Statistics
| Branch: | Revision:

root / hw / stellaris.c @ 0d913fdb

History | View | Annotate | Download (28.4 kB)

1
/*
2
 * Luminary Micro Stellaris preipherals
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the GPL.
8
 */
9

    
10
#include "vl.h"
11
#include "arm_pic.h"
12

    
13
typedef const struct {
14
    const char *name;
15
    uint32_t did0;
16
    uint32_t did1;
17
    uint32_t dc0;
18
    uint32_t dc1;
19
    uint32_t dc2;
20
    uint32_t dc3;
21
    uint32_t dc4;
22
    enum {OLED_I2C, OLED_SSI} oled;
23
} stellaris_board_info;
24

    
25
/* General purpose timer module.  */
26

    
27
/* Multiplication factor to convert from GPTM timer ticks to qemu timer
28
   ticks.  */
29
static int stellaris_clock_scale;
30

    
31
typedef struct gptm_state {
32
    uint32_t config;
33
    uint32_t mode[2];
34
    uint32_t control;
35
    uint32_t state;
36
    uint32_t mask;
37
    uint32_t load[2];
38
    uint32_t match[2];
39
    uint32_t prescale[2];
40
    uint32_t match_prescale[2];
41
    uint32_t rtc;
42
    int64_t tick[2];
43
    struct gptm_state *opaque[2];
44
    uint32_t base;
45
    QEMUTimer *timer[2];
46
    /* The timers have an alternate output used to trigger the ADC.  */
47
    qemu_irq trigger;
48
    qemu_irq irq;
49
} gptm_state;
50

    
51
static void gptm_update_irq(gptm_state *s)
52
{
53
    int level;
54
    level = (s->state & s->mask) != 0;
55
    qemu_set_irq(s->irq, level);
56
}
57

    
58
static void gptm_stop(gptm_state *s, int n)
59
{
60
    qemu_del_timer(s->timer[n]);
61
}
62

    
63
static void gptm_reload(gptm_state *s, int n, int reset)
64
{
65
    int64_t tick;
66
    if (reset)
67
        tick = qemu_get_clock(vm_clock);
68
    else
69
        tick = s->tick[n];
70

    
71
    if (s->config == 0) {
72
        /* 32-bit CountDown.  */
73
        uint32_t count;
74
        count = s->load[0] | (s->load[1] << 16);
75
        tick += (int64_t)count * stellaris_clock_scale;
76
    } else if (s->config == 1) {
77
        /* 32-bit RTC.  1Hz tick.  */
78
        tick += ticks_per_sec;
79
    } else if (s->mode[n] == 0xa) {
80
        /* PWM mode.  Not implemented.  */
81
    } else {
82
        cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n",
83
                  s->mode[n]);
84
    }
85
    s->tick[n] = tick;
86
    qemu_mod_timer(s->timer[n], tick);
87
}
88

    
89
static void gptm_tick(void *opaque)
90
{
91
    gptm_state **p = (gptm_state **)opaque;
92
    gptm_state *s;
93
    int n;
94

    
95
    s = *p;
96
    n = p - s->opaque;
97
    if (s->config == 0) {
98
        s->state |= 1;
99
        if ((s->control & 0x20)) {
100
            /* Output trigger.  */
101
            qemu_irq_raise(s->trigger);
102
            qemu_irq_lower(s->trigger);
103
        }
104
        if (s->mode[0] & 1) {
105
            /* One-shot.  */
106
            s->control &= ~1;
107
        } else {
108
            /* Periodic.  */
109
            gptm_reload(s, 0, 0);
110
        }
111
    } else if (s->config == 1) {
112
        /* RTC.  */
113
        uint32_t match;
114
        s->rtc++;
115
        match = s->match[0] | (s->match[1] << 16);
116
        if (s->rtc > match)
117
            s->rtc = 0;
118
        if (s->rtc == 0) {
119
            s->state |= 8;
120
        }
121
        gptm_reload(s, 0, 0);
122
    } else if (s->mode[n] == 0xa) {
123
        /* PWM mode.  Not implemented.  */
124
    } else {
125
        cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n",
126
                  s->mode[n]);
127
    }
128
    gptm_update_irq(s);
129
}
130

    
131
static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
132
{
133
    gptm_state *s = (gptm_state *)opaque;
134

