QT0;
2979
        stq_user(addr, u.ll.upper);
2980
        stq_user(addr + 8, u.ll.lower);
2981
        break;
2982
    case 1:
2983
        u.q = QT0;
2984
        stq_kernel(addr, u.ll.upper);
2985
        stq_kernel(addr + 8, u.ll.lower);
2986
        break;
2987
#ifdef TARGET_SPARC64
2988
    case 2:
2989
        u.q = QT0;
2990
        stq_hypv(addr, u.ll.upper);
2991
        stq_hypv(addr + 8, u.ll.lower);
2992
        break;
2993
#endif
2994
    default:
2995
        break;
2996
    }
2997
#else
2998
    u.q = QT0;
2999
    address_mask(env, &addr);
3000
    stq_raw(addr, u.ll.upper);
3001
    stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
3002
#endif
3003
}
3004

    
3005
static inline void set_fsr(void)
3006
{
3007
    int rnd_mode;
3008

    
3009
    switch (env->fsr & FSR_RD_MASK) {
3010
    case FSR_RD_NEAREST:
3011
        rnd_mode = float_round_nearest_even;
3012
        break;
3013
    default:
3014
    case FSR_RD_ZERO:
3015
        rnd_mode = float_round_to_zero;
3016
        break;
3017
    case FSR_RD_POS:
3018
        rnd_mode = float_round_up;
3019
        break;
3020
    case FSR_RD_NEG:
3021
        rnd_mode = float_round_down;
3022
        break;
3023
    }
3024
    set_float_rounding_mode(rnd_mode, &env->fp_status);
3025
}
3026

    
3027
void helper_ldfsr(uint32_t new_fsr)
3028
{
3029
    env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3030
    set_fsr();
3031
}
3032

    
3033
#ifdef TARGET_SPARC64
3034
void helper_ldxfsr(uint64_t new_fsr)
3035
{
3036
    env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3037
    set_fsr();
3038
}
3039
#endif
3040

    
3041
void helper_debug(void)
3042
{
3043
    env->exception_index = EXCP_DEBUG;
3044
    cpu_loop_exit();
3045
}
3046

    
3047
#ifndef TARGET_SPARC64
3048
/* XXX: use another pointer for %iN registers to avoid slow wrapping
3049
   handling ? */
3050
void helper_save(void)
3051
{
3052
    uint32_t cwp;
3053

    
3054
    cwp = cpu_cwp_dec(env, env->cwp - 1);
3055
    if (env->wim & (1 << cwp)) {
3056
        raise_exception(TT_WIN_OVF);
3057
    }
3058
    set_cwp(cwp);
3059
}
3060

    
3061
void helper_restore(void)
3062
{
3063
    uint32_t cwp;
3064

    
3065
    cwp = cpu_cwp_inc(env, env->cwp + 1);
3066
    if (env->wim & (1 << cwp)) {
3067
        raise_exception(TT_WIN_UNF);
3068
    }
3069
    set_cwp(cwp);
3070
}
3071

    
3072
void helper_wrpsr(target_ulong new_psr)
3073
{
3074
    if ((new_psr & PSR_CWP) >= env->nwindows)
3075
        raise_exception(TT_ILL_INSN);
3076
    else
3077
        PUT_PSR(env, new_psr);
3078
}
3079

    
3080
target_ulong helper_rdpsr(void)
3081
{
3082
    return GET_PSR(env);
3083
}
3084

    
3085
#else
3086
/* XXX: use another pointer for %iN registers to avoid slow wrapping
3087
   handling ? */
3088
void helper_save(void)
3089
{
3090
    uint32_t cwp;
3091

    
3092
    cwp = cpu_cwp_dec(env, env->cwp - 1);
3093
    if (env->cansave == 0) {
3094
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
3095
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3096
                                    ((env->wstate & 0x7) << 2)));
3097
    } else {
3098
        if (env->cleanwin - env->canrestore == 0) {
3099
            // XXX Clean windows without trap
3100
            raise_exception(TT_CLRWIN);
3101
        } else {
3102
            env->cansave--;
3103
            env->canrestore++;
3104
            set_cwp(cwp);
3105
        }
3106
    }
3107
}
3108

