Statistics
| Branch: | Revision:

root / kvm-all.c @ 0c439cbf

History | View | Annotate | Download (26.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    target_phys_addr_t start_addr;
45
    ram_addr_t memory_size;
46
    ram_addr_t phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int coalesced_mmio;
61
    int broken_set_mem_region;
62
    int migration_log;
63
#ifdef KVM_CAP_SET_GUEST_DEBUG
64
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65
#endif
66
    int irqchip_in_kernel;
67
    int pit_in_kernel;
68
};
69

    
70
static KVMState *kvm_state;
71

    
72
static KVMSlot *kvm_alloc_slot(KVMState *s)
73
{
74
    int i;
75

    
76
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77
        /* KVM private memory slots */
78
        if (i >= 8 && i < 12)
79
            continue;
80
        if (s->slots[i].memory_size == 0)
81
            return &s->slots[i];
82
    }
83

    
84
    fprintf(stderr, "%s: no free slot available\n", __func__);
85
    abort();
86
}
87

    
88
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89
                                         target_phys_addr_t start_addr,
90
                                         target_phys_addr_t end_addr)
91
{
92
    int i;
93

    
94
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95
        KVMSlot *mem = &s->slots[i];
96

    
97
        if (start_addr == mem->start_addr &&
98
            end_addr == mem->start_addr + mem->memory_size) {
99
            return mem;
100
        }
101
    }
102

    
103
    return NULL;
104
}
105

    
106
/*
107
 * Find overlapping slot with lowest start address
108
 */
109
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110
                                            target_phys_addr_t start_addr,
111
                                            target_phys_addr_t end_addr)
112
{
113
    KVMSlot *found = NULL;
114
    int i;
115

    
116
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117
        KVMSlot *mem = &s->slots[i];
118

    
119
        if (mem->memory_size == 0 ||
120
            (found && found->start_addr < mem->start_addr)) {
121
            continue;
122
        }
123

    
124
        if (end_addr > mem->start_addr &&
125
            start_addr < mem->start_addr + mem->memory_size) {
126
            found = mem;
127
        }
128
    }
129

    
130
    return found;
131
}
132

    
133
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
134
{
135
    struct kvm_userspace_memory_region mem;
136

    
137
    mem.slot = slot->slot;
138
    mem.guest_phys_addr = slot->start_addr;
139
    mem.memory_size = slot->memory_size;
140
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141
    mem.flags = slot->flags;
142
    if (s->migration_log) {
143
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
144
    }
145
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
146
}
147

    
148
static void kvm_reset_vcpu(void *opaque)
149
{
150
    CPUState *env = opaque;
151

    
152
    if (kvm_arch_put_registers(env)) {
153
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154
        abort();
155
    }
156
}
157

    
158
int kvm_irqchip_in_kernel(void)
159
{
160
    return kvm_state->irqchip_in_kernel;
161
}
162

    
163
int kvm_pit_in_kernel(void)
164
{
165
    return kvm_state->pit_in_kernel;
166
}
167

    
168

    
169
int kvm_init_vcpu(CPUState *env)
170
{
171
    KVMState *s = kvm_state;
172
    long mmap_size;
173
    int ret;
174

    
175
    dprintf("kvm_init_vcpu\n");
176

    
177
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
178
    if (ret < 0) {
179
        dprintf("kvm_create_vcpu failed\n");
180
        goto err;
181
    }
182

    
183
    env->kvm_fd = ret;
184
    env->kvm_state = s;
185

    
186
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
187
    if (mmap_size < 0) {
188
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
189
        goto err;
190
    }
191

    
192
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
193
                        env->kvm_fd, 0);
194
    if (env->kvm_run == MAP_FAILED) {
195
        ret = -errno;
196
        dprintf("mmap'ing vcpu state failed\n");
197
        goto err;
198
    }
199