    
135
    offset -= s->base;
136
    switch (offset) {
137
    case 0x00: /* CFG */
138
        return s->config;
139
    case 0x04: /* TAMR */
140
        return s->mode[0];
141
    case 0x08: /* TBMR */
142
        return s->mode[1];
143
    case 0x0c: /* CTL */
144
        return s->control;
145
    case 0x18: /* IMR */
146
        return s->mask;
147
    case 0x1c: /* RIS */
148
        return s->state;
149
    case 0x20: /* MIS */
150
        return s->state & s->mask;
151
    case 0x24: /* CR */
152
        return 0;
153
    case 0x28: /* TAILR */
154
        return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
155
    case 0x2c: /* TBILR */
156
        return s->load[1];
157
    case 0x30: /* TAMARCHR */
158
        return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
159
    case 0x34: /* TBMATCHR */
160
        return s->match[1];
161
    case 0x38: /* TAPR */
162
        return s->prescale[0];
163
    case 0x3c: /* TBPR */
164
        return s->prescale[1];
165
    case 0x40: /* TAPMR */
166
        return s->match_prescale[0];
167
    case 0x44: /* TBPMR */
168
        return s->match_prescale[1];
169
    case 0x48: /* TAR */
170
        if (s->control == 1)
171
            return s->rtc;
172
    case 0x4c: /* TBR */
173
        cpu_abort(cpu_single_env, "TODO: Timer value read\n");
174
    default:
175
        cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset);
176
        return 0;
177
    }
178
}
179

    
180
static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
181
{
182
    gptm_state *s = (gptm_state *)opaque;
183
    uint32_t oldval;
184

    
185
    offset -= s->base;
186
    /* The timers should be disabled before changing the configuration.
187
       We take advantage of this and defer everything until the timer
188
       is enabled.  */
189
    switch (offset) {
190
    case 0x00: /* CFG */
191
        s->config = value;
192
        break;
193
    case 0x04: /* TAMR */
194
        s->mode[0] = value;
195
        break;
196
    case 0x08: /* TBMR */
197
        s->mode[1] = value;
198
        break;
199
    case 0x0c: /* CTL */
200
        oldval = s->control;
201
        s->control = value;
202
        /* TODO: Implement pause.  */
203
        if ((oldval ^ value) & 1) {
204
            if (value & 1) {
205
                gptm_reload(s, 0, 1);
206
            } else {
207
                gptm_stop(s, 0);
208
            }
209
        }
210
        if (((oldval ^ value) & 0x100) && s->config >= 4) {
211
            if (value & 0x100) {
212
                gptm_reload(s, 1, 1);
213
            } else {
214
                gptm_stop(s, 1);
215
            }
216
        }
217
        break;
218
    case 0x18: /* IMR */
219
        s->mask = value & 0x77;
220
        gptm_update_irq(s);
221
        break;
222
    case 0x24: /* CR */
223
        s->state &= ~value;
224
        break;
225
    case 0x28: /* TAILR */
226
        s->load[0] = value & 0xffff;
227
        if (s->config < 4) {
228
            s->load[1] = value >> 16;
229
        }
230
        break;
231
    case 0x2c: /* TBILR */
232
        s->load[1] = value & 0xffff;
233
        break;
234
    case 0x30: /* TAMARCHR */
235
        s->match[0] = value & 0xffff;
236
        if (s->config < 4) {
237
            s->match[1] = value >> 16;
238
        }
239
        break;
240
    case 0x34: /* TBMATCHR */
241
        s->match[1] = value >> 16;
242
        break;
243
    case 0x38: /* TAPR */
244
        s->prescale[0] = value;
245
        break;
246
    case 0x3c: /* TBPR */
247
        s->prescale[1] = value;
248
        break;
249
    case 0x40: /* TAPMR */
250
        s->match_prescale[0] = value;
251
        break;
252
    case 0x44: /* TBPMR */
253
        s->match_prescale[0] = value;
254
        break;
255
    default:
256
        cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset);
257
    }
258
    gptm_update_irq(s);
259
}
260

    
261
static CPUReadMemoryFunc *gptm_readfn[] = {
262
   gptm_read,
263
   gptm_read,
264
   gptm_read
265
};
266

    
267
static CPUWriteMemoryFunc *gptm_writefn[] = {
268
   gptm_write,
269
   gptm_write,
270
   gptm_write
271
};
272

    
273
static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger)
274
{
275
    int iomemtype;
276
    gptm_state *s;
277

    
278
    s = (gptm_state *)qemu_mallocz(sizeof(gptm_state));
279
    s->base = base;
280
    s->irq = irq;
281
    s->trigger = trigger;
282
    s->opaque[0] = s->opaque[1] = s;
283

    
284
    iomemtype = cpu_register_io_memory(0, gptm_readfn,
285
                                       gptm_writefn, s);
286
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
287
    s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
288
    s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
289
    /* ??? Save/restore.  */
290
}
291

