Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 0ef849d7

History | View | Annotate | Download (66.6 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation/Platform baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@item Syborg SVP base model (ARM Cortex-A8).
95
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
97
@end itemize
98

    
99
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
100

    
101
@node Installation
102
@chapter Installation
103

    
104
If you want to compile QEMU yourself, see @ref{compilation}.
105

    
106
@menu
107
* install_linux::   Linux
108
* install_windows:: Windows
109
* install_mac::     Macintosh
110
@end menu
111

    
112
@node install_linux
113
@section Linux
114

    
115
If a precompiled package is available for your distribution - you just
116
have to install it. Otherwise, see @ref{compilation}.
117

    
118
@node install_windows
119
@section Windows
120

    
121
Download the experimental binary installer at
122
@url{http://www.free.oszoo.org/@/download.html}.
123

    
124
@node install_mac
125
@section Mac OS X
126

    
127
Download the experimental binary installer at
128
@url{http://www.free.oszoo.org/@/download.html}.
129

    
130
@node QEMU PC System emulator
131
@chapter QEMU PC System emulator
132

    
133
@menu
134
* pcsys_introduction:: Introduction
135
* pcsys_quickstart::   Quick Start
136
* sec_invocation::     Invocation
137
* pcsys_keys::         Keys
138
* pcsys_monitor::      QEMU Monitor
139
* disk_images::        Disk Images
140
* pcsys_network::      Network emulation
141
* direct_linux_boot::  Direct Linux Boot
142
* pcsys_usb::          USB emulation
143
* vnc_security::       VNC security
144
* gdb_usage::          GDB usage
145
* pcsys_os_specific::  Target OS specific information
146
@end menu
147

    
148
@node pcsys_introduction
149
@section Introduction
150

    
151
@c man begin DESCRIPTION
152

    
153
The QEMU PC System emulator simulates the
154
following peripherals:
155

    
156
@itemize @minus
157
@item
158
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159
@item
160
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161
extensions (hardware level, including all non standard modes).
162
@item
163
PS/2 mouse and keyboard
164
@item
165
2 PCI IDE interfaces with hard disk and CD-ROM support
166
@item
167
Floppy disk
168
@item
169
PCI and ISA network adapters
170
@item
171
Serial ports
172
@item
173
Creative SoundBlaster 16 sound card
174
@item
175
ENSONIQ AudioPCI ES1370 sound card
176
@item
177
Intel 82801AA AC97 Audio compatible sound card
178
@item
179
Adlib(OPL2) - Yamaha YM3812 compatible chip
180
@item
181
Gravis Ultrasound GF1 sound card
182
@item
183
CS4231A compatible sound card
184
@item
185
PCI UHCI USB controller and a virtual USB hub.
186
@end itemize
187

    
188
SMP is supported with up to 255 CPUs.
189

    
190
Note that adlib, gus and cs4231a are only available when QEMU was
191
configured with --audio-card-list option containing the name(s) of
192
required card(s).
193

    
194
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195
VGA BIOS.
196

    
197
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198

    
199
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200
by Tibor "TS" Sch?tz.
201

    
202
Not that, by default, GUS shares IRQ(7) with parallel ports and so
203
qemu must be told to not have parallel ports to have working GUS
204

    
205
@example
206
qemu dos.img -soundhw gus -parallel none
207
@end example
208

    
209
Alternatively:
210
@example
211
qemu dos.img -device gus,irq=5
212
@end example
213

    
214
Or some other unclaimed IRQ.
215

    
216
CS4231A is the chip used in Windows Sound System and GUSMAX products
217

    
218
@c man end
219

    
220
@node pcsys_quickstart
221
@section Quick Start
222

    
223
Download and uncompress the linux image (@file{linux.img}) and type:
224

    
225
@example
226
qemu linux.img
227
@end example
228

    
229
Linux should boot and give you a prompt.
230

    
231
@node sec_invocation
232
@section Invocation
233

    
234
@example
235
@c man begin SYNOPSIS
236
usage: qemu [options] [@var{disk_image}]
237
@c man end
238
@end example
239

    
240
@c man begin OPTIONS
241
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242
targets do not need a disk image.
243

    
244
@include qemu-options.texi
245

    
246
@c man end
247

    
248
@node pcsys_keys
249
@section Keys
250

    
251
@c man begin OPTIONS
252

    
253
During the graphical emulation, you can use the following keys:
254
@table @key
255
@item Ctrl-Alt-f
256
Toggle full screen
257