    
3109
void helper_restore(void)
3110
{
3111
    uint32_t cwp;
3112

    
3113
    cwp = cpu_cwp_inc(env, env->cwp + 1);
3114
    if (env->canrestore == 0) {
3115
        raise_exception(TT_FILL | (env->otherwin != 0 ?
3116
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3117
                                   ((env->wstate & 0x7) << 2)));
3118
    } else {
3119
        env->cansave++;
3120
        env->canrestore--;
3121
        set_cwp(cwp);
3122
    }
3123
}
3124

    
3125
void helper_flushw(void)
3126
{
3127
    if (env->cansave != env->nwindows - 2) {
3128
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
3129
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3130
                                    ((env->wstate & 0x7) << 2)));
3131
    }
3132
}
3133

    
3134
void helper_saved(void)
3135
{
3136
    env->cansave++;
3137
    if (env->otherwin == 0)
3138
        env->canrestore--;
3139
    else
3140
        env->otherwin--;
3141
}
3142

    
3143
void helper_restored(void)
3144
{
3145
    env->canrestore++;
3146
    if (env->cleanwin < env->nwindows - 1)
3147
        env->cleanwin++;
3148
    if (env->otherwin == 0)
3149
        env->cansave--;
3150
    else
3151
        env->otherwin--;
3152
}
3153

    
3154
target_ulong helper_rdccr(void)
3155
{
3156
    return GET_CCR(env);
3157
}
3158

    
3159
void helper_wrccr(target_ulong new_ccr)
3160
{
3161
    PUT_CCR(env, new_ccr);
3162
}
3163

    
3164
// CWP handling is reversed in V9, but we still use the V8 register
3165
// order.
3166
target_ulong helper_rdcwp(void)
3167
{
3168
    return GET_CWP64(env);
3169
}
3170

    
3171
void helper_wrcwp(target_ulong new_cwp)
3172
{
3173
    PUT_CWP64(env, new_cwp);
3174
}
3175

    
3176
// This function uses non-native bit order
3177
#define GET_FIELD(X, FROM, TO)                                  \
3178
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3179

    
3180
// This function uses the order in the manuals, i.e. bit 0 is 2^0
3181
#define GET_FIELD_SP(X, FROM, TO)               \
3182
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
3183

    
3184
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3185
{
3186
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3187
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3188
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3189
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3190
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3191
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3192
        (((pixel_addr >> 55) & 1) << 4) |
3193
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3194
        GET_FIELD_SP(pixel_addr, 11, 12);
3195
}
3196

    
3197
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3198
{
3199
    uint64_t tmp;
3200

    
3201
    tmp = addr + offset;
3202
    env->gsr &= ~7ULL;
3203
    env->gsr |= tmp & 7ULL;
3204
    return tmp & ~7ULL;
3205
}
3206

    
3207
target_ulong helper_popc(target_ulong val)
3208
{
3209
    return ctpop64(val);
3210
}
3211

    
3212
static inline uint64_t *get_gregset(uint64_t pstate)
3213
{
3214
    switch (pstate) {
3215
    default:
3216
    case 0:
3217
        return env->bgregs;
3218
    case PS_AG:
3219
        return env->agregs;
3220
    case PS_MG:
3221
        return env->mgregs;
3222
    case PS_IG:
3223
        return env->igregs;
3224
    }
3225
}
3226

    
3227
static inline void change_pstate(uint64_t new_pstate)
3228
{
3229
    uint64_t pstate_regs, new_pstate_regs;
3230
    uint64_t *src, *dst;
3231

    
3232
    if (env->def->features & CPU_FEATURE_GL) {
3233
        // PS_AG is not implemented in this case
3234
        new_pstate &= ~PS_AG;
3235
    }
3236

    
3237
    pstate_regs = env->pstate & 0xc01;
3238
    new_pstate_regs = new_pstate & 0xc01;
3239

    
3240
    if (new_pstate_regs != pstate_regs) {
3241
        // Switch global register bank
3242
        src = get_gregset(new_pstate_regs);
3243
        dst = get_gregset(pstate_regs);
3244
        memcpy32(dst, env->gregs);
3245
        memcpy32(env->gregs, src);
3246
    }
3247
    env->pstate = new_pstate;
3248
}
3249