    
292

    
293
/* System controller.  */
294

    
295
typedef struct {
296
    uint32_t base;
297
    uint32_t pborctl;
298
    uint32_t ldopctl;
299
    uint32_t int_status;
300
    uint32_t int_mask;
301
    uint32_t resc;
302
    uint32_t rcc;
303
    uint32_t rcgc[3];
304
    uint32_t scgc[3];
305
    uint32_t dcgc[3];
306
    uint32_t clkvclr;
307
    uint32_t ldoarst;
308
    qemu_irq irq;
309
    stellaris_board_info *board;
310
} ssys_state;
311

    
312
static void ssys_update(ssys_state *s)
313
{
314
  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
315
}
316

    
317
static uint32_t pllcfg_sandstorm[16] = {
318
    0x31c0, /* 1 Mhz */
319
    0x1ae0, /* 1.8432 Mhz */
320
    0x18c0, /* 2 Mhz */
321
    0xd573, /* 2.4576 Mhz */
322
    0x37a6, /* 3.57954 Mhz */
323
    0x1ae2, /* 3.6864 Mhz */
324
    0x0c40, /* 4 Mhz */
325
    0x98bc, /* 4.906 Mhz */
326
    0x935b, /* 4.9152 Mhz */
327
    0x09c0, /* 5 Mhz */
328
    0x4dee, /* 5.12 Mhz */
329
    0x0c41, /* 6 Mhz */
330
    0x75db, /* 6.144 Mhz */
331
    0x1ae6, /* 7.3728 Mhz */
332
    0x0600, /* 8 Mhz */
333
    0x585b /* 8.192 Mhz */
334
};
335

    
336
static uint32_t pllcfg_fury[16] = {
337
    0x3200, /* 1 Mhz */
338
    0x1b20, /* 1.8432 Mhz */
339
    0x1900, /* 2 Mhz */
340
    0xf42b, /* 2.4576 Mhz */
341
    0x37e3, /* 3.57954 Mhz */
342
    0x1b21, /* 3.6864 Mhz */
343
    0x0c80, /* 4 Mhz */
344
    0x98ee, /* 4.906 Mhz */
345
    0xd5b4, /* 4.9152 Mhz */
346
    0x0a00, /* 5 Mhz */
347
    0x4e27, /* 5.12 Mhz */
348
    0x1902, /* 6 Mhz */
349
    0xec1c, /* 6.144 Mhz */
350
    0x1b23, /* 7.3728 Mhz */
351
    0x0640, /* 8 Mhz */
352
    0xb11c /* 8.192 Mhz */
353
};
354

    
355
static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
356
{
357
    ssys_state *s = (ssys_state *)opaque;
358

    
359
    offset -= s->base;
360
    switch (offset) {
361
    case 0x000: /* DID0 */
362
        return s->board->did0;
363
    case 0x004: /* DID1 */
364
        return s->board->did1;
365
    case 0x008: /* DC0 */
366
        return s->board->dc0;
367
    case 0x010: /* DC1 */
368
        return s->board->dc1;
369
    case 0x014: /* DC2 */
370
        return s->board->dc2;
371
    case 0x018: /* DC3 */
372
        return s->board->dc3;
373
    case 0x01c: /* DC4 */
374
        return s->board->dc4;
375
    case 0x030: /* PBORCTL */
376
        return s->pborctl;
377
    case 0x034: /* LDOPCTL */
378
        return s->ldopctl;
379
    case 0x040: /* SRCR0 */
380
        return 0;
381
    case 0x044: /* SRCR1 */
382
        return 0;
383
    case 0x048: /* SRCR2 */
384
        return 0;
385
    case 0x050: /* RIS */
386
        return s->int_status;
387
    case 0x054: /* IMC */
388
        return s->int_mask;
389
    case 0x058: /* MISC */
390
        return s->int_status & s->int_mask;
391
    case 0x05c: /* RESC */
392
        return s->resc;
393
    case 0x060: /* RCC */
394
        return s->rcc;
395
    case 0x064: /* PLLCFG */
396
        {
397
            int xtal;
398
            xtal = (s->rcc >> 6) & 0xf;
399
            if (s->board->did0 & (1 << 16)) {
400
                return pllcfg_fury[xtal];
401
            } else {
402
                return pllcfg_sandstorm[xtal];
403
            }
404
        }
405
    case 0x100: /* RCGC0 */
406
        return s->rcgc[0];
407
    case 0x104: /* RCGC1 */
408
        return s->rcgc[1];
409
    case 0x108: /* RCGC2 */
410
        return s->rcgc[2];
411
    case 0x110: /* SCGC0 */
412
        return s->scgc[0];
413
    case 0x114: /* SCGC1 */
414
        return s->scgc[1];
415
    case 0x118: /* SCGC2 */
416
        return s->scgc[2];
417
    case 0x120: /* DCGC0 */
418
        return s->dcgc[0];
419
    case 0x124: /* DCGC1 */
420
        return s->dcgc[1];
421
    case 0x128: /* DCGC2 */
422
        return s->dcgc[2];
423
    case 0x150: /* CLKVCLR */
424
        return s->clkvclr;
425
    case 0x160: /* LDOARST */
426
        return s->ldoarst;
427
    default:
428
        cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset);
429
        return 0;
430
    }
431
}
432