    
200
    ret = kvm_arch_init_vcpu(env);
201
    if (ret == 0) {
202
        qemu_register_reset(kvm_reset_vcpu, env);
203
        ret = kvm_arch_put_registers(env);
204
    }
205
err:
206
    return ret;
207
}
208

    
209
int kvm_put_mp_state(CPUState *env)
210
{
211
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
212

    
213
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
214
}
215

    
216
int kvm_get_mp_state(CPUState *env)
217
{
218
    struct kvm_mp_state mp_state;
219
    int ret;
220

    
221
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
222
    if (ret < 0) {
223
        return ret;
224
    }
225
    env->mp_state = mp_state.mp_state;
226
    return 0;
227
}
228

    
229
/*
230
 * dirty pages logging control
231
 */
232
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
233
                                      ram_addr_t size, int flags, int mask)
234
{
235
    KVMState *s = kvm_state;
236
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
237
    int old_flags;
238

    
239
    if (mem == NULL)  {
240
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
241
                    TARGET_FMT_plx "\n", __func__, phys_addr,
242
                    (target_phys_addr_t)(phys_addr + size - 1));
243
            return -EINVAL;
244
    }
245

    
246
    old_flags = mem->flags;
247

    
248
    flags = (mem->flags & ~mask) | flags;
249
    mem->flags = flags;
250

    
251
    /* If nothing changed effectively, no need to issue ioctl */
252
    if (s->migration_log) {
253
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
254
    }
255
    if (flags == old_flags) {
256
            return 0;
257
    }
258

    
259
    return kvm_set_user_memory_region(s, mem);
260
}
261

    
262
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
263
{
264
        return kvm_dirty_pages_log_change(phys_addr, size,
265
                                          KVM_MEM_LOG_DIRTY_PAGES,
266
                                          KVM_MEM_LOG_DIRTY_PAGES);
267
}
268

    
269
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
270
{
271
        return kvm_dirty_pages_log_change(phys_addr, size,
272
                                          0,
273
                                          KVM_MEM_LOG_DIRTY_PAGES);
274
}
275

    
276
int kvm_set_migration_log(int enable)
277
{
278
    KVMState *s = kvm_state;
279
    KVMSlot *mem;
280
    int i, err;
281

    
282
    s->migration_log = enable;
283

    
284
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
285
        mem = &s->slots[i];
286

    
287
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
288
            continue;
289
        }
290
        err = kvm_set_user_memory_region(s, mem);
291
        if (err) {
292
            return err;
293
        }
294
    }
295
    return 0;
296
}
297

    
298
static int test_le_bit(unsigned long nr, unsigned char *addr)
299
{
300
    return (addr[nr >> 3] >> (nr & 7)) & 1;
301
}
302

    
303
/**
304
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
305
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
306
 * This means all bits are set to dirty.
307
 *
308
 * @start_add: start of logged region.
309
 * @end_addr: end of logged region.
310
 */
311
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
312
                                   target_phys_addr_t end_addr)
313
{
314
    KVMState *s = kvm_state;
315
    unsigned long size, allocated_size = 0;
316
    target_phys_addr_t phys_addr;
317
    ram_addr_t addr;
318
    KVMDirtyLog d;
319
    KVMSlot *mem;
320
    int ret = 0;
321

    
322
    d.dirty_bitmap = NULL;
323
    while (start_addr < end_addr) {
324
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
325
        if (mem == NULL) {
326
            break;
327
        }
328

    
329
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
330
        if (!d.dirty_bitmap) {
331
            d.dirty_bitmap = qemu_malloc(size);
332
        } else if (size > allocated_size) {
333
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
334
        }
335
        allocated_size = size;
336
        memset(d.dirty_bitmap, 0, allocated_size);
337

    
338
        d.slot = mem->slot;
339

    
340
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
341
            dprintf("ioctl failed %d\n", errno);
342
            ret = -1;
343
            break;
344
        }
345

    
346
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
347
             phys_addr < mem->start_addr + mem->memory_size;
348
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
349
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
350
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
351

