Statistics
| Branch: | Revision:

root / hw / usb / hcd-ehci.c @ 0cdd3d14

History | View | Annotate | Download (67 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 */
24

    
25
#include "hw/hw.h"
26
#include "qemu-timer.h"
27
#include "hw/usb.h"
28
#include "hw/pci.h"
29
#include "monitor.h"
30
#include "trace.h"
31
#include "dma.h"
32

    
33
#define EHCI_DEBUG   0
34

    
35
#if EHCI_DEBUG
36
#define DPRINTF printf
37
#else
38
#define DPRINTF(...)
39
#endif
40

    
41
/* internal processing - reset HC to try and recover */
42
#define USB_RET_PROCERR   (-99)
43

    
44
#define MMIO_SIZE        0x1000
45

    
46
/* Capability Registers Base Address - section 2.2 */
47
#define CAPREGBASE       0x0000
48
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
49
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
50
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
51
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
52
#define EECP             HCCPARAMS + 1
53
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
54
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
55

    
56
#define OPREGBASE        0x0020        // Operational Registers Base Address
57

    
58
#define USBCMD           OPREGBASE + 0x0000
59
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
60
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
61
#define USBCMD_FLS       (3 << 2)      // Frame List Size
62
#define USBCMD_FLS_SH    2             // Frame List Size Shift
63
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
64
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
65
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
66
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
67
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
68
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
69
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
70
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
71

    
72
#define USBSTS           OPREGBASE + 0x0004
73
#define USBSTS_RO_MASK   0x0000003f
74
#define USBSTS_INT       (1 << 0)      // USB Interrupt
75
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
76
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
77
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
78
#define USBSTS_HSE       (1 << 4)      // Host System Error
79
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
80
#define USBSTS_HALT      (1 << 12)     // HC Halted
81
#define USBSTS_REC       (1 << 13)     // Reclamation
82
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
83
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
84

    
85
/*
86
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
87
 *  so no need to redefine here.
88
 */
89
#define USBINTR              OPREGBASE + 0x0008
90
#define USBINTR_MASK         0x0000003f
91

    
92
#define FRINDEX              OPREGBASE + 0x000c
93
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
94
#define PERIODICLISTBASE     OPREGBASE + 0x0014
95
#define ASYNCLISTADDR        OPREGBASE + 0x0018
96
#define ASYNCLISTADDR_MASK   0xffffffe0
97

    
98
#define CONFIGFLAG           OPREGBASE + 0x0040
99

    
100
#define PORTSC               (OPREGBASE + 0x0044)
101
#define PORTSC_BEGIN         PORTSC
102
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
103
/*
104
 * Bits that are reserved or are read-only are masked out of values
105
 * written to us by software
106
 */
107
#define PORTSC_RO_MASK       0x007001c0
108
#define PORTSC_RWC_MASK      0x0000002a
109
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
110
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
111
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
112
#define PORTSC_PTC           (15 << 16)   // Port Test Control
113
#define PORTSC_PTC_SH        16           // Port Test Control shift
114
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
115
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
116
#define PORTSC_POWNER        (1 << 13)    // Port Owner
117
#define PORTSC_PPOWER        (1 << 12)    // Port Power
118
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
119
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
120
#define PORTSC_PRESET        (1 << 8)     // Port Reset
121
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
122
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
123
#define PORTSC_OCC           (1 << 5)     // Over Current Change
124
#define PORTSC_OCA           (1 << 4)     // Over Current Active
125
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
126
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
127
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
128
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
129

    
130
#define FRAME_TIMER_FREQ 1000
131
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
132

    
133
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
134
#define NB_PORTS         6        // Number of downstream ports
135
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
136
#define MAX_QH           100      // Max allowable queue heads in a chain
137

    
138
/*  Internal periodic / asynchronous schedule state machine states
139
 */
140
typedef enum {
141
    EST_INACTIVE = 1000,
142
    EST_ACTIVE,
143
    EST_EXECUTING,
144
    EST_SLEEPING,
145
    /*  The following states are internal to the state machine function
146
    */
147
    EST_WAITLISTHEAD,
148
    EST_FETCHENTRY,
149
    EST_FETCHQH,
150
    EST_FETCHITD,
151
    EST_FETCHSITD,
152
    EST_ADVANCEQUEUE,
153
    EST_FETCHQTD,
154
    EST_EXECUTE,
155
    EST_WRITEBACK,
156
    EST_HORIZONTALQH
157
} EHCI_STATES;
158

    
159
/* macros for accessing fields within next link pointer entry */
160
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
161
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
162
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
163

    
164
/* link pointer types */
165
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
166
#define NLPTR_TYPE_QH            1     // queue head
167
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
168
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
169

    
170

    
171
/*  EHCI spec version 1.0 Section 3.3
172
 */
173
typedef struct EHCIitd {
174
    uint32_t next;
175

    
176
    uint32_t transact[8];
177
#define ITD_XACT_ACTIVE          (1 << 31)
178
#define ITD_XACT_DBERROR         (1 << 30)
179
#define ITD_XACT_BABBLE          (1 << 29)
180
#define ITD_XACT_XACTERR         (1 << 28)
181
#define ITD_XACT_LENGTH_MASK     0x0fff0000
182
#define ITD_XACT_LENGTH_SH       16
183
#define ITD_XACT_IOC             (1 << 15)
184
#define ITD_XACT_PGSEL_MASK      0x00007000
185
#define ITD_XACT_PGSEL_SH        12
186
#define ITD_XACT_OFFSET_MASK     0x00000fff
187

    
188
    uint32_t bufptr[7];
189
#define ITD_BUFPTR_MASK          0xfffff000
190
#define ITD_BUFPTR_SH            12
191
#define ITD_BUFPTR_EP_MASK       0x00000f00
192
#define ITD_BUFPTR_EP_SH         8
193
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
194
#define ITD_BUFPTR_DEVADDR_SH    0
195
#define ITD_BUFPTR_DIRECTION     (1 << 11)
196
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
197
#define ITD_BUFPTR_MAXPKT_SH     0
198
#define ITD_BUFPTR_MULT_MASK     0x00000003
199
#define ITD_BUFPTR_MULT_SH       0
200
} EHCIitd;
201

    
202
/*  EHCI spec version 1.0 Section 3.4
203
 */
204
typedef struct EHCIsitd {
205
    uint32_t next;                  // Standard next link pointer
206
    uint32_t epchar;
207
#define SITD_EPCHAR_IO              (1 << 31)
208
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
209
#define SITD_EPCHAR_PORTNUM_SH      24
210
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
211
#define SITD_EPCHAR_HUBADDR_SH      16
212
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
213
#define SITD_EPCHAR_EPNUM_SH        8
214
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
215

    
216
    uint32_t uframe;
217
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
218
#define SITD_UFRAME_CMASK_SH        8
219
#define SITD_UFRAME_SMASK_MASK      0x000000ff
220

    
221
    uint32_t results;
222
#define SITD_RESULTS_IOC              (1 << 31)
223
#define SITD_RESULTS_PGSEL            (1 << 30)
224
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
225
#define SITD_RESULTS_TYBYTES_SH       16
226
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
227
#define SITD_RESULTS_CPROGMASK_SH     8
228
#define SITD_RESULTS_ACTIVE           (1 << 7)
229
#define SITD_RESULTS_ERR              (1 << 6)
230
#define SITD_RESULTS_DBERR            (1 << 5)
231
#define SITD_RESULTS_BABBLE           (1 << 4)
232
#define SITD_RESULTS_XACTERR          (1 << 3)
233
#define SITD_RESULTS_MISSEDUF         (1 << 2)
234
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
235

    
236
    uint32_t bufptr[2];
237
#define SITD_BUFPTR_MASK              0xfffff000
238
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
239
#define SITD_BUFPTR_TPOS_MASK         0x00000018
240
#define SITD_BUFPTR_TPOS_SH           3
241
#define SITD_BUFPTR_TCNT_MASK         0x00000007
242

    
243
    uint32_t backptr;                 // Standard next link pointer
244
} EHCIsitd;
245

    
246
/*  EHCI spec version 1.0 Section 3.5
247
 */
248
typedef struct EHCIqtd {
249
    uint32_t next;                    // Standard next link pointer
250
    uint32_t altnext;                 // Standard next link pointer
251
    uint32_t token;
252
#define QTD_TOKEN_DTOGGLE             (1 << 31)
253
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
254
#define QTD_TOKEN_TBYTES_SH           16
255
#define QTD_TOKEN_IOC                 (1 << 15)
256
#define QTD_TOKEN_CPAGE_MASK          0x00007000
257
#define QTD_TOKEN_CPAGE_SH            12
258
#define QTD_TOKEN_CERR_MASK           0x00000c00
259
#define QTD_TOKEN_CERR_SH             10
260
#define QTD_TOKEN_PID_MASK            0x00000300
261
#define QTD_TOKEN_PID_SH              8
262
#define QTD_TOKEN_ACTIVE              (1 << 7)
263
#define QTD_TOKEN_HALT                (1 << 6)
264
#define QTD_TOKEN_DBERR               (1 << 5)
265
#define QTD_TOKEN_BABBLE              (1 << 4)
266
#define QTD_TOKEN_XACTERR             (1 << 3)
267
#define QTD_TOKEN_MISSEDUF            (1 << 2)
268
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
269
#define QTD_TOKEN_PING                (1 << 0)
270