    
433
static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
434
{
435
    ssys_state *s = (ssys_state *)opaque;
436

    
437
    offset -= s->base;
438
    switch (offset) {
439
    case 0x030: /* PBORCTL */
440
        s->pborctl = value & 0xffff;
441
        break;
442
    case 0x034: /* LDOPCTL */
443
        s->ldopctl = value & 0x1f;
444
        break;
445
    case 0x040: /* SRCR0 */
446
    case 0x044: /* SRCR1 */
447
    case 0x048: /* SRCR2 */
448
        fprintf(stderr, "Peripheral reset not implemented\n");
449
        break;
450
    case 0x054: /* IMC */
451
        s->int_mask = value & 0x7f;
452
        break;
453
    case 0x058: /* MISC */
454
        s->int_status &= ~value;
455
        break;
456
    case 0x05c: /* RESC */
457
        s->resc = value & 0x3f;
458
        break;
459
    case 0x060: /* RCC */
460
        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
461
            /* PLL enable.  */
462
            s->int_status |= (1 << 6);
463
        }
464
        s->rcc = value;
465
        stellaris_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
466
        break;
467
    case 0x100: /* RCGC0 */
468
        s->rcgc[0] = value;
469
        break;
470
    case 0x104: /* RCGC1 */
471
        s->rcgc[1] = value;
472
        break;
473
    case 0x108: /* RCGC2 */
474
        s->rcgc[2] = value;
475
        break;
476
    case 0x110: /* SCGC0 */
477
        s->scgc[0] = value;
478
        break;
479
    case 0x114: /* SCGC1 */
480
        s->scgc[1] = value;
481
        break;
482
    case 0x118: /* SCGC2 */
483
        s->scgc[2] = value;
484
        break;
485
    case 0x120: /* DCGC0 */
486
        s->dcgc[0] = value;
487
        break;
488
    case 0x124: /* DCGC1 */
489
        s->dcgc[1] = value;
490
        break;
491
    case 0x128: /* DCGC2 */
492
        s->dcgc[2] = value;
493
        break;
494
    case 0x150: /* CLKVCLR */
495
        s->clkvclr = value;
496
        break;
497
    case 0x160: /* LDOARST */
498
        s->ldoarst = value;
499
        break;
500
    default:
501
        cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset);
502
    }
503
    ssys_update(s);
504
}
505

    
506
static CPUReadMemoryFunc *ssys_readfn[] = {
507
   ssys_read,
508
   ssys_read,
509
   ssys_read
510
};
511

    
512
static CPUWriteMemoryFunc *ssys_writefn[] = {
513
   ssys_write,
514
   ssys_write,
515
   ssys_write
516
};
517

    
518
void ssys_reset(void *opaque)
519
{
520
    ssys_state *s = (ssys_state *)opaque;
521

    
522
    s->pborctl = 0x7ffd;
523
    s->rcc = 0x078e3ac0;
524
    s->rcgc[0] = 1;
525
    s->scgc[0] = 1;
526
    s->dcgc[0] = 1;
527
}
528

    
529
static void stellaris_sys_init(uint32_t base, qemu_irq irq,
530
                               stellaris_board_info * board)
531
{
532
    int iomemtype;
533
    ssys_state *s;
534

    
535
    s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
536
    s->base = base;
537
    s->irq = irq;
538
    s->board = board;
539

    
540
    iomemtype = cpu_register_io_memory(0, ssys_readfn,
541
                                       ssys_writefn, s);
542
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
543
    ssys_reset(s);
544
    /* ??? Save/restore.  */
545
}
546