    
352
            if (test_le_bit(nr, bitmap)) {
353
                cpu_physical_memory_set_dirty(addr);
354
            }
355
        }
356
        start_addr = phys_addr;
357
    }
358
    qemu_free(d.dirty_bitmap);
359

    
360
    return ret;
361
}
362

    
363
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
364
{
365
    int ret = -ENOSYS;
366
#ifdef KVM_CAP_COALESCED_MMIO
367
    KVMState *s = kvm_state;
368

    
369
    if (s->coalesced_mmio) {
370
        struct kvm_coalesced_mmio_zone zone;
371

    
372
        zone.addr = start;
373
        zone.size = size;
374

    
375
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
376
    }
377
#endif
378

    
379
    return ret;
380
}
381

    
382
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
383
{
384
    int ret = -ENOSYS;
385
#ifdef KVM_CAP_COALESCED_MMIO
386
    KVMState *s = kvm_state;
387

    
388
    if (s->coalesced_mmio) {
389
        struct kvm_coalesced_mmio_zone zone;
390

    
391
        zone.addr = start;
392
        zone.size = size;
393

    
394
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
395
    }
396
#endif
397

    
398
    return ret;
399
}
400

    
401
int kvm_check_extension(KVMState *s, unsigned int extension)
402
{
403
    int ret;
404

    
405
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
406
    if (ret < 0) {
407
        ret = 0;
408
    }
409

    
410
    return ret;
411
}
412

    
413
int kvm_init(int smp_cpus)
414
{
415
    static const char upgrade_note[] =
416
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
417
        "(see http://sourceforge.net/projects/kvm).\n";
418
    KVMState *s;
419
    int ret;
420
    int i;
421

    
422
    if (smp_cpus > 1) {
423
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
424
        return -EINVAL;
425
    }
426

    
427
    s = qemu_mallocz(sizeof(KVMState));
428

    
429
#ifdef KVM_CAP_SET_GUEST_DEBUG
430
    TAILQ_INIT(&s->kvm_sw_breakpoints);
431
#endif
432
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
433
        s->slots[i].slot = i;
434

    
435
    s->vmfd = -1;
436
    s->fd = open("/dev/kvm", O_RDWR);
437
    if (s->fd == -1) {
438
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
439
        ret = -errno;
440
        goto err;
441
    }
442

    
443
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
444
    if (ret < KVM_API_VERSION) {
445
        if (ret > 0)
446
            ret = -EINVAL;
447
        fprintf(stderr, "kvm version too old\n");
448
        goto err;
449
    }
450

    
451
    if (ret > KVM_API_VERSION) {
452
        ret = -EINVAL;
453
        fprintf(stderr, "kvm version not supported\n");
454
        goto err;
455
    }
456

    
457
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
458
    if (s->vmfd < 0)
459
        goto err;
460

    
461
    /* initially, KVM allocated its own memory and we had to jump through
462
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
463
     * just use a user allocated buffer so we can use regular pages
464
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
465
     */
466
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
467
        ret = -EINVAL;
468
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
469
                upgrade_note);
470
        goto err;
471
    }
472

    
473
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
474
     * destroyed properly.  Since we rely on this capability, refuse to work
475
     * with any kernel without this capability. */
476
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
477
        ret = -EINVAL;
478

    
479
        fprintf(stderr,
480
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
481
                upgrade_note);
482
        goto err;
483
    }
484

    
485
#ifdef KVM_CAP_COALESCED_MMIO
486
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
487
#else
488
    s->coalesced_mmio = 0;
489
#endif
490

    
491
    s->broken_set_mem_region = 1;
492
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
493
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
494
    if (ret > 0) {
495
        s->broken_set_mem_region = 0;
496
    }
497
#endif
498

    
499
    ret = kvm_arch_init(s, smp_cpus);
500
    if (ret < 0)
501
        goto err;
502