    
271
    uint32_t bufptr[5];               // Standard buffer pointer
272
#define QTD_BUFPTR_MASK               0xfffff000
273
#define QTD_BUFPTR_SH                 12
274
} EHCIqtd;
275

    
276
/*  EHCI spec version 1.0 Section 3.6
277
 */
278
typedef struct EHCIqh {
279
    uint32_t next;                    // Standard next link pointer
280

    
281
    /* endpoint characteristics */
282
    uint32_t epchar;
283
#define QH_EPCHAR_RL_MASK             0xf0000000
284
#define QH_EPCHAR_RL_SH               28
285
#define QH_EPCHAR_C                   (1 << 27)
286
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287
#define QH_EPCHAR_MPLEN_SH            16
288
#define QH_EPCHAR_H                   (1 << 15)
289
#define QH_EPCHAR_DTC                 (1 << 14)
290
#define QH_EPCHAR_EPS_MASK            0x00003000
291
#define QH_EPCHAR_EPS_SH              12
292
#define EHCI_QH_EPS_FULL              0
293
#define EHCI_QH_EPS_LOW               1
294
#define EHCI_QH_EPS_HIGH              2
295
#define EHCI_QH_EPS_RESERVED          3
296

    
297
#define QH_EPCHAR_EP_MASK             0x00000f00
298
#define QH_EPCHAR_EP_SH               8
299
#define QH_EPCHAR_I                   (1 << 7)
300
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301
#define QH_EPCHAR_DEVADDR_SH          0
302

    
303
    /* endpoint capabilities */
304
    uint32_t epcap;
305
#define QH_EPCAP_MULT_MASK            0xc0000000
306
#define QH_EPCAP_MULT_SH              30
307
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
308
#define QH_EPCAP_PORTNUM_SH           23
309
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
310
#define QH_EPCAP_HUBADDR_SH           16
311
#define QH_EPCAP_CMASK_MASK           0x0000ff00
312
#define QH_EPCAP_CMASK_SH             8
313
#define QH_EPCAP_SMASK_MASK           0x000000ff
314
#define QH_EPCAP_SMASK_SH             0
315

    
316
    uint32_t current_qtd;             // Standard next link pointer
317
    uint32_t next_qtd;                // Standard next link pointer
318
    uint32_t altnext_qtd;
319
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320
#define QH_ALTNEXT_NAKCNT_SH          1
321

    
322
    uint32_t token;                   // Same as QTD token
323
    uint32_t bufptr[5];               // Standard buffer pointer
324
#define BUFPTR_CPROGMASK_MASK         0x000000ff
325
#define BUFPTR_FRAMETAG_MASK          0x0000001f
326
#define BUFPTR_SBYTES_MASK            0x00000fe0
327
#define BUFPTR_SBYTES_SH              5
328
} EHCIqh;
329

    
330
/*  EHCI spec version 1.0 Section 3.7
331
 */
332
typedef struct EHCIfstn {
333
    uint32_t next;                    // Standard next link pointer
334
    uint32_t backptr;                 // Standard next link pointer
335
} EHCIfstn;
336

    
337
typedef struct EHCIQueue EHCIQueue;
338
typedef struct EHCIState EHCIState;
339

    
340
enum async_state {
341
    EHCI_ASYNC_NONE = 0,
342
    EHCI_ASYNC_INFLIGHT,
343
    EHCI_ASYNC_FINISHED,
344
};
345

    
346
struct EHCIQueue {
347
    EHCIState *ehci;
348
    QTAILQ_ENTRY(EHCIQueue) next;
349
    uint32_t seen;
350
    uint64_t ts;
351

    
352
    /* cached data from guest - needs to be flushed
353
     * when guest removes an entry (doorbell, handshake sequence)
354
     */
355
    EHCIqh qh;             // copy of current QH (being worked on)
356
    uint32_t qhaddr;       // address QH read from
357
    EHCIqtd qtd;           // copy of current QTD (being worked on)
358
    uint32_t qtdaddr;      // address QTD read from
359

    
360
    USBPacket packet;
361
    QEMUSGList sgl;
362
    int pid;
363
    uint32_t tbytes;
364
    enum async_state async;
365
    int usb_status;
366
};
367

    
368
typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    MemoryRegion mem;
375
    int companion_count;
376

    
377
    /* properties */
378
    uint32_t freq;
379
    uint32_t maxframes;
380

    
381
    /*
382
     *  EHCI spec version 1.0 Section 2.3
383
     *  Host Controller Operational Registers
384
     */
385
    union {
386
        uint8_t mmio[MMIO_SIZE];
387
        struct {
388
            uint8_t cap[OPREGBASE];
389
            uint32_t usbcmd;
390
            uint32_t usbsts;
391
            uint32_t usbintr;
392
            uint32_t frindex;
393
            uint32_t ctrldssegment;
394
            uint32_t periodiclistbase;
395
            uint32_t asynclistaddr;
396
            uint32_t notused[9];
397
            uint32_t configflag;
398
            uint32_t portsc[NB_PORTS];
399
        };
400
    };
401

    
402
    /*
403
     *  Internal states, shadow registers, etc
404
     */
405
    QEMUTimer *frame_timer;
406
    int attach_poll_counter;
407
    int astate;                        // Current state in asynchronous schedule
408
    int pstate;                        // Current state in periodic schedule
409
    USBPort ports[NB_PORTS];
410
    USBPort *companion_ports[NB_PORTS];
411
    uint32_t usbsts_pending;
412
    EHCIQueueHead aqueues;
413
    EHCIQueueHead pqueues;
414

    
415
    uint32_t a_fetch_addr;   // which address to look at next
416
    uint32_t p_fetch_addr;   // which address to look at next
417

    
418
    USBPacket ipacket;
419
    QEMUSGList isgl;
420

    
421
    uint64_t last_run_ns;
422
};
423

    
424
#define SET_LAST_RUN_CLOCK(s) \
425
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426

    
427
/* nifty macros from Arnon's EHCI version  */
428
#define get_field(data, field) \
429
    (((data) & field##_MASK) >> field##_SH)
430

    
431
#define set_field(data, newval, field) do { \
432
    uint32_t val = *data; \
433
    val &= ~ field##_MASK; \
434
    val |= ((newval) << field##_SH) & field##_MASK; \
435
    *data = val; \
436
    } while(0)
437

    
438
static const char *ehci_state_names[] = {
439
    [EST_INACTIVE]     = "INACTIVE",
440
    [EST_ACTIVE]       = "ACTIVE",
441
    [EST_EXECUTING]    = "EXECUTING",
442
    [EST_SLEEPING]     = "SLEEPING",
443
    [EST_WAITLISTHEAD] = "WAITLISTHEAD",
444
    [EST_FETCHENTRY]   = "FETCH ENTRY",
445
    [EST_FETCHQH]      = "FETCH QH",
446
    [EST_FETCHITD]     = "FETCH ITD",
447
    [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
448
    [EST_FETCHQTD]     = "FETCH QTD",
449
    [EST_EXECUTE]      = "EXECUTE",
450
    [EST_WRITEBACK]    = "WRITEBACK",
451
    [EST_HORIZONTALQH] = "HORIZONTALQH",
452
};
453

    
454
static const char *ehci_mmio_names[] = {
455
    [CAPLENGTH]         = "CAPLENGTH",
456
    [HCIVERSION]        = "HCIVERSION",
457
    [HCSPARAMS]         = "HCSPARAMS",
458
    [HCCPARAMS]         = "HCCPARAMS",
459
    [USBCMD]            = "USBCMD",
460
    [USBSTS]            = "USBSTS",
461
    [USBINTR]           = "USBINTR",
462
    [FRINDEX]           = "FRINDEX",
463
    [PERIODICLISTBASE]  = "P-LIST BASE",
464
    [ASYNCLISTADDR]     = "A-LIST ADDR",
465
    [PORTSC_BEGIN]      = "PORTSC #0",
466
    [PORTSC_BEGIN + 4]  = "PORTSC #1",
467
    [PORTSC_BEGIN + 8]  = "PORTSC #2",
468
    [PORTSC_BEGIN + 12] = "PORTSC #3",
469
    [PORTSC_BEGIN + 16] = "PORTSC #4",
470
    [PORTSC_BEGIN + 20] = "PORTSC #5",
471
    [CONFIGFLAG]        = "CONFIGFLAG",
472
};
473

    
474
static const char *nr2str(const char **n, size_t len, uint32_t nr)
475
{
476
    if (nr < len && n[nr] != NULL) {
477
        return n[nr];
478
    } else {
479
        return "unknown";
480
    }
481
}
482

    
483
static const char *state2str(uint32_t state)
484
{
485
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
486
}
487

    
488
static const char *addr2str(target_phys_addr_t addr)
489
{
490
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
491
}
492