    
258
@item Ctrl-Alt-u
259
Restore the screen's un-scaled dimensions
260

    
261
@item Ctrl-Alt-n
262
Switch to virtual console 'n'. Standard console mappings are:
263
@table @emph
264
@item 1
265
Target system display
266
@item 2
267
Monitor
268
@item 3
269
Serial port
270
@end table
271

    
272
@item Ctrl-Alt
273
Toggle mouse and keyboard grab.
274
@end table
275

    
276
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
277
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
278

    
279
During emulation, if you are using the @option{-nographic} option, use
280
@key{Ctrl-a h} to get terminal commands:
281

    
282
@table @key
283
@item Ctrl-a h
284
@item Ctrl-a ?
285
Print this help
286
@item Ctrl-a x
287
Exit emulator
288
@item Ctrl-a s
289
Save disk data back to file (if -snapshot)
290
@item Ctrl-a t
291
Toggle console timestamps
292
@item Ctrl-a b
293
Send break (magic sysrq in Linux)
294
@item Ctrl-a c
295
Switch between console and monitor
296
@item Ctrl-a Ctrl-a
297
Send Ctrl-a
298
@end table
299
@c man end
300

    
301
@ignore
302

    
303
@c man begin SEEALSO
304
The HTML documentation of QEMU for more precise information and Linux
305
user mode emulator invocation.
306
@c man end
307

    
308
@c man begin AUTHOR
309
Fabrice Bellard
310
@c man end
311

    
312
@end ignore
313

    
314
@node pcsys_monitor
315
@section QEMU Monitor
316

    
317
The QEMU monitor is used to give complex commands to the QEMU
318
emulator. You can use it to:
319

    
320
@itemize @minus
321

    
322
@item
323
Remove or insert removable media images
324
(such as CD-ROM or floppies).
325

    
326
@item
327
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
328
from a disk file.
329

    
330
@item Inspect the VM state without an external debugger.
331

    
332
@end itemize
333

    
334
@subsection Commands
335

    
336
The following commands are available:
337

    
338
@include qemu-monitor.texi
339

    
340
@subsection Integer expressions
341

    
342
The monitor understands integers expressions for every integer
343
argument. You can use register names to get the value of specifics
344
CPU registers by prefixing them with @emph{$}.
345

    
346
@node disk_images
347
@section Disk Images
348

    
349
Since version 0.6.1, QEMU supports many disk image formats, including
350
growable disk images (their size increase as non empty sectors are
351
written), compressed and encrypted disk images. Version 0.8.3 added
352
the new qcow2 disk image format which is essential to support VM
353
snapshots.
354

    
355
@menu
356
* disk_images_quickstart::    Quick start for disk image creation
357
* disk_images_snapshot_mode:: Snapshot mode
358
* vm_snapshots::              VM snapshots
359
* qemu_img_invocation::       qemu-img Invocation
360
* qemu_nbd_invocation::       qemu-nbd Invocation
361
* host_drives::               Using host drives
362
* disk_images_fat_images::    Virtual FAT disk images
363
* disk_images_nbd::           NBD access
364
@end menu
365

    
366
@node disk_images_quickstart
367
@subsection Quick start for disk image creation
368

    
369
You can create a disk image with the command:
370
@example
371
qemu-img create myimage.img mysize
372
@end example
373
where @var{myimage.img} is the disk image filename and @var{mysize} is its
374
size in kilobytes. You can add an @code{M} suffix to give the size in
375
megabytes and a @code{G} suffix for gigabytes.
376

    
377
See @ref{qemu_img_invocation} for more information.
378

    
379
@node disk_images_snapshot_mode
380
@subsection Snapshot mode
381

    
382
If you use the option @option{-snapshot}, all disk images are
383
considered as read only. When sectors in written, they are written in
384
a temporary file created in @file{/tmp}. You can however force the
385
write back to the raw disk images by using the @code{commit} monitor
386
command (or @key{C-a s} in the serial console).
387

    
388
@node vm_snapshots
389
@subsection VM snapshots
390

    
391
VM snapshots are snapshots of the complete virtual machine including
392
CPU state, RAM, device state and the content of all the writable
393
disks. In order to use VM snapshots, you must have at least one non
394
removable and writable block device using the @code{qcow2} disk image
395
format. Normally this device is the first virtual hard drive.
396

    
397
Use the monitor command @code{savevm} to create a new VM snapshot or
398
replace an existing one. A human readable name can be assigned to each
399
snapshot in addition to its numerical ID.
400

    
401
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
402
a VM snapshot. @code{info snapshots} lists the available snapshots
403
with their associated information:
404