    
3250
void helper_wrpstate(target_ulong new_state)
3251
{
3252
    change_pstate(new_state & 0xf3f);
3253
}
3254

    
3255
void helper_done(void)
3256
{
3257
    env->pc = env->tsptr->tpc;
3258
    env->npc = env->tsptr->tnpc + 4;
3259
    PUT_CCR(env, env->tsptr->tstate >> 32);
3260
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
3261
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3262
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
3263
    env->tl--;
3264
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3265
}
3266

    
3267
void helper_retry(void)
3268
{
3269
    env->pc = env->tsptr->tpc;
3270
    env->npc = env->tsptr->tnpc;
3271
    PUT_CCR(env, env->tsptr->tstate >> 32);
3272
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
3273
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3274
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
3275
    env->tl--;
3276
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3277
}
3278

    
3279
void helper_set_softint(uint64_t value)
3280
{
3281
    env->softint |= (uint32_t)value;
3282
}
3283

    
3284
void helper_clear_softint(uint64_t value)
3285
{
3286
    env->softint &= (uint32_t)~value;
3287
}
3288

    
3289
void helper_write_softint(uint64_t value)
3290
{
3291
    env->softint = (uint32_t)value;
3292
}
3293
#endif
3294

    
3295
void helper_flush(target_ulong addr)
3296
{
3297
    addr &= ~7;
3298
    tb_invalidate_page_range(addr, addr + 8);
3299
}
3300

    
3301
#ifdef TARGET_SPARC64
3302
#ifdef DEBUG_PCALL
3303
static const char * const excp_names[0x80] = {
3304
    [TT_TFAULT] = "Instruction Access Fault",
3305
    [TT_TMISS] = "Instruction Access MMU Miss",
3306
    [TT_CODE_ACCESS] = "Instruction Access Error",
3307
    [TT_ILL_INSN] = "Illegal Instruction",
3308
    [TT_PRIV_INSN] = "Privileged Instruction",
3309
    [TT_NFPU_INSN] = "FPU Disabled",
3310
    [TT_FP_EXCP] = "FPU Exception",
3311
    [TT_TOVF] = "Tag Overflow",
3312
    [TT_CLRWIN] = "Clean Windows",
3313
    [TT_DIV_ZERO] = "Division By Zero",
3314
    [TT_DFAULT] = "Data Access Fault",
3315
    [TT_DMISS] = "Data Access MMU Miss",
3316
    [TT_DATA_ACCESS] = "Data Access Error",
3317
    [TT_DPROT] = "Data Protection Error",
3318
    [TT_UNALIGNED] = "Unaligned Memory Access",
3319
    [TT_PRIV_ACT] = "Privileged Action",
3320
    [TT_EXTINT | 0x1] = "External Interrupt 1",
3321
    [TT_EXTINT | 0x2] = "External Interrupt 2",
3322
    [TT_EXTINT | 0x3] = "External Interrupt 3",
3323
    [TT_EXTINT | 0x4] = "External Interrupt 4",
3324
    [TT_EXTINT | 0x5] = "External Interrupt 5",
3325
    [TT_EXTINT | 0x6] = "External Interrupt 6",
3326
    [TT_EXTINT | 0x7] = "External Interrupt 7",
3327
    [TT_EXTINT | 0x8] = "External Interrupt 8",
3328
    [TT_EXTINT | 0x9] = "External Interrupt 9",
3329
    [TT_EXTINT | 0xa] = "External Interrupt 10",
3330
    [TT_EXTINT | 0xb] = "External Interrupt 11",
3331
    [TT_EXTINT | 0xc] = "External Interrupt 12",
3332
    [TT_EXTINT | 0xd] = "External Interrupt 13",
3333
    [TT_EXTINT | 0xe] = "External Interrupt 14",
3334
    [TT_EXTINT | 0xf] = "External Interrupt 15",
3335
};
3336
#endif
3337

    
3338
void do_interrupt(CPUState *env)
3339
{
3340
    int intno = env->exception_index;
3341

    
3342
#ifdef DEBUG_PCALL
3343
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
3344
        static int count;
3345
        const char *name;
3346