    
493
static void ehci_trace_usbsts(uint32_t mask, int state)
494
{
495
    /* interrupts */
496
    if (mask & USBSTS_INT) {
497
        trace_usb_ehci_usbsts("INT", state);
498
    }
499
    if (mask & USBSTS_ERRINT) {
500
        trace_usb_ehci_usbsts("ERRINT", state);
501
    }
502
    if (mask & USBSTS_PCD) {
503
        trace_usb_ehci_usbsts("PCD", state);
504
    }
505
    if (mask & USBSTS_FLR) {
506
        trace_usb_ehci_usbsts("FLR", state);
507
    }
508
    if (mask & USBSTS_HSE) {
509
        trace_usb_ehci_usbsts("HSE", state);
510
    }
511
    if (mask & USBSTS_IAA) {
512
        trace_usb_ehci_usbsts("IAA", state);
513
    }
514

    
515
    /* status */
516
    if (mask & USBSTS_HALT) {
517
        trace_usb_ehci_usbsts("HALT", state);
518
    }
519
    if (mask & USBSTS_REC) {
520
        trace_usb_ehci_usbsts("REC", state);
521
    }
522
    if (mask & USBSTS_PSS) {
523
        trace_usb_ehci_usbsts("PSS", state);
524
    }
525
    if (mask & USBSTS_ASS) {
526
        trace_usb_ehci_usbsts("ASS", state);
527
    }
528
}
529

    
530
static inline void ehci_set_usbsts(EHCIState *s, int mask)
531
{
532
    if ((s->usbsts & mask) == mask) {
533
        return;
534
    }
535
    ehci_trace_usbsts(mask, 1);
536
    s->usbsts |= mask;
537
}
538

    
539
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
540
{
541
    if ((s->usbsts & mask) == 0) {
542
        return;
543
    }
544
    ehci_trace_usbsts(mask, 0);
545
    s->usbsts &= ~mask;
546
}
547

    
548
static inline void ehci_set_interrupt(EHCIState *s, int intr)
549
{
550
    int level = 0;
551

    
552
    // TODO honour interrupt threshold requests
553

    
554
    ehci_set_usbsts(s, intr);
555

    
556
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
557
        level = 1;
558
    }
559

    
560
    qemu_set_irq(s->irq, level);
561
}
562

    
563
static inline void ehci_record_interrupt(EHCIState *s, int intr)
564
{
565
    s->usbsts_pending |= intr;
566
}
567

    
568
static inline void ehci_commit_interrupt(EHCIState *s)
569
{
570
    if (!s->usbsts_pending) {
571
        return;
572
    }
573
    ehci_set_interrupt(s, s->usbsts_pending);
574
    s->usbsts_pending = 0;
575
}
576

    
577
static void ehci_set_state(EHCIState *s, int async, int state)
578
{
579
    if (async) {
580
        trace_usb_ehci_state("async", state2str(state));
581
        s->astate = state;
582
    } else {
583
        trace_usb_ehci_state("periodic", state2str(state));
584
        s->pstate = state;
585
    }
586
}
587

    
588
static int ehci_get_state(EHCIState *s, int async)
589
{
590
    return async ? s->astate : s->pstate;
591
}
592

    
593
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
594
{
595
    if (async) {
596
        s->a_fetch_addr = addr;
597
    } else {
598
        s->p_fetch_addr = addr;
599
    }
600
}
601

    
602
static int ehci_get_fetch_addr(EHCIState *s, int async)
603
{
604
    return async ? s->a_fetch_addr : s->p_fetch_addr;
605
}
606

    
607
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
608
{
609
    /* need three here due to argument count limits */
610
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
611
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
612
    trace_usb_ehci_qh_fields(addr,
613
                             get_field(qh->epchar, QH_EPCHAR_RL),
614
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
615
                             get_field(qh->epchar, QH_EPCHAR_EPS),
616
                             get_field(qh->epchar, QH_EPCHAR_EP),
617
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
618
    trace_usb_ehci_qh_bits(addr,
619
                           (bool)(qh->epchar & QH_EPCHAR_C),
620
                           (bool)(qh->epchar & QH_EPCHAR_H),
621
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
622
                           (bool)(qh->epchar & QH_EPCHAR_I));
623
}
624

    
625
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
626
{
627
    /* need three here due to argument count limits */
628
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
629
    trace_usb_ehci_qtd_fields(addr,
630
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
631
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
632
                              get_field(qtd->token, QTD_TOKEN_CERR),
633
                              get_field(qtd->token, QTD_TOKEN_PID));
634
    trace_usb_ehci_qtd_bits(addr,
635
                            (bool)(qtd->token & QTD_TOKEN_IOC),
636
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
637
                            (bool)(qtd->token & QTD_TOKEN_HALT),
638
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
639
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
640
}
641

    
642
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
643
{
644
    trace_usb_ehci_itd(addr, itd->next,
645
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
646
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
647
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
648
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
649
}
650

    
651
static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
652
                            EHCIsitd *sitd)
653
{
654
    trace_usb_ehci_sitd(addr, sitd->next,
655
                        (bool)(sitd->results & SITD_RESULTS_ACTIVE));
656
}
657

    
658
/* queue management */
659

    
660
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
661
{
662
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
663
    EHCIQueue *q;
664

    
665
    q = g_malloc0(sizeof(*q));
666
    q->ehci = ehci;
667
    usb_packet_init(&q->packet);
668
    QTAILQ_INSERT_HEAD(head, q, next);
669
    trace_usb_ehci_queue_action(q, "alloc");
670
    return q;
671
}
672

    
673
static void ehci_free_queue(EHCIQueue *q, int async)
674
{
675
    EHCIQueueHead *head = async ? &q->ehci->aqueues : &q->ehci->pqueues;
676
    trace_usb_ehci_queue_action(q, "free");
677
    if (q->async == EHCI_ASYNC_INFLIGHT) {
678
        usb_cancel_packet(&q->packet);
679
    }
680
    QTAILQ_REMOVE(head, q, next);
681
    g_free(q);
682
}
683

    
684
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
685
                                        int async)
686
{
687
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
688
    EHCIQueue *q;
689

    
690
    QTAILQ_FOREACH(q, head, next) {
691
        if (addr == q->qhaddr) {
692
            return q;
693
        }
694
    }
695
    return NULL;
696
}
697

    
698
static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
699
{
700
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
701
    EHCIQueue *q, *tmp;
702

    
703
    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
704
        if (q->seen) {
705
            q->seen = 0;
706
            q->ts = ehci->last_run_ns;
707
            continue;
708
        }
709
        if (!flush && ehci->last_run_ns < q->ts + 250000000) {
710
            /* allow 0.25 sec idle */
711
            continue;
712
        }
713
        ehci_free_queue(q, async);
714
    }
715
}
716

    
717
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
718
{
719
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
720
    EHCIQueue *q, *tmp;
721

    
722
    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
723
        if (!usb_packet_is_inflight(&q->packet) ||
724
            q->packet.ep->dev != dev) {
725
            continue;
726
        }
727
        ehci_free_queue(q, async);
728
    }
729
}
730

    
731
static void ehci_queues_rip_all(EHCIState *ehci, int async)
732
{
733
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
734
    EHCIQueue *q, *tmp;
735

    
736
    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
737
        ehci_free_queue(q, async);
738
    }
739
}
740

    
741
/* Attach or detach a device on root hub */
742

    
743
static void ehci_attach(USBPort *port)
744
{
745
    EHCIState *s = port->opaque;
746
    uint32_t *portsc = &s->portsc[port->index];
747

    
748
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
749

    
750
    if (*portsc & PORTSC_POWNER) {
751
        USBPort *companion = s->companion_ports[port->index];
752
        companion->dev = port->dev;
753
        companion->ops->attach(companion);
754
        return;
755
    }
756

    
757
    *portsc |= PORTSC_CONNECT;
758
    *portsc |= PORTSC_CSC;
759

    
760
    ehci_set_interrupt(s, USBSTS_PCD);
761
}
762

    
763
static void ehci_detach(USBPort *port)
764
{
765
    EHCIState *s = port->opaque;
766
    uint32_t *portsc = &s->portsc[port->index];
767

    
768
    trace_usb_ehci_port_detach(port->index);
769

    
770
    if (*portsc & PORTSC_POWNER) {
771
        USBPort *companion = s->companion_ports[port->index];
772
        companion->ops->detach(companion);
773
        companion->dev = NULL;
774
        /*
775
         * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
776
         * the port ownership is returned immediately to the EHCI controller."
777
         */
778
        *portsc &= ~PORTSC_POWNER;
779
        return;
780
    }
781

    
782
    ehci_queues_rip_device(s, port->dev, 0);
783
    ehci_queues_rip_device(s, port->dev, 1);
784

    
785
    *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
786
    *portsc |= PORTSC_CSC;
787

    
788
    ehci_set_interrupt(s, USBSTS_PCD);
789
}
790

    
791
static void ehci_child_detach(USBPort *port, USBDevice *child)
792
{
793
    EHCIState *s = port->opaque;
794
    uint32_t portsc = s->portsc[port->index];
795

    
796
    if (portsc & PORTSC_POWNER) {
797
        USBPort *companion = s->companion_ports[port->index];
798
        companion->ops->child_detach(companion, child);
799
        return;
800
    }
801