    
547

    
548
/* I2C controller.  */
549

    
550
typedef struct {
551
    i2c_bus *bus;
552
    qemu_irq irq;
553
    uint32_t base;
554
    uint32_t msa;
555
    uint32_t mcs;
556
    uint32_t mdr;
557
    uint32_t mtpr;
558
    uint32_t mimr;
559
    uint32_t mris;
560
    uint32_t mcr;
561
} stellaris_i2c_state;
562

    
563
#define STELLARIS_I2C_MCS_BUSY    0x01
564
#define STELLARIS_I2C_MCS_ERROR   0x02
565
#define STELLARIS_I2C_MCS_ADRACK  0x04
566
#define STELLARIS_I2C_MCS_DATACK  0x08
567
#define STELLARIS_I2C_MCS_ARBLST  0x10
568
#define STELLARIS_I2C_MCS_IDLE    0x20
569
#define STELLARIS_I2C_MCS_BUSBSY  0x40
570

    
571
static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
572
{
573
    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
574

    
575
    offset -= s->base;
576
    switch (offset) {
577
    case 0x00: /* MSA */
578
        return s->msa;
579
    case 0x04: /* MCS */
580
        /* We don't emulate timing, so the controller is never busy.  */
581
        return s->mcs | STELLARIS_I2C_MCS_IDLE;
582
    case 0x08: /* MDR */
583
        return s->mdr;
584
    case 0x0c: /* MTPR */
585
        return s->mtpr;
586
    case 0x10: /* MIMR */
587
        return s->mimr;
588
    case 0x14: /* MRIS */
589
        return s->mris;
590
    case 0x18: /* MMIS */
591
        return s->mris & s->mimr;
592
    case 0x20: /* MCR */
593
        return s->mcr;
594
    default:
595
        cpu_abort(cpu_single_env, "strllaris_i2c_read: Bad offset 0x%x\n",
596
                  (int)offset);
597
        return 0;
598
    }
599
}
600

    
601
static void stellaris_i2c_update(stellaris_i2c_state *s)
602
{
603
    int level;
604

    
605
    level = (s->mris & s->mimr) != 0;
606
    qemu_set_irq(s->irq, level);
607
}
608

    
609
static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
610
                                uint32_t value)
611
{
612
    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
613

    
614
    offset -= s->base;
615
    switch (offset) {
616
    case 0x00: /* MSA */
617
        s->msa = value & 0xff;
618
        break;
619
    case 0x04: /* MCS */
620
        if ((s->mcr & 0x10) == 0) {
621
            /* Disabled.  Do nothing.  */
622
            break;
623
        }
624
        /* Grab the bus if this is starting a transfer.  */
625
        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
626
            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
627
                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
628
            } else {
629
                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
630
                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
631
            }
632
        }
633
        /* If we don't have the bus then indicate an error.  */
634
        if (!i2c_bus_busy(s->bus)
635
                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
636
            s->mcs |= STELLARIS_I2C_MCS_ERROR;
637
            break;
638
        }
639
        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
640
        if (value & 1) {
641
            /* Transfer a byte.  */
642
            /* TODO: Handle errors.  */
643
            if (s->msa & 1) {
644
                /* Recv */
645
                s->mdr = i2c_recv(s->bus) & 0xff;
646
            } else {
647
                /* Send */
648
                i2c_send(s->bus, s->mdr);
649
            }
650
            /* Raise an interrupt.  */
651
            s->mris |= 1;
652
        }
653
        if (value & 4) {
654
            /* Finish transfer.  */
655
            i2c_end_transfer(s->bus);
656
            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
657
        }
658
        break;
659
    case 0x08: /* MDR */
660
        s->mdr = value & 0xff;
661
        break;
662
    case 0x0c: /* MTPR */
663
        s->mtpr = value & 0xff;
664
        break;
665
    case 0x10: /* MIMR */
666
        s->mimr = 1;
667
        break;
668
    case 0x1c: /* MICR */
669
        s->mris &= ~value;
670
        break;
671
    case 0x20: /* MCR */
672
        if (value & 1)
673
            cpu_abort(cpu_single_env,
674
                      "stellaris_i2c_write: Loopback not implemented\n");
675
        if (value & 0x20)
676
            cpu_abort(cpu_single_env,
677
                      "stellaris_i2c_write: Slave mode not implemented\n");
678
        s->mcr = value & 0x31;
679
        break;
680
    default:
681
        cpu_abort(cpu_single_env, "stellaris_i2c_write: Bad offset 0x%x\n",
682
                  (int)offset);
683
    }
684
    stellaris_i2c_update(s);
685
}
686

    
687
static void stellaris_i2c_reset(stellaris_i2c_state *s)
688
{
689
    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
690
        i2c_end_transfer(s->bus);
691