    
3347
        if (intno < 0 || intno >= 0x180)
3348
            name = "Unknown";
3349
        else if (intno >= 0x100)
3350
            name = "Trap Instruction";
3351
        else if (intno >= 0xc0)
3352
            name = "Window Fill";
3353
        else if (intno >= 0x80)
3354
            name = "Window Spill";
3355
        else {
3356
            name = excp_names[intno];
3357
            if (!name)
3358
                name = "Unknown";
3359
        }
3360

    
3361
        qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3362
                " SP=%016" PRIx64 "\n",
3363
                count, name, intno,
3364
                env->pc,
3365
                env->npc, env->regwptr[6]);
3366
        log_cpu_state(env, 0);
3367
#if 0
3368
        {
3369
            int i;
3370
            uint8_t *ptr;
3371

3372
            qemu_log("       code=");
3373
            ptr = (uint8_t *)env->pc;
3374
            for(i = 0; i < 16; i++) {
3375
                qemu_log(" %02x", ldub(ptr + i));
3376
            }
3377
            qemu_log("\n");
3378
        }
3379
#endif
3380
        count++;
3381
    }
3382
#endif
3383
#if !defined(CONFIG_USER_ONLY)
3384
    if (env->tl >= env->maxtl) {
3385
        cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3386
                  " Error state", env->exception_index, env->tl, env->maxtl);
3387
        return;
3388
    }
3389
#endif
3390
    if (env->tl < env->maxtl - 1) {
3391
        env->tl++;
3392
    } else {
3393
        env->pstate |= PS_RED;
3394
        if (env->tl < env->maxtl)
3395
            env->tl++;
3396
    }
3397
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3398
    env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3399
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3400
        GET_CWP64(env);
3401
    env->tsptr->tpc = env->pc;
3402
    env->tsptr->tnpc = env->npc;
3403
    env->tsptr->tt = intno;
3404

    
3405
    switch (intno) {
3406
    case TT_IVEC:
3407
        change_pstate(PS_PEF | PS_PRIV | PS_IG);
3408
        break;
3409
    case TT_TFAULT:
3410
    case TT_TMISS:
3411
    case TT_DFAULT:
3412
    case TT_DMISS:
3413
    case TT_DPROT:
3414
        change_pstate(PS_PEF | PS_PRIV | PS_MG);
3415
        break;
3416
    default:
3417
        change_pstate(PS_PEF | PS_PRIV | PS_AG);
3418
        break;
3419
    }
3420

    
3421
    if (intno == TT_CLRWIN)
3422
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3423
    else if ((intno & 0x1c0) == TT_SPILL)
3424
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3425
    else if ((intno & 0x1c0) == TT_FILL)
3426
        cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3427
    env->tbr &= ~0x7fffULL;
3428
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3429
    env->pc = env->tbr;
3430
    env->npc = env->pc + 4;
3431
    env->exception_index = 0;
3432
}
3433
#else
3434
#ifdef DEBUG_PCALL
3435
static const char * const excp_names[0x80] = {
3436
    [TT_TFAULT] = "Instruction Access Fault",
3437
    [TT_ILL_INSN] = "Illegal Instruction",
3438
    [TT_PRIV_INSN] = "Privileged Instruction",
3439
    [TT_NFPU_INSN] = "FPU Disabled",
3440
    [TT_WIN_OVF] = "Window Overflow",
3441
    [TT_WIN_UNF] = "Window Underflow",
3442
    [TT_UNALIGNED] = "Unaligned Memory Access",
3443
    [TT_FP_EXCP] = "FPU Exception",
3444
    [TT_DFAULT] = "Data Access Fault",
3445
    [TT_TOVF] = "Tag Overflow",
3446
    [TT_EXTINT | 0x1] = "External Interrupt 1",
3447
    [TT_EXTINT | 0x2] = "External Interrupt 2",
3448
    [TT_EXTINT | 0x3] = "External Interrupt 3",
3449
    [TT_EXTINT | 0x4] = "External Interrupt 4",
3450
    [TT_EXTINT | 0x5] = "External Interrupt 5",
3451
    [TT_EXTINT | 0x6] = "External Interrupt 6",
3452
    [TT_EXTINT | 0x7] = "External Interrupt 7",
3453
    [TT_EXTINT | 0x8] = "External Interrupt 8",
3454
    [TT_EXTINT | 0x9] = "External Interrupt 9",
3455
    [TT_EXTINT | 0xa] = "External Interrupt 10",
3456
    [TT_EXTINT | 0xb] = "External Interrupt 11",
3457
    [TT_EXTINT | 0xc] = "External Interrupt 12",
3458
    [TT_EXTINT | 0xd] = "External Interrupt 13",
3459
    [TT_EXTINT | 0xe] = "External Interrupt 14",
3460
    [TT_EXTINT | 0xf] = "External Interrupt 15",
3461
    [TT_TOVF] = "Tag Overflow",
3462
    [TT_CODE_ACCESS] = "Instruction Access Error",
3463
    [TT_DATA_ACCESS] = "Data Access Error",
3464
    [TT_DIV_ZERO] = "Division By Zero",
3465
    [TT_NCP_INSN] = "Coprocessor Disabled",
3466
};
3467
#endif
3468