    
503
    kvm_state = s;
504

    
505
    return 0;
506

    
507
err:
508
    if (s) {
509
        if (s->vmfd != -1)
510
            close(s->vmfd);
511
        if (s->fd != -1)
512
            close(s->fd);
513
    }
514
    qemu_free(s);
515

    
516
    return ret;
517
}
518

    
519
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
520
                         int direction, int size, uint32_t count)
521
{
522
    int i;
523
    uint8_t *ptr = data;
524

    
525
    for (i = 0; i < count; i++) {
526
        if (direction == KVM_EXIT_IO_IN) {
527
            switch (size) {
528
            case 1:
529
                stb_p(ptr, cpu_inb(env, port));
530
                break;
531
            case 2:
532
                stw_p(ptr, cpu_inw(env, port));
533
                break;
534
            case 4:
535
                stl_p(ptr, cpu_inl(env, port));
536
                break;
537
            }
538
        } else {
539
            switch (size) {
540
            case 1:
541
                cpu_outb(env, port, ldub_p(ptr));
542
                break;
543
            case 2:
544
                cpu_outw(env, port, lduw_p(ptr));
545
                break;
546
            case 4:
547
                cpu_outl(env, port, ldl_p(ptr));
548
                break;
549
            }
550
        }
551

    
552
        ptr += size;
553
    }
554

    
555
    return 1;
556
}
557

    
558
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
559
{
560
#ifdef KVM_CAP_COALESCED_MMIO
561
    KVMState *s = kvm_state;
562
    if (s->coalesced_mmio) {
563
        struct kvm_coalesced_mmio_ring *ring;
564

    
565
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
566
        while (ring->first != ring->last) {
567
            struct kvm_coalesced_mmio *ent;
568

    
569
            ent = &ring->coalesced_mmio[ring->first];
570

    
571
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
572
            /* FIXME smp_wmb() */
573
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
574
        }
575
    }
576
#endif
577
}
578

    
579
int kvm_cpu_exec(CPUState *env)
580
{
581
    struct kvm_run *run = env->kvm_run;
582
    int ret;
583

    
584
    dprintf("kvm_cpu_exec()\n");
585

    
586
    do {
587
        if (env->exit_request) {
588
            dprintf("interrupt exit requested\n");
589
            ret = 0;
590
            break;
591
        }
592

    
593
        kvm_arch_pre_run(env, run);
594
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
595
        kvm_arch_post_run(env, run);
596

    
597
        if (ret == -EINTR || ret == -EAGAIN) {
598
            dprintf("io window exit\n");
599
            ret = 0;
600
            break;
601
        }
602

    
603
        if (ret < 0) {
604
            dprintf("kvm run failed %s\n", strerror(-ret));
605
            abort();
606
        }
607

    
608
        kvm_run_coalesced_mmio(env, run);
609

    
610
        ret = 0; /* exit loop */
611
        switch (run->exit_reason) {
612
        case KVM_EXIT_IO:
613
            dprintf("handle_io\n");
614
            ret = kvm_handle_io(env, run->io.port,
615
                                (uint8_t *)run + run->io.data_offset,
616
                                run->io.direction,
617
                                run->io.size,
618
                                run->io.count);
619
            break;
620
        case KVM_EXIT_MMIO:
621
            dprintf("handle_mmio\n");
622
            cpu_physical_memory_rw(run->mmio.phys_addr,
623
                                   run->mmio.data,
624
                                   run->mmio.len,
625
                                   run->mmio.is_write);
626
            ret = 1;
627
            break;
628
        case KVM_EXIT_IRQ_WINDOW_OPEN:
629
            dprintf("irq_window_open\n");
630
            break;
631
        case KVM_EXIT_SHUTDOWN:
632
            dprintf("shutdown\n");
633
            qemu_system_reset_request();
634
            ret = 1;
635
            break;
636
        case KVM_EXIT_UNKNOWN:
637
            dprintf("kvm_exit_unknown\n");
638
            break;
639
        case KVM_EXIT_FAIL_ENTRY:
640
            dprintf("kvm_exit_fail_entry\n");
641
            break;
642
        case KVM_EXIT_EXCEPTION:
643
            dprintf("kvm_exit_exception\n");
644
            break;
645
        case KVM_EXIT_DEBUG:
646
            dprintf("kvm_exit_debug\n");
647
#ifdef KVM_CAP_SET_GUEST_DEBUG
648
            if (kvm_arch_debug(&run->debug.arch)) {
649
                gdb_set_stop_cpu(env);
650
                vm_stop(EXCP_DEBUG);
651
                env->exception_index = EXCP_DEBUG;
652
                return 0;
653
            }
654
            /* re-enter, this exception was guest-internal */
655
            ret = 1;
656
#endif /* KVM_CAP_SET_GUEST_DEBUG */
657
            break;
658
        default:
659
            dprintf("kvm_arch_handle_exit\n");
660
            ret = kvm_arch_handle_exit(env, run);
661
            break;
662
        }
663
    } while (ret > 0);
664