    
405
@example
406
(qemu) info snapshots
407
Snapshot devices: hda
408
Snapshot list (from hda):
409
ID        TAG                 VM SIZE                DATE       VM CLOCK
410
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
411
2                                 40M 2006-08-06 12:43:29   00:00:18.633
412
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
413
@end example
414

    
415
A VM snapshot is made of a VM state info (its size is shown in
416
@code{info snapshots}) and a snapshot of every writable disk image.
417
The VM state info is stored in the first @code{qcow2} non removable
418
and writable block device. The disk image snapshots are stored in
419
every disk image. The size of a snapshot in a disk image is difficult
420
to evaluate and is not shown by @code{info snapshots} because the
421
associated disk sectors are shared among all the snapshots to save
422
disk space (otherwise each snapshot would need a full copy of all the
423
disk images).
424

    
425
When using the (unrelated) @code{-snapshot} option
426
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
427
but they are deleted as soon as you exit QEMU.
428

    
429
VM snapshots currently have the following known limitations:
430
@itemize
431
@item
432
They cannot cope with removable devices if they are removed or
433
inserted after a snapshot is done.
434
@item
435
A few device drivers still have incomplete snapshot support so their
436
state is not saved or restored properly (in particular USB).
437
@end itemize
438

    
439
@node qemu_img_invocation
440
@subsection @code{qemu-img} Invocation
441

    
442
@include qemu-img.texi
443

    
444
@node qemu_nbd_invocation
445
@subsection @code{qemu-nbd} Invocation
446

    
447
@include qemu-nbd.texi
448

    
449
@node host_drives
450
@subsection Using host drives
451

    
452
In addition to disk image files, QEMU can directly access host
453
devices. We describe here the usage for QEMU version >= 0.8.3.
454

    
455
@subsubsection Linux
456

    
457
On Linux, you can directly use the host device filename instead of a
458
disk image filename provided you have enough privileges to access
459
it. For example, use @file{/dev/cdrom} to access to the CDROM or
460
@file{/dev/fd0} for the floppy.
461

    
462
@table @code
463
@item CD
464
You can specify a CDROM device even if no CDROM is loaded. QEMU has
465
specific code to detect CDROM insertion or removal. CDROM ejection by
466
the guest OS is supported. Currently only data CDs are supported.
467
@item Floppy
468
You can specify a floppy device even if no floppy is loaded. Floppy
469
removal is currently not detected accurately (if you change floppy
470
without doing floppy access while the floppy is not loaded, the guest
471
OS will think that the same floppy is loaded).
472
@item Hard disks
473
Hard disks can be used. Normally you must specify the whole disk
474
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
475
see it as a partitioned disk. WARNING: unless you know what you do, it
476
is better to only make READ-ONLY accesses to the hard disk otherwise
477
you may corrupt your host data (use the @option{-snapshot} command
478
line option or modify the device permissions accordingly).
479
@end table
480

    
481
@subsubsection Windows
482

    
483
@table @code
484
@item CD
485
The preferred syntax is the drive letter (e.g. @file{d:}). The
486
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
487
supported as an alias to the first CDROM drive.
488

    
489
Currently there is no specific code to handle removable media, so it
490
is better to use the @code{change} or @code{eject} monitor commands to
491
change or eject media.
492
@item Hard disks
493
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
494
where @var{N} is the drive number (0 is the first hard disk).
495

    
496
WARNING: unless you know what you do, it is better to only make
497
READ-ONLY accesses to the hard disk otherwise you may corrupt your
498
host data (use the @option{-snapshot} command line so that the
499
modifications are written in a temporary file).
500
@end table
501

    
502

    
503
@subsubsection Mac OS X
504

    
505
@file{/dev/cdrom} is an alias to the first CDROM.
506

    
507
Currently there is no specific code to handle removable media, so it
508
is better to use the @code{change} or @code{eject} monitor commands to
509
change or eject media.
510

    
511
@node disk_images_fat_images
512
@subsection Virtual FAT disk images
513

    
514
QEMU can automatically create a virtual FAT disk image from a
515
directory tree. In order to use it, just type:
516

    
517
@example
518
qemu linux.img -hdb fat:/my_directory
519
@end example
520

    
521
Then you access access to all the files in the @file{/my_directory}
522
directory without having to copy them in a disk image or to export
523
them via SAMBA or NFS. The default access is @emph{read-only}.
524

    
525
Floppies can be emulated with the @code{:floppy:} option:
526

    
527
@example
528
qemu linux.img -fda fat:floppy:/my_directory
529
@end example
530