    
692
    s->msa = 0;
693
    s->mcs = 0;
694
    s->mdr = 0;
695
    s->mtpr = 1;
696
    s->mimr = 0;
697
    s->mris = 0;
698
    s->mcr = 0;
699
    stellaris_i2c_update(s);
700
}
701

    
702
static CPUReadMemoryFunc *stellaris_i2c_readfn[] = {
703
   stellaris_i2c_read,
704
   stellaris_i2c_read,
705
   stellaris_i2c_read
706
};
707

    
708
static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = {
709
   stellaris_i2c_write,
710
   stellaris_i2c_write,
711
   stellaris_i2c_write
712
};
713

    
714
static void stellaris_i2c_init(uint32_t base, qemu_irq irq, i2c_bus *bus)
715
{
716
    stellaris_i2c_state *s;
717
    int iomemtype;
718

    
719
    s = (stellaris_i2c_state *)qemu_mallocz(sizeof(stellaris_i2c_state));
720
    s->base = base;
721
    s->irq = irq;
722
    s->bus = bus;
723

    
724
    iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn,
725
                                       stellaris_i2c_writefn, s);
726
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
727
    /* ??? For now we only implement the master interface.  */
728
    stellaris_i2c_reset(s);
729
}
730

    
731
/* Analogue to Digital Converter.  This is only partially implemented,
732
   enough for applications that use a combined ADC and timer tick.  */
733

    
734
#define STELLARIS_ADC_EM_CONTROLLER 0
735
#define STELLARIS_ADC_EM_COMP       1
736
#define STELLARIS_ADC_EM_EXTERNAL   4
737
#define STELLARIS_ADC_EM_TIMER      5
738
#define STELLARIS_ADC_EM_PWM0       6
739
#define STELLARIS_ADC_EM_PWM1       7
740
#define STELLARIS_ADC_EM_PWM2       8
741

    
742
#define STELLARIS_ADC_FIFO_EMPTY    0x0100
743
#define STELLARIS_ADC_FIFO_FULL     0x1000
744

    
745
typedef struct
746
{
747
    uint32_t base;
748
    uint32_t actss;
749
    uint32_t ris;
750
    uint32_t im;
751
    uint32_t emux;
752
    uint32_t ostat;
753
    uint32_t ustat;
754
    uint32_t sspri;
755
    uint32_t sac;
756
    struct {
757
        uint32_t state;
758
        uint32_t data[16];
759
    } fifo[4];
760
    uint32_t ssmux[4];
761
    uint32_t ssctl[4];
762
    qemu_irq irq;
763
} stellaris_adc_state;
764

    
765
static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
766
{
767
    int tail;
768

    
769
    tail = s->fifo[n].state & 0xf;
770
    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
771
        s->ustat |= 1 << n;
772
    } else {
773
        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
774
        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
775
        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
776
            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
777
    }
778
    return s->fifo[n].data[tail];
779
}
780

    
781
static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
782
                                     uint32_t value)
783
{
784
    int head;
785

    
786
    head = (s->fifo[n].state >> 4) & 0xf;
787
    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
788
        s->ostat |= 1 << n;
789
        return;
790
    }
791
    s->fifo[n].data[head] = value;
792
    head = (head + 1) & 0xf;
793
    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
794
    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
795
    if ((s->fifo[n].state & 0xf) == head)
796
        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
797
}
798

    
799
static void stellaris_adc_update(stellaris_adc_state *s)
800
{
801
    int level;
802

    
803
    level = (s->ris & s->im) != 0;
804
    qemu_set_irq(s->irq, level);
805
}
806

    
807
static void stellaris_adc_trigger(void *opaque, int irq, int level)
808
{
809
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
810
    /* Some applications use the ADC as a random number source, so introduce
811
       some variation into the signal.  */
812
    static uint32_t noise = 0;
813

    
814
    if ((s->actss & 1) == 0) {
815
        return;
816
    }
817

    
818
    noise = noise * 314159 + 1;
819
    /* ??? actual inputs not implemented.  Return an arbitrary value.  */
820
    stellaris_adc_fifo_write(s, 0, 0x200 + ((noise >> 16) & 7));
821
    s->ris |= 1;
822
    stellaris_adc_update(s);
823
}
824

    
825
static void stellaris_adc_reset(stellaris_adc_state *s)
826
{
827
    int n;
828

    
829
    for (n = 0; n < 4; n++) {
830
        s->ssmux[n] = 0;
831
        s->ssctl[n] = 0;
832
        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
833
    }
834
}
835

    
836
static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
837
{
838
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
839