    
802
    ehci_queues_rip_device(s, child, 0);
803
    ehci_queues_rip_device(s, child, 1);
804
}
805

    
806
static void ehci_wakeup(USBPort *port)
807
{
808
    EHCIState *s = port->opaque;
809
    uint32_t portsc = s->portsc[port->index];
810

    
811
    if (portsc & PORTSC_POWNER) {
812
        USBPort *companion = s->companion_ports[port->index];
813
        if (companion->ops->wakeup) {
814
            companion->ops->wakeup(companion);
815
        }
816
    }
817
}
818

    
819
static int ehci_register_companion(USBBus *bus, USBPort *ports[],
820
                                   uint32_t portcount, uint32_t firstport)
821
{
822
    EHCIState *s = container_of(bus, EHCIState, bus);
823
    uint32_t i;
824

    
825
    if (firstport + portcount > NB_PORTS) {
826
        qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
827
                      "firstport on masterbus");
828
        error_printf_unless_qmp(
829
            "firstport value of %u makes companion take ports %u - %u, which "
830
            "is outside of the valid range of 0 - %u\n", firstport, firstport,
831
            firstport + portcount - 1, NB_PORTS - 1);
832
        return -1;
833
    }
834

    
835
    for (i = 0; i < portcount; i++) {
836
        if (s->companion_ports[firstport + i]) {
837
            qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
838
                          "an USB masterbus");
839
            error_printf_unless_qmp(
840
                "port %u on masterbus %s already has a companion assigned\n",
841
                firstport + i, bus->qbus.name);
842
            return -1;
843
        }
844
    }
845

    
846
    for (i = 0; i < portcount; i++) {
847
        s->companion_ports[firstport + i] = ports[i];
848
        s->ports[firstport + i].speedmask |=
849
            USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
850
        /* Ensure devs attached before the initial reset go to the companion */
851
        s->portsc[firstport + i] = PORTSC_POWNER;
852
    }
853

    
854
    s->companion_count++;
855
    s->mmio[0x05] = (s->companion_count << 4) | portcount;
856

    
857
    return 0;
858
}
859

    
860
static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
861
{
862
    USBDevice *dev;
863
    USBPort *port;
864
    int i;
865

    
866
    for (i = 0; i < NB_PORTS; i++) {
867
        port = &ehci->ports[i];
868
        if (!(ehci->portsc[i] & PORTSC_PED)) {
869
            DPRINTF("Port %d not enabled\n", i);
870
            continue;
871
        }
872
        dev = usb_find_device(port, addr);
873
        if (dev != NULL) {
874
            return dev;
875
        }
876
    }
877
    return NULL;
878
}
879

    
880
/* 4.1 host controller initialization */
881
static void ehci_reset(void *opaque)
882
{
883
    EHCIState *s = opaque;
884
    int i;
885
    USBDevice *devs[NB_PORTS];
886

    
887
    trace_usb_ehci_reset();
888

    
889
    /*
890
     * Do the detach before touching portsc, so that it correctly gets send to
891
     * us or to our companion based on PORTSC_POWNER before the reset.
892
     */
893
    for(i = 0; i < NB_PORTS; i++) {
894
        devs[i] = s->ports[i].dev;
895
        if (devs[i] && devs[i]->attached) {
896
            usb_detach(&s->ports[i]);
897
        }
898
    }
899

    
900
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
901

    
902
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
903
    s->usbsts = USBSTS_HALT;
904

    
905
    s->astate = EST_INACTIVE;
906
    s->pstate = EST_INACTIVE;
907
    s->attach_poll_counter = 0;
908

    
909
    for(i = 0; i < NB_PORTS; i++) {
910
        if (s->companion_ports[i]) {
911
            s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
912
        } else {
913
            s->portsc[i] = PORTSC_PPOWER;
914
        }
915
        if (devs[i] && devs[i]->attached) {
916
            usb_attach(&s->ports[i]);
917
            usb_device_reset(devs[i]);
918
        }
919
    }
920
    ehci_queues_rip_all(s, 0);
921
    ehci_queues_rip_all(s, 1);
922
    qemu_del_timer(s->frame_timer);
923
}
924

    
925
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
926
{
927
    EHCIState *s = ptr;
928
    uint32_t val;
929

    
930
    val = s->mmio[addr];
931

    
932
    return val;
933
}
934

    
935
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
936
{
937
    EHCIState *s = ptr;
938
    uint32_t val;
939

    
940
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
941

    
942
    return val;
943
}
944

    
945
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
946
{
947
    EHCIState *s = ptr;
948
    uint32_t val;
949

    
950
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
951
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
952

    
953
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
954
    return val;
955
}
956

    
957
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
958
{
959
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
960
    exit(1);
961
}
962

    
963
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
964
{
965
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
966
    exit(1);
967
}
968

    
969
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
970
{
971
    USBDevice *dev = s->ports[port].dev;
972
    uint32_t *portsc = &s->portsc[port];
973
    uint32_t orig;
974

    
975
    if (s->companion_ports[port] == NULL)
976
        return;
977

    
978
    owner = owner & PORTSC_POWNER;
979
    orig  = *portsc & PORTSC_POWNER;
980

    
981
    if (!(owner ^ orig)) {
982
        return;
983
    }
984

    
985
    if (dev && dev->attached) {
986
        usb_detach(&s->ports[port]);
987
    }
988

    
989
    *portsc &= ~PORTSC_POWNER;
990
    *portsc |= owner;
991

    
992
    if (dev && dev->attached) {
993
        usb_attach(&s->ports[port]);
994
    }
995
}
996

    
997
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
998
{
999
    uint32_t *portsc = &s->portsc[port];
1000
    USBDevice *dev = s->ports[port].dev;
1001

    
1002
    /* Clear rwc bits */
1003
    *portsc &= ~(val & PORTSC_RWC_MASK);
1004
    /* The guest may clear, but not set the PED bit */
1005
    *portsc &= val | ~PORTSC_PED;
1006
    /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1007
    handle_port_owner_write(s, port, val);
1008
    /* And finally apply RO_MASK */
1009
    val &= PORTSC_RO_MASK;
1010

    
1011
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1012
        trace_usb_ehci_port_reset(port, 1);
1013
    }
1014

    
1015
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1016
        trace_usb_ehci_port_reset(port, 0);
1017
        if (dev && dev->attached) {
1018
            usb_port_reset(&s->ports[port]);
1019
            *portsc &= ~PORTSC_CSC;
1020
        }
1021

    
1022
        /*
1023
         *  Table 2.16 Set the enable bit(and enable bit change) to indicate
1024
         *  to SW that this port has a high speed device attached
1025
         */
1026
        if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1027
            val |= PORTSC_PED;
1028
        }
1029
    }
1030

    
1031
    *portsc &= ~PORTSC_RO_MASK;
1032
    *portsc |= val;
1033
}
1034

    
1035
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1036
{
1037
    EHCIState *s = ptr;
1038
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1039
    uint32_t old = *mmio;
1040
    int i;
1041

    
1042
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1043

    
1044
    /* Only aligned reads are allowed on OHCI */
1045
    if (addr & 3) {
1046
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1047
                TARGET_FMT_plx "\n", addr);
1048
        return;
1049
    }
1050

    
1051
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1052
        handle_port_status_write(s, (addr-PORTSC)/4, val);
1053
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1054
        return;
1055
    }
1056

    
1057
    if (addr < OPREGBASE) {
1058
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
1059
                TARGET_FMT_plx "\n", addr);
1060
        return;
1061
    }
1062

    
1063

    
1064
    /* Do any register specific pre-write processing here.  */
1065
    switch(addr) {
1066
    case USBCMD:
1067
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1068
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1069
            SET_LAST_RUN_CLOCK(s);
1070
            ehci_clear_usbsts(s, USBSTS_HALT);
1071
        }
1072

    
1073
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1074
            qemu_del_timer(s->frame_timer);
1075
            ehci_queues_rip_all(s, 0);
1076
            ehci_queues_rip_all(s, 1);
1077
            ehci_set_usbsts(s, USBSTS_HALT);
1078
        }
1079

    
1080
        if (val & USBCMD_HCRESET) {
1081
            ehci_reset(s);
1082
            val = s->usbcmd;
1083
        }
1084

    
1085
        /* not supporting dynamic frame list size at the moment */
1086
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1087
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
1088
                    val & USBCMD_FLS);
1089
            val &= ~USBCMD_FLS;
1090
        }
1091
        break;
1092

    
1093
    case USBSTS:
1094
        val &= USBSTS_RO_MASK;              // bits 6 through 31 are RO
1095
        ehci_clear_usbsts(s, val);          // bits 0 through 5 are R/WC
1096
        val = s->usbsts;
1097
        ehci_set_interrupt(s, 0);
1098
        break;
1099

    
1100
    case USBINTR:
1101
        val &= USBINTR_MASK;
1102
        break;
1103

    
1104
    case FRINDEX:
1105
        val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1106
        break;
1107

    
1108
    case CONFIGFLAG:
1109
        val &= 0x1;
1110
        if (val) {
1111
            for(i = 0; i < NB_PORTS; i++)
1112
                handle_port_owner_write(s, i, 0);
1113
        }
1114
        break;
1115