    
531
A read/write support is available for testing (beta stage) with the
532
@code{:rw:} option:
533

    
534
@example
535
qemu linux.img -fda fat:floppy:rw:/my_directory
536
@end example
537

    
538
What you should @emph{never} do:
539
@itemize
540
@item use non-ASCII filenames ;
541
@item use "-snapshot" together with ":rw:" ;
542
@item expect it to work when loadvm'ing ;
543
@item write to the FAT directory on the host system while accessing it with the guest system.
544
@end itemize
545

    
546
@node disk_images_nbd
547
@subsection NBD access
548

    
549
QEMU can access directly to block device exported using the Network Block Device
550
protocol.
551

    
552
@example
553
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
554
@end example
555

    
556
If the NBD server is located on the same host, you can use an unix socket instead
557
of an inet socket:
558

    
559
@example
560
qemu linux.img -hdb nbd:unix:/tmp/my_socket
561
@end example
562

    
563
In this case, the block device must be exported using qemu-nbd:
564

    
565
@example
566
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
567
@end example
568

    
569
The use of qemu-nbd allows to share a disk between several guests:
570
@example
571
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
572
@end example
573

    
574
and then you can use it with two guests:
575
@example
576
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
577
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
578
@end example
579

    
580
@node pcsys_network
581
@section Network emulation
582

    
583
QEMU can simulate several network cards (PCI or ISA cards on the PC
584
target) and can connect them to an arbitrary number of Virtual Local
585
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
586
VLAN. VLAN can be connected between separate instances of QEMU to
587
simulate large networks. For simpler usage, a non privileged user mode
588
network stack can replace the TAP device to have a basic network
589
connection.
590

    
591
@subsection VLANs
592

    
593
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
594
connection between several network devices. These devices can be for
595
example QEMU virtual Ethernet cards or virtual Host ethernet devices
596
(TAP devices).
597

    
598
@subsection Using TAP network interfaces
599

    
600
This is the standard way to connect QEMU to a real network. QEMU adds
601
a virtual network device on your host (called @code{tapN}), and you
602
can then configure it as if it was a real ethernet card.
603

    
604
@subsubsection Linux host
605

    
606
As an example, you can download the @file{linux-test-xxx.tar.gz}
607
archive and copy the script @file{qemu-ifup} in @file{/etc} and
608
configure properly @code{sudo} so that the command @code{ifconfig}
609
contained in @file{qemu-ifup} can be executed as root. You must verify
610
that your host kernel supports the TAP network interfaces: the
611
device @file{/dev/net/tun} must be present.
612

    
613
See @ref{sec_invocation} to have examples of command lines using the
614
TAP network interfaces.
615

    
616
@subsubsection Windows host
617

    
618
There is a virtual ethernet driver for Windows 2000/XP systems, called
619
TAP-Win32. But it is not included in standard QEMU for Windows,
620
so you will need to get it separately. It is part of OpenVPN package,
621
so download OpenVPN from : @url{http://openvpn.net/}.
622

    
623
@subsection Using the user mode network stack
624

    
625
By using the option @option{-net user} (default configuration if no
626
@option{-net} option is specified), QEMU uses a completely user mode
627
network stack (you don't need root privilege to use the virtual
628
network). The virtual network configuration is the following:
629

    
630
@example
631

    
632
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
633
                           |          (10.0.2.2)
634
                           |
635
                           ---->  DNS server (10.0.2.3)
636
                           |
637
                           ---->  SMB server (10.0.2.4)
638
@end example
639

    
640
The QEMU VM behaves as if it was behind a firewall which blocks all
641
incoming connections. You can use a DHCP client to automatically
642
configure the network in the QEMU VM. The DHCP server assign addresses
643
to the hosts starting from 10.0.2.15.
644

    
645
In order to check that the user mode network is working, you can ping
646
the address 10.0.2.2 and verify that you got an address in the range
647
10.0.2.x from the QEMU virtual DHCP server.
648

    
649
Note that @code{ping} is not supported reliably to the internet as it
650
would require root privileges. It means you can only ping the local
651
router (10.0.2.2).
652

    
653
When using the built-in TFTP server, the router is also the TFTP
654
server.
655

    
656
When using the @option{-redir} option, TCP or UDP connections can be
657
redirected from the host to the guest. It allows for example to
658
redirect X11, telnet or SSH connections.
659

    
660
@subsection Connecting VLANs between QEMU instances
661

    
662
Using the @option{-net socket} option, it is possible to make VLANs
663
that span several QEMU instances. See @ref{sec_invocation} to have a
664
basic example.
665