    
665
    if (env->exit_request) {
666
        env->exit_request = 0;
667
        env->exception_index = EXCP_INTERRUPT;
668
    }
669

    
670
    return ret;
671
}
672

    
673
void kvm_set_phys_mem(target_phys_addr_t start_addr,
674
                      ram_addr_t size,
675
                      ram_addr_t phys_offset)
676
{
677
    KVMState *s = kvm_state;
678
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
679
    KVMSlot *mem, old;
680
    int err;
681

    
682
    if (start_addr & ~TARGET_PAGE_MASK) {
683
        if (flags >= IO_MEM_UNASSIGNED) {
684
            if (!kvm_lookup_overlapping_slot(s, start_addr,
685
                                             start_addr + size)) {
686
                return;
687
            }
688
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
689
        } else {
690
            fprintf(stderr, "Only page-aligned memory slots supported\n");
691
        }
692
        abort();
693
    }
694

    
695
    /* KVM does not support read-only slots */
696
    phys_offset &= ~IO_MEM_ROM;
697

    
698
    while (1) {
699
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
700
        if (!mem) {
701
            break;
702
        }
703

    
704
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
705
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
706
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
707
            /* The new slot fits into the existing one and comes with
708
             * identical parameters - nothing to be done. */
709
            return;
710
        }
711

    
712
        old = *mem;
713

    
714
        /* unregister the overlapping slot */
715
        mem->memory_size = 0;
716
        err = kvm_set_user_memory_region(s, mem);
717
        if (err) {
718
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
719
                    __func__, strerror(-err));
720
            abort();
721
        }
722

    
723
        /* Workaround for older KVM versions: we can't join slots, even not by
724
         * unregistering the previous ones and then registering the larger
725
         * slot. We have to maintain the existing fragmentation. Sigh.
726
         *
727
         * This workaround assumes that the new slot starts at the same
728
         * address as the first existing one. If not or if some overlapping
729
         * slot comes around later, we will fail (not seen in practice so far)
730
         * - and actually require a recent KVM version. */
731
        if (s->broken_set_mem_region &&
732
            old.start_addr == start_addr && old.memory_size < size &&
733
            flags < IO_MEM_UNASSIGNED) {
734
            mem = kvm_alloc_slot(s);
735
            mem->memory_size = old.memory_size;
736
            mem->start_addr = old.start_addr;
737
            mem->phys_offset = old.phys_offset;
738
            mem->flags = 0;
739

    
740
            err = kvm_set_user_memory_region(s, mem);
741
            if (err) {
742
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
743
                        strerror(-err));
744
                abort();
745
            }
746

    
747
            start_addr += old.memory_size;
748
            phys_offset += old.memory_size;
749
            size -= old.memory_size;
750
            continue;
751
        }
752

    
753
        /* register prefix slot */
754
        if (old.start_addr < start_addr) {
755
            mem = kvm_alloc_slot(s);
756
            mem->memory_size = start_addr - old.start_addr;
757
            mem->start_addr = old.start_addr;
758
            mem->phys_offset = old.phys_offset;
759
            mem->flags = 0;
760