    
3469
void do_interrupt(CPUState *env)
3470
{
3471
    int cwp, intno = env->exception_index;
3472

    
3473
#ifdef DEBUG_PCALL
3474
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
3475
        static int count;
3476
        const char *name;
3477

    
3478
        if (intno < 0 || intno >= 0x100)
3479
            name = "Unknown";
3480
        else if (intno >= 0x80)
3481
            name = "Trap Instruction";
3482
        else {
3483
            name = excp_names[intno];
3484
            if (!name)
3485
                name = "Unknown";
3486
        }
3487

    
3488
        qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3489
                count, name, intno,
3490
                env->pc,
3491
                env->npc, env->regwptr[6]);
3492
        log_cpu_state(env, 0);
3493
#if 0
3494
        {
3495
            int i;
3496
            uint8_t *ptr;
3497

3498
            qemu_log("       code=");
3499
            ptr = (uint8_t *)env->pc;
3500
            for(i = 0; i < 16; i++) {
3501
                qemu_log(" %02x", ldub(ptr + i));
3502
            }
3503
            qemu_log("\n");
3504
        }
3505
#endif
3506
        count++;
3507
    }
3508
#endif
3509
#if !defined(CONFIG_USER_ONLY)
3510
    if (env->psret == 0) {
3511
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3512
                  env->exception_index);
3513
        return;
3514
    }
3515
#endif
3516
    env->psret = 0;
3517
    cwp = cpu_cwp_dec(env, env->cwp - 1);
3518
    cpu_set_cwp(env, cwp);
3519
    env->regwptr[9] = env->pc;
3520
    env->regwptr[10] = env->npc;
3521
    env->psrps = env->psrs;
3522
    env->psrs = 1;
3523
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3524
    env->pc = env->tbr;
3525
    env->npc = env->pc + 4;
3526
    env->exception_index = 0;
3527
}
3528
#endif
3529

    
3530
#if !defined(CONFIG_USER_ONLY)
3531

    
3532
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3533
                                void *retaddr);
3534

    
3535
#define MMUSUFFIX _mmu
3536
#define ALIGNED_ONLY
3537

    
3538
#define SHIFT 0
3539
#include "softmmu_template.h"
3540

    
3541
#define SHIFT 1
3542
#include "softmmu_template.h"
3543

    
3544
#define SHIFT 2
3545
#include "softmmu_template.h"
3546

    
3547
#define SHIFT 3
3548
#include "softmmu_template.h"
3549

    
3550
/* XXX: make it generic ? */
3551
static void cpu_restore_state2(void *retaddr)
3552
{
3553
    TranslationBlock *tb;
3554
    unsigned long pc;
3555

    
3556
    if (retaddr) {
3557
        /* now we have a real cpu fault */
3558
        pc = (unsigned long)retaddr;
3559
        tb = tb_find_pc(pc);
3560
        if (tb) {
3561
            /* the PC is inside the translated code. It means that we have
3562
               a virtual CPU fault */
3563
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3564
        }
3565
    }
3566
}
3567