    
666
@node direct_linux_boot
667
@section Direct Linux Boot
668

    
669
This section explains how to launch a Linux kernel inside QEMU without
670
having to make a full bootable image. It is very useful for fast Linux
671
kernel testing.
672

    
673
The syntax is:
674
@example
675
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
676
@end example
677

    
678
Use @option{-kernel} to provide the Linux kernel image and
679
@option{-append} to give the kernel command line arguments. The
680
@option{-initrd} option can be used to provide an INITRD image.
681

    
682
When using the direct Linux boot, a disk image for the first hard disk
683
@file{hda} is required because its boot sector is used to launch the
684
Linux kernel.
685

    
686
If you do not need graphical output, you can disable it and redirect
687
the virtual serial port and the QEMU monitor to the console with the
688
@option{-nographic} option. The typical command line is:
689
@example
690
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
691
     -append "root=/dev/hda console=ttyS0" -nographic
692
@end example
693

    
694
Use @key{Ctrl-a c} to switch between the serial console and the
695
monitor (@pxref{pcsys_keys}).
696

    
697
@node pcsys_usb
698
@section USB emulation
699

    
700
QEMU emulates a PCI UHCI USB controller. You can virtually plug
701
virtual USB devices or real host USB devices (experimental, works only
702
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
703
as necessary to connect multiple USB devices.
704

    
705
@menu
706
* usb_devices::
707
* host_usb_devices::
708
@end menu
709
@node usb_devices
710
@subsection Connecting USB devices
711

    
712
USB devices can be connected with the @option{-usbdevice} commandline option
713
or the @code{usb_add} monitor command.  Available devices are:
714

    
715
@table @code
716
@item mouse
717
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
718
@item tablet
719
Pointer device that uses absolute coordinates (like a touchscreen).
720
This means qemu is able to report the mouse position without having
721
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
722
@item disk:@var{file}
723
Mass storage device based on @var{file} (@pxref{disk_images})
724
@item host:@var{bus.addr}
725
Pass through the host device identified by @var{bus.addr}
726
(Linux only)
727
@item host:@var{vendor_id:product_id}
728
Pass through the host device identified by @var{vendor_id:product_id}
729
(Linux only)
730
@item wacom-tablet
731
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
732
above but it can be used with the tslib library because in addition to touch
733
coordinates it reports touch pressure.
734
@item keyboard
735
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
736
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
737
Serial converter. This emulates an FTDI FT232BM chip connected to host character
738
device @var{dev}. The available character devices are the same as for the
739
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
740
used to override the default 0403:6001. For instance, 
741
@example
742
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
743
@end example
744
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
745
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
746
@item braille
747
Braille device.  This will use BrlAPI to display the braille output on a real
748
or fake device.
749
@item net:@var{options}
750
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
751
specifies NIC options as with @code{-net nic,}@var{options} (see description).
752
For instance, user-mode networking can be used with
753
@example
754
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
755
@end example
756
Currently this cannot be used in machines that support PCI NICs.
757
@item bt[:@var{hci-type}]
758
Bluetooth dongle whose type is specified in the same format as with
759
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
760
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
761
This USB device implements the USB Transport Layer of HCI.  Example
762
usage:
763
@example
764
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
765
@end example
766
@end table
767

    
768
@node host_usb_devices
769
@subsection Using host USB devices on a Linux host
770

    
771
WARNING: this is an experimental feature. QEMU will slow down when
772
using it. USB devices requiring real time streaming (i.e. USB Video
773
Cameras) are not supported yet.
774

    
775
@enumerate
776
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
777
is actually using the USB device. A simple way to do that is simply to
778
disable the corresponding kernel module by renaming it from @file{mydriver.o}
779
to @file{mydriver.o.disabled}.
780

    
781
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
782
@example
783
ls /proc/bus/usb
784
001  devices  drivers
785
@end example
786

    
787
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
788
@example
789
chown -R myuid /proc/bus/usb
790
@end example
791

    
792
@item Launch QEMU and do in the monitor:
793
@example
794
info usbhost
795
  Device 1.2, speed 480 Mb/s
796
    Class 00: USB device 1234:5678, USB DISK
797
@end example
798
You should see the list of the devices you can use (Never try to use
799
hubs, it won't work).
800

    
801
@item Add the device in QEMU by using:
802
@example
803
usb_add host:1234:5678
804
@end example
805

    
806
Normally the guest OS should report that a new USB device is
807
plugged. You can use the option @option{-usbdevice} to do the same.
808