    
761
            err = kvm_set_user_memory_region(s, mem);
762
            if (err) {
763
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
764
                        __func__, strerror(-err));
765
                abort();
766
            }
767
        }
768

    
769
        /* register suffix slot */
770
        if (old.start_addr + old.memory_size > start_addr + size) {
771
            ram_addr_t size_delta;
772

    
773
            mem = kvm_alloc_slot(s);
774
            mem->start_addr = start_addr + size;
775
            size_delta = mem->start_addr - old.start_addr;
776
            mem->memory_size = old.memory_size - size_delta;
777
            mem->phys_offset = old.phys_offset + size_delta;
778
            mem->flags = 0;
779

    
780
            err = kvm_set_user_memory_region(s, mem);
781
            if (err) {
782
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
783
                        __func__, strerror(-err));
784
                abort();
785
            }
786
        }
787
    }
788

    
789
    /* in case the KVM bug workaround already "consumed" the new slot */
790
    if (!size)
791
        return;
792

    
793
    /* KVM does not need to know about this memory */
794
    if (flags >= IO_MEM_UNASSIGNED)
795
        return;
796

    
797
    mem = kvm_alloc_slot(s);
798
    mem->memory_size = size;
799
    mem->start_addr = start_addr;
800
    mem->phys_offset = phys_offset;
801
    mem->flags = 0;
802

    
803
    err = kvm_set_user_memory_region(s, mem);
804
    if (err) {
805
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
806
                strerror(-err));
807
        abort();
808
    }
809
}
810

    
811
int kvm_ioctl(KVMState *s, int type, ...)
812
{
813
    int ret;
814
    void *arg;
815
    va_list ap;
816

    
817
    va_start(ap, type);
818
    arg = va_arg(ap, void *);
819
    va_end(ap);
820

    
821
    ret = ioctl(s->fd, type, arg);
822
    if (ret == -1)
823
        ret = -errno;
824

    
825
    return ret;
826
}
827

    
828
int kvm_vm_ioctl(KVMState *s, int type, ...)
829
{
830
    int ret;
831
    void *arg;
832
    va_list ap;
833

    
834
    va_start(ap, type);
835
    arg = va_arg(ap, void *);
836
    va_end(ap);
837

    
838
    ret = ioctl(s->vmfd, type, arg);
839
    if (ret == -1)
840
        ret = -errno;
841

    
842
    return ret;
843
}
844

    
845
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
846
{
847
    int ret;
848
    void *arg;
849
    va_list ap;
850

    
851
    va_start(ap, type);
852
    arg = va_arg(ap, void *);
853
    va_end(ap);
854

    
855
    ret = ioctl(env->kvm_fd, type, arg);
856
    if (ret == -1)
857
        ret = -errno;
858

    
859
    return ret;
860
}
861

    
862
int kvm_has_sync_mmu(void)
863
{
864
#ifdef KVM_CAP_SYNC_MMU
865
    KVMState *s = kvm_state;
866

    
867
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
868
#else
869
    return 0;
870
#endif
871
}
872

    
873
void kvm_setup_guest_memory(void *start, size_t size)
874
{
875
    if (!kvm_has_sync_mmu()) {
876
#ifdef MADV_DONTFORK
877
        int ret = madvise(start, size, MADV_DONTFORK);
878

    
879
        if (ret) {
880
            perror("madvice");
881
            exit(1);
882
        }
883
#else
884
        fprintf(stderr,
885
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
886
        exit(1);
887
#endif
888
    }
889
}
890

    
891
#ifdef KVM_CAP_SET_GUEST_DEBUG
892
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
893
{
894
    if (env == cpu_single_env) {
895
        func(data);
896
        return;
897
    }
898
    abort();
899
}
900

    
901
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
902
                                                 target_ulong pc)
903
{
904
    struct kvm_sw_breakpoint *bp;
905