    
1116
    case PERIODICLISTBASE:
1117
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1118
            fprintf(stderr,
1119
              "ehci: PERIODIC list base register set while periodic schedule\n"
1120
              "      is enabled and HC is enabled\n");
1121
        }
1122
        break;
1123

    
1124
    case ASYNCLISTADDR:
1125
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1126
            fprintf(stderr,
1127
              "ehci: ASYNC list address register set while async schedule\n"
1128
              "      is enabled and HC is enabled\n");
1129
        }
1130
        break;
1131
    }
1132

    
1133
    *mmio = val;
1134
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1135
}
1136

    
1137

    
1138
// TODO : Put in common header file, duplication from usb-ohci.c
1139

    
1140
/* Get an array of dwords from main memory */
1141
static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1142
                             uint32_t *buf, int num)
1143
{
1144
    int i;
1145

    
1146
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1147
        pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1148
        *buf = le32_to_cpu(*buf);
1149
    }
1150

    
1151
    return 1;
1152
}
1153

    
1154
/* Put an array of dwords in to main memory */
1155
static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1156
                             uint32_t *buf, int num)
1157
{
1158
    int i;
1159

    
1160
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1161
        uint32_t tmp = cpu_to_le32(*buf);
1162
        pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1163
    }
1164

    
1165
    return 1;
1166
}
1167

    
1168
// 4.10.2
1169

    
1170
static int ehci_qh_do_overlay(EHCIQueue *q)
1171
{
1172
    int i;
1173
    int dtoggle;
1174
    int ping;
1175
    int eps;
1176
    int reload;
1177

    
1178
    // remember values in fields to preserve in qh after overlay
1179

    
1180
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1181
    ping    = q->qh.token & QTD_TOKEN_PING;
1182

    
1183
    q->qh.current_qtd = q->qtdaddr;
1184
    q->qh.next_qtd    = q->qtd.next;
1185
    q->qh.altnext_qtd = q->qtd.altnext;
1186
    q->qh.token       = q->qtd.token;
1187

    
1188

    
1189
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1190
    if (eps == EHCI_QH_EPS_HIGH) {
1191
        q->qh.token &= ~QTD_TOKEN_PING;
1192
        q->qh.token |= ping;
1193
    }
1194

    
1195
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1196
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1197

    
1198
    for (i = 0; i < 5; i++) {
1199
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1200
    }
1201

    
1202
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1203
        // preserve QH DT bit
1204
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1205
        q->qh.token |= dtoggle;
1206
    }
1207

    
1208
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1209
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1210

    
1211
    put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1212
               sizeof(EHCIqh) >> 2);
1213

    
1214
    return 0;
1215
}
1216

    
1217
static int ehci_init_transfer(EHCIQueue *q)
1218
{
1219
    uint32_t cpage, offset, bytes, plen;
1220
    dma_addr_t page;
1221

    
1222
    cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1223
    bytes  = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1224
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1225
    pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1226

    
1227
    while (bytes > 0) {
1228
        if (cpage > 4) {
1229
            fprintf(stderr, "cpage out of range (%d)\n", cpage);
1230
            return USB_RET_PROCERR;
1231
        }
1232

    
1233
        page  = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1234
        page += offset;
1235
        plen  = bytes;
1236
        if (plen > 4096 - offset) {
1237
            plen = 4096 - offset;
1238
            offset = 0;
1239
            cpage++;
1240
        }
1241

    
1242
        qemu_sglist_add(&q->sgl, page, plen);
1243
        bytes -= plen;
1244
    }
1245
    return 0;
1246
}
1247

    
1248
static void ehci_finish_transfer(EHCIQueue *q, int status)
1249
{
1250
    uint32_t cpage, offset;
1251

    
1252
    qemu_sglist_destroy(&q->sgl);
1253

    
1254
    if (status > 0) {
1255
        /* update cpage & offset */
1256
        cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1257
        offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1258

    
1259
        offset += status;
1260
        cpage  += offset >> QTD_BUFPTR_SH;
1261
        offset &= ~QTD_BUFPTR_MASK;
1262

    
1263
        set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1264
        q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1265
        q->qh.bufptr[0] |= offset;
1266
    }
1267
}
1268

    
1269
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1270
{
1271
    EHCIQueue *q;
1272
    EHCIState *s = port->opaque;
1273
    uint32_t portsc = s->portsc[port->index];
1274

    
1275
    if (portsc & PORTSC_POWNER) {
1276
        USBPort *companion = s->companion_ports[port->index];
1277
        companion->ops->complete(companion, packet);
1278
        return;
1279
    }
1280

    
1281
    q = container_of(packet, EHCIQueue, packet);
1282
    trace_usb_ehci_queue_action(q, "wakeup");
1283
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1284
    q->async = EHCI_ASYNC_FINISHED;
1285
    q->usb_status = packet->result;
1286
}
1287

    
1288
static void ehci_execute_complete(EHCIQueue *q)
1289
{
1290
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1291
    q->async = EHCI_ASYNC_NONE;
1292

    
1293
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1294
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1295

    
1296
    if (q->usb_status < 0) {
1297
        switch(q->usb_status) {
1298
        case USB_RET_IOERROR:
1299
        case USB_RET_NODEV:
1300
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1301
            set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1302
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1303
            break;
1304
        case USB_RET_STALL:
1305
            q->qh.token |= QTD_TOKEN_HALT;
1306
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1307
            break;
1308
        case USB_RET_NAK:
1309
            set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1310
            return; /* We're not done yet with this transaction */
1311
        case USB_RET_BABBLE:
1312
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1313
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1314
            break;
1315
        default:
1316
            /* should not be triggerable */
1317
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1318
            assert(0);
1319
            break;
1320
        }
1321
    } else if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1322
        q->usb_status = USB_RET_BABBLE;
1323
        q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1324
        ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1325
    } else {
1326
        // TODO check 4.12 for splits
1327

    
1328
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1329
            q->tbytes -= q->usb_status;
1330
        } else {
1331
            q->tbytes = 0;
1332
        }
1333

    
1334
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1335
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1336
    }
1337
    ehci_finish_transfer(q, q->usb_status);
1338
    usb_packet_unmap(&q->packet);
1339

    
1340
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1341
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1342

    
1343
    if (q->qh.token & QTD_TOKEN_IOC) {
1344
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1345
    }
1346
}
1347

    
1348
// 4.10.3
1349

    
1350
static int ehci_execute(EHCIQueue *q)
1351
{
1352
    USBDevice *dev;
1353
    USBEndpoint *ep;
1354
    int ret;
1355
    int endp;
1356
    int devadr;
1357

    
1358
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1359
        fprintf(stderr, "Attempting to execute inactive QH\n");
1360
        return USB_RET_PROCERR;
1361
    }
1362

    
1363
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1364
    if (q->tbytes > BUFF_SIZE) {
1365
        fprintf(stderr, "Request for more bytes than allowed\n");
1366
        return USB_RET_PROCERR;
1367
    }
1368

    
1369
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1370
    switch(q->pid) {
1371
        case 0: q->pid = USB_TOKEN_OUT; break;
1372
        case 1: q->pid = USB_TOKEN_IN; break;
1373
        case 2: q->pid = USB_TOKEN_SETUP; break;
1374
        default: fprintf(stderr, "bad token\n"); break;
1375
    }
1376

    
1377
    if (ehci_init_transfer(q) != 0) {
1378
        return USB_RET_PROCERR;
1379
    }
1380

    
1381
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1382
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1383

    
1384
    /* TODO: associating device with ehci port */
1385
    dev = ehci_find_device(q->ehci, devadr);
1386
    ep = usb_ep_get(dev, q->pid, endp);
1387

    
1388
    usb_packet_setup(&q->packet, q->pid, ep);
1389
    usb_packet_map(&q->packet, &q->sgl);
1390

    
1391
    ret = usb_handle_packet(dev, &q->packet);
1392
    DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1393
            "(total %d) endp %x ret %d\n",
1394
            q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1395
            q->packet.iov.size, q->tbytes, endp, ret);
1396

    
1397
    if (ret > BUFF_SIZE) {
1398
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1399
        return USB_RET_PROCERR;
1400
    }
1401

    
1402
    return ret;
1403
}
1404

    
1405
/*  4.7.2
1406
 */
1407

    
1408
static int ehci_process_itd(EHCIState *ehci,
1409
                            EHCIitd *itd)
1410
{
1411
    USBDevice *dev;
1412
    USBEndpoint *ep;
1413
    int ret;
1414
    uint32_t i, len, pid, dir, devaddr, endp;
1415
    uint32_t pg, off, ptr1, ptr2, max, mult;
1416

    
1417
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1418
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1419
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1420
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1421
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1422

    
1423
    for(i = 0; i < 8; i++) {
1424
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1425
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1426
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1427
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1428
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1429
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1430

    
1431
            if (len > max * mult) {
1432
                len = max * mult;
1433
            }
1434

    
1435
            if (len > BUFF_SIZE) {
1436
                return USB_RET_PROCERR;
1437
            }
1438