    
809
@item Now you can try to use the host USB device in QEMU.
810

    
811
@end enumerate
812

    
813
When relaunching QEMU, you may have to unplug and plug again the USB
814
device to make it work again (this is a bug).
815

    
816
@node vnc_security
817
@section VNC security
818

    
819
The VNC server capability provides access to the graphical console
820
of the guest VM across the network. This has a number of security
821
considerations depending on the deployment scenarios.
822

    
823
@menu
824
* vnc_sec_none::
825
* vnc_sec_password::
826
* vnc_sec_certificate::
827
* vnc_sec_certificate_verify::
828
* vnc_sec_certificate_pw::
829
* vnc_sec_sasl::
830
* vnc_sec_certificate_sasl::
831
* vnc_generate_cert::
832
* vnc_setup_sasl::
833
@end menu
834
@node vnc_sec_none
835
@subsection Without passwords
836

    
837
The simplest VNC server setup does not include any form of authentication.
838
For this setup it is recommended to restrict it to listen on a UNIX domain
839
socket only. For example
840

    
841
@example
842
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
843
@end example
844

    
845
This ensures that only users on local box with read/write access to that
846
path can access the VNC server. To securely access the VNC server from a
847
remote machine, a combination of netcat+ssh can be used to provide a secure
848
tunnel.
849

    
850
@node vnc_sec_password
851
@subsection With passwords
852

    
853
The VNC protocol has limited support for password based authentication. Since
854
the protocol limits passwords to 8 characters it should not be considered
855
to provide high security. The password can be fairly easily brute-forced by
856
a client making repeat connections. For this reason, a VNC server using password
857
authentication should be restricted to only listen on the loopback interface
858
or UNIX domain sockets. Password authentication is requested with the @code{password}
859
option, and then once QEMU is running the password is set with the monitor. Until
860
the monitor is used to set the password all clients will be rejected.
861

    
862
@example
863
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
864
(qemu) change vnc password
865
Password: ********
866
(qemu)
867
@end example
868

    
869
@node vnc_sec_certificate
870
@subsection With x509 certificates
871

    
872
The QEMU VNC server also implements the VeNCrypt extension allowing use of
873
TLS for encryption of the session, and x509 certificates for authentication.
874
The use of x509 certificates is strongly recommended, because TLS on its
875
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
876
support provides a secure session, but no authentication. This allows any
877
client to connect, and provides an encrypted session.
878

    
879
@example
880
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
881
@end example
882

    
883
In the above example @code{/etc/pki/qemu} should contain at least three files,
884
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
885
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
886
NB the @code{server-key.pem} file should be protected with file mode 0600 to
887
only be readable by the user owning it.
888

    
889
@node vnc_sec_certificate_verify
890
@subsection With x509 certificates and client verification
891

    
892
Certificates can also provide a means to authenticate the client connecting.
893
The server will request that the client provide a certificate, which it will
894
then validate against the CA certificate. This is a good choice if deploying
895
in an environment with a private internal certificate authority.
896

    
897
@example
898
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
899
@end example
900

    
901

    
902
@node vnc_sec_certificate_pw
903
@subsection With x509 certificates, client verification and passwords
904

    
905
Finally, the previous method can be combined with VNC password authentication
906
to provide two layers of authentication for clients.
907

    
908
@example
909
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
910
(qemu) change vnc password
911
Password: ********
912
(qemu)
913
@end example
914

    
915

    
916
@node vnc_sec_sasl
917
@subsection With SASL authentication
918

    
919
The SASL authentication method is a VNC extension, that provides an
920
easily extendable, pluggable authentication method. This allows for
921
integration with a wide range of authentication mechanisms, such as
922
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
923
The strength of the authentication depends on the exact mechanism
924
configured. If the chosen mechanism also provides a SSF layer, then
925
it will encrypt the datastream as well.
926

    
927
Refer to the later docs on how to choose the exact SASL mechanism
928
used for authentication, but assuming use of one supporting SSF,
929
then QEMU can be launched with:
930

    
931
@example
932
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
933
@end example
934

    
935
@node vnc_sec_certificate_sasl
936
@subsection With x509 certificates and SASL authentication
937

    
938
If the desired SASL authentication mechanism does not supported
939
SSF layers, then it is strongly advised to run it in combination
940
with TLS and x509 certificates. This provides securely encrypted
941
data stream, avoiding risk of compromising of the security
942
credentials. This can be enabled, by combining the 'sasl' option
943
with the aforementioned TLS + x509 options:
944