    
906
    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
907
        if (bp->pc == pc)
908
            return bp;
909
    }
910
    return NULL;
911
}
912

    
913
int kvm_sw_breakpoints_active(CPUState *env)
914
{
915
    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
916
}
917

    
918
struct kvm_set_guest_debug_data {
919
    struct kvm_guest_debug dbg;
920
    CPUState *env;
921
    int err;
922
};
923

    
924
static void kvm_invoke_set_guest_debug(void *data)
925
{
926
    struct kvm_set_guest_debug_data *dbg_data = data;
927
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
928
}
929

    
930
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
931
{
932
    struct kvm_set_guest_debug_data data;
933

    
934
    data.dbg.control = 0;
935
    if (env->singlestep_enabled)
936
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
937

    
938
    kvm_arch_update_guest_debug(env, &data.dbg);
939
    data.dbg.control |= reinject_trap;
940
    data.env = env;
941

    
942
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
943
    return data.err;
944
}
945

    
946
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
947
                          target_ulong len, int type)
948
{
949
    struct kvm_sw_breakpoint *bp;
950
    CPUState *env;
951
    int err;
952

    
953
    if (type == GDB_BREAKPOINT_SW) {
954
        bp = kvm_find_sw_breakpoint(current_env, addr);
955
        if (bp) {
956
            bp->use_count++;
957
            return 0;
958
        }
959

    
960
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
961
        if (!bp)
962
            return -ENOMEM;
963

    
964
        bp->pc = addr;
965
        bp->use_count = 1;
966
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
967
        if (err) {
968
            free(bp);
969
            return err;
970
        }
971

    
972
        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
973
                          bp, entry);
974
    } else {
975
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
976
        if (err)
977
            return err;
978
    }
979

    
980
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
981
        err = kvm_update_guest_debug(env, 0);
982
        if (err)
983
            return err;
984
    }
985
    return 0;
986
}
987

    
988
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
989
                          target_ulong len, int type)
990
{
991
    struct kvm_sw_breakpoint *bp;
992
    CPUState *env;
993
    int err;
994

    
995
    if (type == GDB_BREAKPOINT_SW) {
996
        bp = kvm_find_sw_breakpoint(current_env, addr);
997
        if (!bp)
998
            return -ENOENT;
999

    
1000
        if (bp->use_count > 1) {
1001
            bp->use_count--;
1002
            return 0;
1003
        }
1004

    
1005
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1006
        if (err)
1007
            return err;
1008

    
1009
        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1010
        qemu_free(bp);
1011
    } else {
1012
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1013
        if (err)
1014
            return err;
1015
    }
1016

    
1017
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1018
        err = kvm_update_guest_debug(env, 0);
1019
        if (err)
1020
            return err;
1021
    }
1022
    return 0;
1023
}
1024

    
1025
void kvm_remove_all_breakpoints(CPUState *current_env)
1026
{
1027
    struct kvm_sw_breakpoint *bp, *next;
1028
    KVMState *s = current_env->kvm_state;
1029
    CPUState *env;
1030

    
1031
    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1032
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1033
            /* Try harder to find a CPU that currently sees the breakpoint. */
1034
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1035
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1036
                    break;
1037
            }
1038
        }
1039
    }
1040
    kvm_arch_remove_all_hw_breakpoints();
1041

    
1042
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1043
        kvm_update_guest_debug(env, 0);
1044
}
1045

    
1046
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1047

    
1048
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1049
{
1050
    return -EINVAL;
1051
}
1052

    
1053
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1054
                          target_ulong len, int type)
1055
{
1056
    return -EINVAL;
1057
}
1058

    
1059
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1060
                          target_ulong len, int type)
1061
{
1062
    return -EINVAL;
1063
}
1064

    
1065
void kvm_remove_all_breakpoints(CPUState *current_env)
1066
{
1067
}
1068
#endif /* !KVM_CAP_SET_GUEST_DEBUG */