    
840
    /* TODO: Implement this.  */
841
    offset -= s->base;
842
    if (offset >= 0x40 && offset < 0xc0) {
843
        int n;
844
        n = (offset - 0x40) >> 5;
845
        switch (offset & 0x1f) {
846
        case 0x00: /* SSMUX */
847
            return s->ssmux[n];
848
        case 0x04: /* SSCTL */
849
            return s->ssctl[n];
850
        case 0x08: /* SSFIFO */
851
            return stellaris_adc_fifo_read(s, n);
852
        case 0x0c: /* SSFSTAT */
853
            return s->fifo[n].state;
854
        default:
855
            break;
856
        }
857
    }
858
    switch (offset) {
859
    case 0x00: /* ACTSS */
860
        return s->actss;
861
    case 0x04: /* RIS */
862
        return s->ris;
863
    case 0x08: /* IM */
864
        return s->im;
865
    case 0x0c: /* ISC */
866
        return s->ris & s->im;
867
    case 0x10: /* OSTAT */
868
        return s->ostat;
869
    case 0x14: /* EMUX */
870
        return s->emux;
871
    case 0x18: /* USTAT */
872
        return s->ustat;
873
    case 0x20: /* SSPRI */
874
        return s->sspri;
875
    case 0x30: /* SAC */
876
        return s->sac;
877
    default:
878
        cpu_abort(cpu_single_env, "strllaris_adc_read: Bad offset 0x%x\n",
879
                  (int)offset);
880
        return 0;
881
    }
882
}
883

    
884
static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
885
                                uint32_t value)
886
{
887
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
888

    
889
    /* TODO: Implement this.  */
890
    offset -= s->base;
891
    if (offset >= 0x40 && offset < 0xc0) {
892
        int n;
893
        n = (offset - 0x40) >> 5;
894
        switch (offset & 0x1f) {
895
        case 0x00: /* SSMUX */
896
            s->ssmux[n] = value & 0x33333333;
897
            return;
898
        case 0x04: /* SSCTL */
899
            if (value != 6) {
900
                cpu_abort(cpu_single_env, "ADC: Unimplemented sequence %x\n",
901
                          value);
902
            }
903
            s->ssctl[n] = value;
904
            return;
905
        default:
906
            break;
907
        }
908
    }
909
    switch (offset) {
910
    case 0x00: /* ACTSS */
911
        s->actss = value & 0xf;
912
        if (value & 0xe) {
913
            cpu_abort(cpu_single_env,
914
                      "Not implemented:  ADC sequencers 1-3\n");
915
        }
916
        break;
917
    case 0x08: /* IM */
918
        s->im = value;
919
        break;
920
    case 0x0c: /* ISC */
921
        s->ris &= ~value;
922
        break;
923
    case 0x10: /* OSTAT */
924
        s->ostat &= ~value;
925
        break;
926
    case 0x14: /* EMUX */
927
        s->emux = value;
928
        break;
929
    case 0x18: /* USTAT */
930
        s->ustat &= ~value;
931
        break;
932
    case 0x20: /* SSPRI */
933
        s->sspri = value;
934
        break;
935
    case 0x28: /* PSSI */
936
        cpu_abort(cpu_single_env, "Not implemented:  ADC sample initiate\n");
937
        break;
938
    case 0x30: /* SAC */
939
        s->sac = value;
940
        break;
941
    default:
942
        cpu_abort(cpu_single_env, "stellaris_adc_write: Bad offset 0x%x\n",
943
                  (int)offset);
944
    }
945
    stellaris_adc_update(s);
946
}
947

    
948
static CPUReadMemoryFunc *stellaris_adc_readfn[] = {
949
   stellaris_adc_read,
950
   stellaris_adc_read,
951
   stellaris_adc_read
952
};
953

    
954
static CPUWriteMemoryFunc *stellaris_adc_writefn[] = {
955
   stellaris_adc_write,
956
   stellaris_adc_write,
957
   stellaris_adc_write
958
};
959

    
960
static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq)
961
{
962
    stellaris_adc_state *s;
963
    int iomemtype;
964
    qemu_irq *qi;
965

    
966
    s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state));
967
    s->base = base;
968
    s->irq = irq;
969

    
970
    iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn,
971
                                       stellaris_adc_writefn, s);
972
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
973
    stellaris_adc_reset(s);
974
    qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1);
975
    return qi[0];
976
}
977