    
1439
            pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1440
            if (off + len > 4096) {
1441
                /* transfer crosses page border */
1442
                uint32_t len2 = off + len - 4096;
1443
                uint32_t len1 = len - len2;
1444
                qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1445
                qemu_sglist_add(&ehci->isgl, ptr2, len2);
1446
            } else {
1447
                qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1448
            }
1449

    
1450
            pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1451

    
1452
            dev = ehci_find_device(ehci, devaddr);
1453
            ep = usb_ep_get(dev, pid, endp);
1454
            if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1455
                usb_packet_setup(&ehci->ipacket, pid, ep);
1456
                usb_packet_map(&ehci->ipacket, &ehci->isgl);
1457
                ret = usb_handle_packet(dev, &ehci->ipacket);
1458
                assert(ret != USB_RET_ASYNC);
1459
                usb_packet_unmap(&ehci->ipacket);
1460
            } else {
1461
                DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1462
                ret = USB_RET_NAK;
1463
            }
1464
            qemu_sglist_destroy(&ehci->isgl);
1465

    
1466
            if (ret < 0) {
1467
                switch (ret) {
1468
                default:
1469
                    fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1470
                    /* Fall through */
1471
                case USB_RET_IOERROR:
1472
                case USB_RET_NODEV:
1473
                    /* 3.3.2: XACTERR is only allowed on IN transactions */
1474
                    if (dir) {
1475
                        itd->transact[i] |= ITD_XACT_XACTERR;
1476
                        ehci_record_interrupt(ehci, USBSTS_ERRINT);
1477
                    }
1478
                    break;
1479
                case USB_RET_BABBLE:
1480
                    itd->transact[i] |= ITD_XACT_BABBLE;
1481
                    ehci_record_interrupt(ehci, USBSTS_ERRINT);
1482
                    break;
1483
                case USB_RET_NAK:
1484
                    /* no data for us, so do a zero-length transfer */
1485
                    ret = 0;
1486
                    break;
1487
                }
1488
            }
1489
            if (ret >= 0) {
1490
                if (!dir) {
1491
                    /* OUT */
1492
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1493
                } else {
1494
                    /* IN */
1495
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1496
                }
1497
            }
1498
            if (itd->transact[i] & ITD_XACT_IOC) {
1499
                ehci_record_interrupt(ehci, USBSTS_INT);
1500
            }
1501
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1502
        }
1503
    }
1504
    return 0;
1505
}
1506

    
1507
/*  This state is the entry point for asynchronous schedule
1508
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1509
 */
1510
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1511
{
1512
    EHCIqh qh;
1513
    int i = 0;
1514
    int again = 0;
1515
    uint32_t entry = ehci->asynclistaddr;
1516

    
1517
    /* set reclamation flag at start event (4.8.6) */
1518
    if (async) {
1519
        ehci_set_usbsts(ehci, USBSTS_REC);
1520
    }
1521

    
1522
    ehci_queues_rip_unused(ehci, async, 0);
1523

    
1524
    /*  Find the head of the list (4.9.1.1) */
1525
    for(i = 0; i < MAX_QH; i++) {
1526
        get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1527
                   sizeof(EHCIqh) >> 2);
1528
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1529

    
1530
        if (qh.epchar & QH_EPCHAR_H) {
1531
            if (async) {
1532
                entry |= (NLPTR_TYPE_QH << 1);
1533
            }
1534

    
1535
            ehci_set_fetch_addr(ehci, async, entry);
1536
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1537
            again = 1;
1538
            goto out;
1539
        }
1540

    
1541
        entry = qh.next;
1542
        if (entry == ehci->asynclistaddr) {
1543
            break;
1544
        }
1545
    }
1546

    
1547
    /* no head found for list. */
1548

    
1549
    ehci_set_state(ehci, async, EST_ACTIVE);
1550

    
1551
out:
1552
    return again;
1553
}
1554

    
1555

    
1556
/*  This state is the entry point for periodic schedule processing as
1557
 *  well as being a continuation state for async processing.
1558
 */
1559
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1560
{
1561
    int again = 0;
1562
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1563

    
1564
    if (NLPTR_TBIT(entry)) {
1565
        ehci_set_state(ehci, async, EST_ACTIVE);
1566
        goto out;
1567
    }
1568

    
1569
    /* section 4.8, only QH in async schedule */
1570
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1571
        fprintf(stderr, "non queue head request in async schedule\n");
1572
        return -1;
1573
    }
1574

    
1575
    switch (NLPTR_TYPE_GET(entry)) {
1576
    case NLPTR_TYPE_QH:
1577
        ehci_set_state(ehci, async, EST_FETCHQH);
1578
        again = 1;
1579
        break;
1580

    
1581
    case NLPTR_TYPE_ITD:
1582
        ehci_set_state(ehci, async, EST_FETCHITD);
1583
        again = 1;
1584
        break;
1585

    
1586
    case NLPTR_TYPE_STITD:
1587
        ehci_set_state(ehci, async, EST_FETCHSITD);
1588
        again = 1;
1589
        break;
1590

    
1591
    default:
1592
        /* TODO: handle FSTN type */
1593
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1594
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1595
        return -1;
1596
    }
1597

    
1598
out:
1599
    return again;
1600
}
1601

    
1602
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1603
{
1604
    uint32_t entry;
1605
    EHCIQueue *q;
1606

    
1607
    entry = ehci_get_fetch_addr(ehci, async);
1608
    q = ehci_find_queue_by_qh(ehci, entry, async);
1609
    if (NULL == q) {
1610
        q = ehci_alloc_queue(ehci, async);
1611
    }
1612
    q->qhaddr = entry;
1613
    q->seen++;
1614

    
1615
    if (q->seen > 1) {
1616
        /* we are going in circles -- stop processing */
1617
        ehci_set_state(ehci, async, EST_ACTIVE);
1618
        q = NULL;
1619
        goto out;
1620
    }
1621

    
1622
    get_dwords(ehci, NLPTR_GET(q->qhaddr),
1623
               (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1624
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1625

    
1626
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1627
        /* I/O still in progress -- skip queue */
1628
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1629
        goto out;
1630
    }
1631
    if (q->async == EHCI_ASYNC_FINISHED) {
1632
        /* I/O finished -- continue processing queue */
1633
        trace_usb_ehci_queue_action(q, "resume");
1634
        ehci_set_state(ehci, async, EST_EXECUTING);
1635
        goto out;
1636
    }
1637

    
1638
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1639

    
1640
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1641
        if (ehci->usbsts & USBSTS_REC) {
1642
            ehci_clear_usbsts(ehci, USBSTS_REC);
1643
        } else {
1644
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1645
                       " - done processing\n", q->qhaddr);
1646
            ehci_set_state(ehci, async, EST_ACTIVE);
1647
            q = NULL;
1648
            goto out;
1649
        }
1650
    }
1651

    
1652
#if EHCI_DEBUG
1653
    if (q->qhaddr != q->qh.next) {
1654
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1655
               q->qhaddr,
1656
               q->qh.epchar & QH_EPCHAR_H,
1657
               q->qh.token & QTD_TOKEN_HALT,
1658
               q->qh.token & QTD_TOKEN_ACTIVE,
1659
               q->qh.next);
1660
    }
1661
#endif
1662

    
1663
    if (q->qh.token & QTD_TOKEN_HALT) {
1664
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1665

    
1666
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1667
               (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1668
        q->qtdaddr = q->qh.current_qtd;
1669
        ehci_set_state(ehci, async, EST_FETCHQTD);
1670

    
1671
    } else {
1672
        /*  EHCI spec version 1.0 Section 4.10.2 */
1673
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1674
    }
1675

    
1676
out:
1677
    return q;
1678
}
1679

    
1680
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1681
{
1682
    uint32_t entry;
1683
    EHCIitd itd;
1684

    
1685
    assert(!async);
1686
    entry = ehci_get_fetch_addr(ehci, async);
1687

    
1688
    get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1689
               sizeof(EHCIitd) >> 2);
1690
    ehci_trace_itd(ehci, entry, &itd);
1691

    
1692
    if (ehci_process_itd(ehci, &itd) != 0) {
1693
        return -1;
1694
    }
1695

    
1696
    put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1697
               sizeof(EHCIitd) >> 2);
1698
    ehci_set_fetch_addr(ehci, async, itd.next);
1699
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1700

    
1701
    return 1;
1702
}
1703

    
1704
static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1705
{
1706
    uint32_t entry;
1707
    EHCIsitd sitd;
1708

    
1709
    assert(!async);
1710
    entry = ehci_get_fetch_addr(ehci, async);
1711

    
1712
    get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1713
               sizeof(EHCIsitd) >> 2);
1714
    ehci_trace_sitd(ehci, entry, &sitd);
1715

    
1716
    if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1717
        /* siTD is not active, nothing to do */;
1718
    } else {
1719
        /* TODO: split transfers are not implemented */
1720
        fprintf(stderr, "WARNING: Skipping active siTD\n");
1721
    }
1722

    
1723
    ehci_set_fetch_addr(ehci, async, sitd.next);
1724
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1725
    return 1;
1726
}
1727