    
3568
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3569
                                void *retaddr)
3570
{
3571
#ifdef DEBUG_UNALIGNED
3572
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3573
           "\n", addr, env->pc);
3574
#endif
3575
    cpu_restore_state2(retaddr);
3576
    raise_exception(TT_UNALIGNED);
3577
}
3578

    
3579
/* try to fill the TLB and return an exception if error. If retaddr is
3580
   NULL, it means that the function was called in C code (i.e. not
3581
   from generated code or from helper.c) */
3582
/* XXX: fix it to restore all registers */
3583
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3584
{
3585
    int ret;
3586
    CPUState *saved_env;
3587

    
3588
    /* XXX: hack to restore env in all cases, even if not called from
3589
       generated code */
3590
    saved_env = env;
3591
    env = cpu_single_env;
3592

    
3593
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3594
    if (ret) {
3595
        cpu_restore_state2(retaddr);
3596
        cpu_loop_exit();
3597
    }
3598
    env = saved_env;
3599
}
3600

    
3601
#endif
3602

    
3603
#ifndef TARGET_SPARC64
3604
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3605
                          int is_asi, int size)
3606
{
3607
    CPUState *saved_env;
3608

    
3609
    /* XXX: hack to restore env in all cases, even if not called from
3610
       generated code */
3611
    saved_env = env;
3612
    env = cpu_single_env;
3613
#ifdef DEBUG_UNASSIGNED
3614
    if (is_asi)
3615
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3616
               " asi 0x%02x from " TARGET_FMT_lx "\n",
3617
               is_exec ? "exec" : is_write ? "write" : "read", size,
3618
               size == 1 ? "" : "s", addr, is_asi, env->pc);
3619
    else
3620
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3621
               " from " TARGET_FMT_lx "\n",
3622
               is_exec ? "exec" : is_write ? "write" : "read", size,
3623
               size == 1 ? "" : "s", addr, env->pc);
3624
#endif
3625
    if (env->mmuregs[3]) /* Fault status register */
3626
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3627
    if (is_asi)
3628
        env->mmuregs[3] |= 1 << 16;
3629
    if (env->psrs)
3630
        env->mmuregs[3] |= 1 << 5;
3631
    if (is_exec)
3632
        env->mmuregs[3] |= 1 << 6;
3633
    if (is_write)
3634
        env->mmuregs[3] |= 1 << 7;
3635
    env->mmuregs[3] |= (5 << 2) | 2;
3636
    env->mmuregs[4] = addr; /* Fault address register */
3637
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3638
        if (is_exec)
3639
            raise_exception(TT_CODE_ACCESS);
3640
        else
3641
            raise_exception(TT_DATA_ACCESS);
3642
    }
3643
    env = saved_env;
3644
}
3645
#else
3646
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3647
                          int is_asi, int size)
3648
{
3649
#ifdef DEBUG_UNASSIGNED
3650
    CPUState *saved_env;
3651

    
3652
    /* XXX: hack to restore env in all cases, even if not called from
3653
       generated code */
3654
    saved_env = env;
3655
    env = cpu_single_env;
3656
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3657
           "\n", addr, env->pc);
3658
    env = saved_env;
3659
#endif
3660
    if (is_exec)
3661
        raise_exception(TT_CODE_ACCESS);
3662
    else
3663
        raise_exception(TT_DATA_ACCESS);
3664
}
3665
#endif
3666

    
3667
#ifdef TARGET_SPARC64
3668
void helper_tick_set_count(void *opaque, uint64_t count)
3669
{
3670
#if !defined(CONFIG_USER_ONLY)
3671
    cpu_tick_set_count(opaque, count);
3672
#endif
3673
}
3674

    
3675
uint64_t helper_tick_get_count(void *opaque)
3676
{
3677
#if !defined(CONFIG_USER_ONLY)
3678
    return cpu_tick_get_count(opaque);
3679
#else
3680
    return 0;
3681
#endif
3682
}
3683

    
3684
void helper_tick_set_limit(void *opaque, uint64_t limit)
3685
{
3686
#if !defined(CONFIG_USER_ONLY)
3687
    cpu_tick_set_limit(opaque, limit);
3688
#endif
3689
}
3690
#endif