    
978
/* Board init.  */
979
static stellaris_board_info stellaris_boards[] = {
980
  { "LM3S811EVB",
981
    0,
982
    0x0032000e,
983
    0x001f001f, /* dc0 */
984
    0x001132bf,
985
    0x01071013,
986
    0x3f0f01ff,
987
    0x0000001f,
988
    OLED_I2C
989
  },
990
  { "LM3S6965EVB",
991
    0x10010002,
992
    0x1073402e,
993
    0x00ff007f, /* dc0 */
994
    0x001133ff,
995
    0x030f5317,
996
    0x0f0f87ff,
997
    0x5000007f,
998
    OLED_SSI
999
  }
1000
};
1001

    
1002
static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1003
                           DisplayState *ds, stellaris_board_info *board)
1004
{
1005
    static const int uart_irq[] = {5, 6, 33, 34};
1006
    static const int timer_irq[] = {19, 21, 23, 35};
1007
    static const uint32_t gpio_addr[7] =
1008
      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1009
        0x40024000, 0x40025000, 0x40026000};
1010
    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1011

    
1012
    qemu_irq *pic;
1013
    qemu_irq *gpio_in[5];
1014
    qemu_irq *gpio_out[5];
1015
    qemu_irq adc;
1016
    int sram_size;
1017
    int flash_size;
1018
    i2c_bus *i2c;
1019
    int i;
1020

    
1021
    flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1022
    sram_size = (board->dc0 >> 18) + 1;
1023
    pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1024

    
1025
    if (board->dc1 & (1 << 16)) {
1026
        adc = stellaris_adc_init(0x40038000, pic[14]);
1027
    } else {
1028
        adc = NULL;
1029
    }
1030
    for (i = 0; i < 4; i++) {
1031
        if (board->dc2 & (0x10000 << i)) {
1032
            stellaris_gptm_init(0x40030000 + i * 0x1000,
1033
                                pic[timer_irq[i]], adc);
1034
        }
1035
    }
1036

    
1037
    stellaris_sys_init(0x400fe000, pic[28], board);
1038

    
1039
    for (i = 0; i < 7; i++) {
1040
        if (board->dc4 & (1 << i)) {
1041
            gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]],
1042
                                    &gpio_out[i]);
1043
        }
1044
    }
1045

    
1046
    if (board->dc2 & (1 << 12)) {
1047
        i2c = i2c_init_bus();
1048
        stellaris_i2c_init(0x40020000, pic[8], i2c);
1049
        if (board->oled == OLED_I2C) {
1050
            ssd0303_init(ds, i2c, 0x3d);
1051
        }
1052
    }
1053

    
1054
    for (i = 0; i < 4; i++) {
1055
        if (board->dc2 & (1 << i)) {
1056
            pl011_init(0x4000c000 + i * 0x1000, pic[uart_irq[i]],
1057
                       serial_hds[i], PL011_LUMINARY);
1058
        }
1059
    }
1060
    if (board->dc2 & (1 << 4)) {
1061
        if (board->oled == OLED_SSI) {
1062
            void * oled;
1063
            /* FIXME: Implement chip select for OLED/MMC.  */
1064
            oled = ssd0323_init(ds, &gpio_out[2][7]);
1065
            pl022_init(0x40008000, pic[7], ssd0323_xfer_ssi, oled);
1066
        } else {
1067
            pl022_init(0x40008000, pic[7], NULL, NULL);
1068
        }
1069
    }
1070
}
1071

    
1072
/* FIXME: Figure out how to generate these from stellaris_boards.  */
1073
static void lm3s811evb_init(int ram_size, int vga_ram_size,
1074
                     const char *boot_device, DisplayState *ds,
1075
                     const char **fd_filename, int snapshot,
1076
                     const char *kernel_filename, const char *kernel_cmdline,
1077
                     const char *initrd_filename, const char *cpu_model)
1078
{
1079
    stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[0]);
1080
}
1081

    
1082
static void lm3s6965evb_init(int ram_size, int vga_ram_size,
1083
                     const char *boot_device, DisplayState *ds,
1084
                     const char **fd_filename, int snapshot,
1085
                     const char *kernel_filename, const char *kernel_cmdline,
1086
                     const char *initrd_filename, const char *cpu_model)
1087
{
1088
    stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[1]);
1089
}
1090

    
1091
QEMUMachine lm3s811evb_machine = {
1092
    "lm3s811evb",
1093
    "Stellaris LM3S811EVB",
1094
    lm3s811evb_init,
1095
};
1096

    
1097
QEMUMachine lm3s6965evb_machine = {
1098
    "lm3s6965evb",
1099
    "Stellaris LM3S6965EVB",
1100
    lm3s6965evb_init,
1101
};