    
1728
/* Section 4.10.2 - paragraph 3 */
1729
static int ehci_state_advqueue(EHCIQueue *q, int async)
1730
{
1731
#if 0
1732
    /* TO-DO: 4.10.2 - paragraph 2
1733
     * if I-bit is set to 1 and QH is not active
1734
     * go to horizontal QH
1735
     */
1736
    if (I-bit set) {
1737
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1738
        goto out;
1739
    }
1740
#endif
1741

    
1742
    /*
1743
     * want data and alt-next qTD is valid
1744
     */
1745
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1746
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1747
        q->qtdaddr = q->qh.altnext_qtd;
1748
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1749

    
1750
    /*
1751
     *  next qTD is valid
1752
     */
1753
    } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1754
        q->qtdaddr = q->qh.next_qtd;
1755
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1756

    
1757
    /*
1758
     *  no valid qTD, try next QH
1759
     */
1760
    } else {
1761
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1762
    }
1763

    
1764
    return 1;
1765
}
1766

    
1767
/* Section 4.10.2 - paragraph 4 */
1768
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1769
{
1770
    int again = 0;
1771

    
1772
    get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1773
               sizeof(EHCIqtd) >> 2);
1774
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1775

    
1776
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1777
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1778
        again = 1;
1779
    } else {
1780
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1781
        again = 1;
1782
    }
1783

    
1784
    return again;
1785
}
1786

    
1787
static int ehci_state_horizqh(EHCIQueue *q, int async)
1788
{
1789
    int again = 0;
1790

    
1791
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1792
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1793
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1794
        again = 1;
1795
    } else {
1796
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1797
    }
1798

    
1799
    return again;
1800
}
1801

    
1802
/*
1803
 *  Write the qh back to guest physical memory.  This step isn't
1804
 *  in the EHCI spec but we need to do it since we don't share
1805
 *  physical memory with our guest VM.
1806
 *
1807
 *  The first three dwords are read-only for the EHCI, so skip them
1808
 *  when writing back the qh.
1809
 */
1810
static void ehci_flush_qh(EHCIQueue *q)
1811
{
1812
    uint32_t *qh = (uint32_t *) &q->qh;
1813
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1814
    uint32_t addr = NLPTR_GET(q->qhaddr);
1815

    
1816
    put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1817
}
1818

    
1819
static int ehci_state_execute(EHCIQueue *q, int async)
1820
{
1821
    int again = 0;
1822

    
1823
    if (ehci_qh_do_overlay(q) != 0) {
1824
        return -1;
1825
    }
1826

    
1827
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1828
    // TODO write back ptr to async list when done or out of time
1829
    // TODO Windows does not seem to ever set the MULT field
1830

    
1831
    if (!async) {
1832
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1833
        if (!transactCtr) {
1834
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1835
            again = 1;
1836
            goto out;
1837
        }
1838
    }
1839

    
1840
    if (async) {
1841
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1842
    }
1843

    
1844
    q->usb_status = ehci_execute(q);
1845
    if (q->usb_status == USB_RET_PROCERR) {
1846
        again = -1;
1847
        goto out;
1848
    }
1849
    if (q->usb_status == USB_RET_ASYNC) {
1850
        ehci_flush_qh(q);
1851
        trace_usb_ehci_queue_action(q, "suspend");
1852
        q->async = EHCI_ASYNC_INFLIGHT;
1853
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1854
        again = 1;
1855
        goto out;
1856
    }
1857

    
1858
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1859
    again = 1;
1860

    
1861
out:
1862
    return again;
1863
}
1864

    
1865
static int ehci_state_executing(EHCIQueue *q, int async)
1866
{
1867
    int again = 0;
1868

    
1869
    ehci_execute_complete(q);
1870
    if (q->usb_status == USB_RET_ASYNC) {
1871
        goto out;
1872
    }
1873
    if (q->usb_status == USB_RET_PROCERR) {
1874
        again = -1;
1875
        goto out;
1876
    }
1877

    
1878
    // 4.10.3
1879
    if (!async) {
1880
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1881
        transactCtr--;
1882
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1883
        // 4.10.3, bottom of page 82, should exit this state when transaction
1884
        // counter decrements to 0
1885
    }
1886

    
1887
    /* 4.10.5 */
1888
    if (q->usb_status == USB_RET_NAK) {
1889
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1890
    } else {
1891
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1892
    }
1893

    
1894
    again = 1;
1895

    
1896
out:
1897
    ehci_flush_qh(q);
1898
    return again;
1899
}
1900

    
1901

    
1902
static int ehci_state_writeback(EHCIQueue *q, int async)
1903
{
1904
    int again = 0;
1905

    
1906
    /*  Write back the QTD from the QH area */
1907
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1908
    put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1909
               sizeof(EHCIqtd) >> 2);
1910

    
1911
    /*
1912
     * EHCI specs say go horizontal here.
1913
     *
1914
     * We can also advance the queue here for performance reasons.  We
1915
     * need to take care to only take that shortcut in case we've
1916
     * processed the qtd just written back without errors, i.e. halt
1917
     * bit is clear.
1918
     */
1919
    if (q->qh.token & QTD_TOKEN_HALT) {
1920
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1921
        again = 1;
1922
    } else {
1923
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1924
        again = 1;
1925
    }
1926
    return again;
1927
}
1928

    
1929
/*
1930
 * This is the state machine that is common to both async and periodic
1931
 */
1932

    
1933
static void ehci_advance_state(EHCIState *ehci,
1934
                               int async)
1935
{
1936
    EHCIQueue *q = NULL;
1937
    int again;
1938

    
1939
    do {
1940
        switch(ehci_get_state(ehci, async)) {
1941
        case EST_WAITLISTHEAD:
1942
            again = ehci_state_waitlisthead(ehci, async);
1943
            break;
1944

    
1945
        case EST_FETCHENTRY:
1946
            again = ehci_state_fetchentry(ehci, async);
1947
            break;
1948

    
1949
        case EST_FETCHQH:
1950
            q = ehci_state_fetchqh(ehci, async);
1951
            again = q ? 1 : 0;
1952
            break;
1953

    
1954
        case EST_FETCHITD:
1955
            again = ehci_state_fetchitd(ehci, async);
1956
            break;
1957

    
1958
        case EST_FETCHSITD:
1959
            again = ehci_state_fetchsitd(ehci, async);
1960
            break;
1961

    
1962
        case EST_ADVANCEQUEUE:
1963
            again = ehci_state_advqueue(q, async);
1964
            break;
1965

    
1966
        case EST_FETCHQTD:
1967
            again = ehci_state_fetchqtd(q, async);
1968
            break;
1969

    
1970
        case EST_HORIZONTALQH:
1971
            again = ehci_state_horizqh(q, async);
1972
            break;
1973

    
1974
        case EST_EXECUTE:
1975
            again = ehci_state_execute(q, async);
1976
            break;
1977

    
1978
        case EST_EXECUTING:
1979
            assert(q != NULL);
1980
            again = ehci_state_executing(q, async);
1981
            break;
1982

    
1983
        case EST_WRITEBACK:
1984
            assert(q != NULL);
1985
            again = ehci_state_writeback(q, async);
1986
            break;
1987

    
1988
        default:
1989
            fprintf(stderr, "Bad state!\n");
1990
            again = -1;
1991
            assert(0);
1992
            break;
1993
        }
1994

    
1995
        if (again < 0) {
1996
            fprintf(stderr, "processing error - resetting ehci HC\n");
1997
            ehci_reset(ehci);
1998
            again = 0;
1999
        }
2000
    }
2001
    while (again);
2002

    
2003
    ehci_commit_interrupt(ehci);
2004
}
2005

    
2006
static void ehci_advance_async_state(EHCIState *ehci)
2007
{
2008
    const int async = 1;
2009

    
2010
    switch(ehci_get_state(ehci, async)) {
2011
    case EST_INACTIVE:
2012
        if (!(ehci->usbcmd & USBCMD_ASE)) {
2013
            break;
2014
        }
2015
        ehci_set_usbsts(ehci, USBSTS_ASS);
2016
        ehci_set_state(ehci, async, EST_ACTIVE);
2017
        // No break, fall through to ACTIVE
2018

    
2019
    case EST_ACTIVE:
2020
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
2021
            ehci_queues_rip_all(ehci, async);
2022
            ehci_clear_usbsts(ehci, USBSTS_ASS);
2023
            ehci_set_state(ehci, async, EST_INACTIVE);
2024
            break;
2025
        }
2026

    
2027
        /* make sure guest has acknowledged the doorbell interrupt */
2028
        /* TO-DO: is this really needed? */
2029
        if (ehci->usbsts & USBSTS_IAA) {
2030
            DPRINTF("IAA status bit still set.\n");
2031
            break;
2032
        }
2033

    
2034
        /* check that address register has been set */
2035
        if (ehci->asynclistaddr == 0) {
2036
            break;
2037
        }
2038

    
2039
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2040
        ehci_advance_state(ehci, async);
2041