    
945
@example
946
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
947
@end example
948

    
949

    
950
@node vnc_generate_cert
951
@subsection Generating certificates for VNC
952

    
953
The GNU TLS packages provides a command called @code{certtool} which can
954
be used to generate certificates and keys in PEM format. At a minimum it
955
is neccessary to setup a certificate authority, and issue certificates to
956
each server. If using certificates for authentication, then each client
957
will also need to be issued a certificate. The recommendation is for the
958
server to keep its certificates in either @code{/etc/pki/qemu} or for
959
unprivileged users in @code{$HOME/.pki/qemu}.
960

    
961
@menu
962
* vnc_generate_ca::
963
* vnc_generate_server::
964
* vnc_generate_client::
965
@end menu
966
@node vnc_generate_ca
967
@subsubsection Setup the Certificate Authority
968

    
969
This step only needs to be performed once per organization / organizational
970
unit. First the CA needs a private key. This key must be kept VERY secret
971
and secure. If this key is compromised the entire trust chain of the certificates
972
issued with it is lost.
973

    
974
@example
975
# certtool --generate-privkey > ca-key.pem
976
@end example
977

    
978
A CA needs to have a public certificate. For simplicity it can be a self-signed
979
certificate, or one issue by a commercial certificate issuing authority. To
980
generate a self-signed certificate requires one core piece of information, the
981
name of the organization.
982

    
983
@example
984
# cat > ca.info <<EOF
985
cn = Name of your organization
986
ca
987
cert_signing_key
988
EOF
989
# certtool --generate-self-signed \
990
           --load-privkey ca-key.pem
991
           --template ca.info \
992
           --outfile ca-cert.pem
993
@end example
994

    
995
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
996
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
997

    
998
@node vnc_generate_server
999
@subsubsection Issuing server certificates
1000

    
1001
Each server (or host) needs to be issued with a key and certificate. When connecting
1002
the certificate is sent to the client which validates it against the CA certificate.
1003
The core piece of information for a server certificate is the hostname. This should
1004
be the fully qualified hostname that the client will connect with, since the client
1005
will typically also verify the hostname in the certificate. On the host holding the
1006
secure CA private key:
1007

    
1008
@example
1009
# cat > server.info <<EOF
1010
organization = Name  of your organization
1011
cn = server.foo.example.com
1012
tls_www_server
1013
encryption_key
1014
signing_key
1015
EOF
1016
# certtool --generate-privkey > server-key.pem
1017
# certtool --generate-certificate \
1018
           --load-ca-certificate ca-cert.pem \
1019
           --load-ca-privkey ca-key.pem \
1020
           --load-privkey server server-key.pem \
1021
           --template server.info \
1022
           --outfile server-cert.pem
1023
@end example
1024

    
1025
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1026
to the server for which they were generated. The @code{server-key.pem} is security
1027
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1028

    
1029
@node vnc_generate_client
1030
@subsubsection Issuing client certificates
1031

    
1032
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1033
certificates as its authentication mechanism, each client also needs to be issued
1034
a certificate. The client certificate contains enough metadata to uniquely identify
1035
the client, typically organization, state, city, building, etc. On the host holding
1036
the secure CA private key:
1037

    
1038
@example
1039
# cat > client.info <<EOF
1040
country = GB
1041
state = London
1042
locality = London
1043
organiazation = Name of your organization
1044
cn = client.foo.example.com
1045
tls_www_client
1046
encryption_key
1047
signing_key
1048
EOF
1049
# certtool --generate-privkey > client-key.pem
1050
# certtool --generate-certificate \
1051
           --load-ca-certificate ca-cert.pem \
1052
           --load-ca-privkey ca-key.pem \
1053
           --load-privkey client-key.pem \
1054
           --template client.info \
1055
           --outfile client-cert.pem
1056
@end example
1057

    
1058
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1059
copied to the client for which they were generated.
1060

    
1061

    
1062
@node vnc_setup_sasl
1063

    
1064
@subsection Configuring SASL mechanisms
1065

    
1066
The following documentation assumes use of the Cyrus SASL implementation on a
1067
Linux host, but the principals should apply to any other SASL impl. When SASL
1068
is enabled, the mechanism configuration will be loaded from system default
1069
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1070
unprivileged user, an environment variable SASL_CONF_PATH can be used
1071
to make it search alternate locations for the service config.
1072

    
1073
The default configuration might contain
1074

    
1075
@example
1076
mech_list: digest-md5
1077
sasldb_path: /etc/qemu/passwd.db
1078
@end example
1079