    
2042
        /* If the doorbell is set, the guest wants to make a change to the
2043
         * schedule. The host controller needs to release cached data.
2044
         * (section 4.8.2)
2045
         */
2046
        if (ehci->usbcmd & USBCMD_IAAD) {
2047
            /* Remove all unseen qhs from the async qhs queue */
2048
            ehci_queues_rip_unused(ehci, async, 1);
2049
            DPRINTF("ASYNC: doorbell request acknowledged\n");
2050
            ehci->usbcmd &= ~USBCMD_IAAD;
2051
            ehci_set_interrupt(ehci, USBSTS_IAA);
2052
        }
2053
        break;
2054

    
2055
    default:
2056
        /* this should only be due to a developer mistake */
2057
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
2058
                "Resetting to active\n", ehci->astate);
2059
        assert(0);
2060
    }
2061
}
2062

    
2063
static void ehci_advance_periodic_state(EHCIState *ehci)
2064
{
2065
    uint32_t entry;
2066
    uint32_t list;
2067
    const int async = 0;
2068

    
2069
    // 4.6
2070

    
2071
    switch(ehci_get_state(ehci, async)) {
2072
    case EST_INACTIVE:
2073
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2074
            ehci_set_usbsts(ehci, USBSTS_PSS);
2075
            ehci_set_state(ehci, async, EST_ACTIVE);
2076
            // No break, fall through to ACTIVE
2077
        } else
2078
            break;
2079

    
2080
    case EST_ACTIVE:
2081
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2082
            ehci_queues_rip_all(ehci, async);
2083
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2084
            ehci_set_state(ehci, async, EST_INACTIVE);
2085
            break;
2086
        }
2087

    
2088
        list = ehci->periodiclistbase & 0xfffff000;
2089
        /* check that register has been set */
2090
        if (list == 0) {
2091
            break;
2092
        }
2093
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2094

    
2095
        pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2096
        entry = le32_to_cpu(entry);
2097

    
2098
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2099
                ehci->frindex / 8, list, entry);
2100
        ehci_set_fetch_addr(ehci, async,entry);
2101
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2102
        ehci_advance_state(ehci, async);
2103
        ehci_queues_rip_unused(ehci, async, 0);
2104
        break;
2105

    
2106
    default:
2107
        /* this should only be due to a developer mistake */
2108
        fprintf(stderr, "ehci: Bad periodic state %d. "
2109
                "Resetting to active\n", ehci->pstate);
2110
        assert(0);
2111
    }
2112
}
2113

    
2114
static void ehci_frame_timer(void *opaque)
2115
{
2116
    EHCIState *ehci = opaque;
2117
    int64_t expire_time, t_now;
2118
    uint64_t ns_elapsed;
2119
    int frames;
2120
    int i;
2121
    int skipped_frames = 0;
2122

    
2123
    t_now = qemu_get_clock_ns(vm_clock);
2124
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2125

    
2126
    ns_elapsed = t_now - ehci->last_run_ns;
2127
    frames = ns_elapsed / FRAME_TIMER_NS;
2128

    
2129
    for (i = 0; i < frames; i++) {
2130
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2131
            ehci->frindex += 8;
2132

    
2133
            if (ehci->frindex == 0x00002000) {
2134
                ehci_set_interrupt(ehci, USBSTS_FLR);
2135
            }
2136

    
2137
            if (ehci->frindex == 0x00004000) {
2138
                ehci_set_interrupt(ehci, USBSTS_FLR);
2139
                ehci->frindex = 0;
2140
            }
2141
        }
2142

    
2143
        if (frames - i > ehci->maxframes) {
2144
            skipped_frames++;
2145
        } else {
2146
            ehci_advance_periodic_state(ehci);
2147
        }
2148

    
2149
        ehci->last_run_ns += FRAME_TIMER_NS;
2150
    }
2151

    
2152
#if 0
2153
    if (skipped_frames) {
2154
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2155
    }
2156
#endif
2157

    
2158
    /*  Async is not inside loop since it executes everything it can once
2159
     *  called
2160
     */
2161
    ehci_advance_async_state(ehci);
2162

    
2163
    qemu_mod_timer(ehci->frame_timer, expire_time);
2164
}
2165

    
2166

    
2167
static const MemoryRegionOps ehci_mem_ops = {
2168
    .old_mmio = {
2169
        .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2170
        .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2171
    },
2172
    .endianness = DEVICE_LITTLE_ENDIAN,
2173
};
2174

    
2175
static int usb_ehci_initfn(PCIDevice *dev);
2176

    
2177
static USBPortOps ehci_port_ops = {
2178
    .attach = ehci_attach,
2179
    .detach = ehci_detach,
2180
    .child_detach = ehci_child_detach,
2181
    .wakeup = ehci_wakeup,
2182
    .complete = ehci_async_complete_packet,
2183
};
2184

    
2185
static USBBusOps ehci_bus_ops = {
2186
    .register_companion = ehci_register_companion,
2187
};
2188

    
2189
static const VMStateDescription vmstate_ehci = {
2190
    .name = "ehci",
2191
    .unmigratable = 1,
2192
};
2193

    
2194
static Property ehci_properties[] = {
2195
    DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2196
    DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2197
    DEFINE_PROP_END_OF_LIST(),
2198
};
2199

    
2200
static void ehci_class_init(ObjectClass *klass, void *data)
2201
{
2202
    DeviceClass *dc = DEVICE_CLASS(klass);
2203
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2204

    
2205
    k->init = usb_ehci_initfn;
2206
    k->vendor_id = PCI_VENDOR_ID_INTEL;
2207
    k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2208
    k->revision = 0x10;
2209
    k->class_id = PCI_CLASS_SERIAL_USB;
2210
    dc->vmsd = &vmstate_ehci;
2211
    dc->props = ehci_properties;
2212
}
2213

    
2214
static TypeInfo ehci_info = {
2215
    .name          = "usb-ehci",
2216
    .parent        = TYPE_PCI_DEVICE,
2217
    .instance_size = sizeof(EHCIState),
2218
    .class_init    = ehci_class_init,
2219
};
2220

    
2221
static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2222
{
2223
    DeviceClass *dc = DEVICE_CLASS(klass);
2224
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2225

    
2226
    k->init = usb_ehci_initfn;
2227
    k->vendor_id = PCI_VENDOR_ID_INTEL;
2228
    k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2229
    k->revision = 0x03;
2230
    k->class_id = PCI_CLASS_SERIAL_USB;
2231
    dc->vmsd = &vmstate_ehci;
2232
    dc->props = ehci_properties;
2233
}
2234

    
2235
static TypeInfo ich9_ehci_info = {
2236
    .name          = "ich9-usb-ehci1",
2237
    .parent        = TYPE_PCI_DEVICE,
2238
    .instance_size = sizeof(EHCIState),
2239
    .class_init    = ich9_ehci_class_init,
2240
};
2241

    
2242
static int usb_ehci_initfn(PCIDevice *dev)
2243
{
2244
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2245
    uint8_t *pci_conf = s->dev.config;
2246
    int i;
2247

    
2248
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2249

    
2250
    /* capabilities pointer */
2251
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2252
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2253

    
2254
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2255
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2256
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2257

    
2258
    // pci_conf[0x50] = 0x01; // power management caps
2259

    
2260
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2261
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2262
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2263

    
2264
    pci_conf[0x64] = 0x00;
2265
    pci_conf[0x65] = 0x00;
2266
    pci_conf[0x66] = 0x00;
2267
    pci_conf[0x67] = 0x00;
2268
    pci_conf[0x68] = 0x01;
2269
    pci_conf[0x69] = 0x00;
2270
    pci_conf[0x6a] = 0x00;
2271
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2272
    pci_conf[0x6c] = 0x00;
2273
    pci_conf[0x6d] = 0x00;
2274
    pci_conf[0x6e] = 0x00;
2275
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2276

    
2277
    // 2.2 host controller interface version
2278
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2279
    s->mmio[0x01] = 0x00;
2280
    s->mmio[0x02] = 0x00;
2281
    s->mmio[0x03] = 0x01;        // HC version
2282
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2283
    s->mmio[0x05] = 0x00;        // No companion ports at present
2284
    s->mmio[0x06] = 0x00;
2285
    s->mmio[0x07] = 0x00;
2286
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2287
    s->mmio[0x09] = 0x68;        // EECP
2288
    s->mmio[0x0a] = 0x00;
2289
    s->mmio[0x0b] = 0x00;
2290

    
2291
    s->irq = s->dev.irq[3];
2292

    
2293
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2294
    for(i = 0; i < NB_PORTS; i++) {
2295
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2296
                          USB_SPEED_MASK_HIGH);
2297
        s->ports[i].dev = 0;
2298
    }
2299

    
2300
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2301
    QTAILQ_INIT(&s->aqueues);
2302
    QTAILQ_INIT(&s->pqueues);
2303

    
2304
    qemu_register_reset(ehci_reset, s);
2305

    
2306
    memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2307
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2308

    
2309
    return 0;
2310
}
2311

    
2312
static void ehci_register_types(void)
2313
{
2314
    type_register_static(&ehci_info);
2315
    type_register_static(&ich9_ehci_info);
2316
}
2317

    
2318
type_init(ehci_register_types)
2319

    
2320
/*
2321
 * vim: expandtab ts=4
2322
 */