    
1080
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1081
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1082
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1083
command. While this mechanism is easy to configure and use, it is not
1084
considered secure by modern standards, so only suitable for developers /
1085
ad-hoc testing.
1086

    
1087
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1088
mechanism
1089

    
1090
@example
1091
mech_list: gssapi
1092
keytab: /etc/qemu/krb5.tab
1093
@end example
1094

    
1095
For this to work the administrator of your KDC must generate a Kerberos
1096
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1097
replacing 'somehost.example.com' with the fully qualified host name of the
1098
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1099

    
1100
Other configurations will be left as an exercise for the reader. It should
1101
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1102
encryption. For all other mechanisms, VNC should always be configured to
1103
use TLS and x509 certificates to protect security credentials from snooping.
1104

    
1105
@node gdb_usage
1106
@section GDB usage
1107

    
1108
QEMU has a primitive support to work with gdb, so that you can do
1109
'Ctrl-C' while the virtual machine is running and inspect its state.
1110

    
1111
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1112
gdb connection:
1113
@example
1114
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1115
       -append "root=/dev/hda"
1116
Connected to host network interface: tun0
1117
Waiting gdb connection on port 1234
1118
@end example
1119

    
1120
Then launch gdb on the 'vmlinux' executable:
1121
@example
1122
> gdb vmlinux
1123
@end example
1124

    
1125
In gdb, connect to QEMU:
1126
@example
1127
(gdb) target remote localhost:1234
1128
@end example
1129

    
1130
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1131
@example
1132
(gdb) c
1133
@end example
1134

    
1135
Here are some useful tips in order to use gdb on system code:
1136

    
1137
@enumerate
1138
@item
1139
Use @code{info reg} to display all the CPU registers.
1140
@item
1141
Use @code{x/10i $eip} to display the code at the PC position.
1142
@item
1143
Use @code{set architecture i8086} to dump 16 bit code. Then use
1144
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1145
@end enumerate
1146

    
1147
Advanced debugging options:
1148

    
1149
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1150
@table @code
1151
@item maintenance packet qqemu.sstepbits
1152

    
1153
This will display the MASK bits used to control the single stepping IE:
1154
@example
1155
(gdb) maintenance packet qqemu.sstepbits
1156
sending: "qqemu.sstepbits"
1157
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1158
@end example
1159
@item maintenance packet qqemu.sstep
1160

    
1161
This will display the current value of the mask used when single stepping IE:
1162
@example
1163
(gdb) maintenance packet qqemu.sstep
1164
sending: "qqemu.sstep"
1165
received: "0x7"
1166
@end example
1167
@item maintenance packet Qqemu.sstep=HEX_VALUE
1168

    
1169
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1170
@example
1171
(gdb) maintenance packet Qqemu.sstep=0x5
1172
sending: "qemu.sstep=0x5"
1173
received: "OK"
1174
@end example
1175
@end table
1176

    
1177
@node pcsys_os_specific
1178
@section Target OS specific information
1179

    
1180
@subsection Linux
1181

    
1182
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1183
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1184
color depth in the guest and the host OS.
1185

    
1186
When using a 2.6 guest Linux kernel, you should add the option
1187
@code{clock=pit} on the kernel command line because the 2.6 Linux
1188
kernels make very strict real time clock checks by default that QEMU
1189
cannot simulate exactly.
1190

    
1191
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1192
not activated because QEMU is slower with this patch. The QEMU
1193
Accelerator Module is also much slower in this case. Earlier Fedora
1194
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1195
patch by default. Newer kernels don't have it.
1196

    
1197
@subsection Windows
1198

    
1199
If you have a slow host, using Windows 95 is better as it gives the
1200
best speed. Windows 2000 is also a good choice.
1201

    
1202
@subsubsection SVGA graphic modes support
1203

    
1204
QEMU emulates a Cirrus Logic GD5446 Video
1205
card. All Windows versions starting from Windows 95 should recognize
1206
and use this graphic card. For optimal performances, use 16 bit color
1207
depth in the guest and the host OS.
1208

    
1209
If you are using Windows XP as guest OS and if you want to use high
1210
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1211
1280x1024x16), then you should use the VESA VBE virtual graphic card
1212
(option @option{-std-vga}).
1213

    
1214
@subsubsection CPU usage reduction
1215

    
1216
Windows 9x does not correctly use the CPU HLT
1217
instruction. The result is that it takes host CPU cycles even when
1218
idle. You can install the utility from
1219
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1220
problem. Note that no such tool is needed for NT, 2000 or XP.
1221

    
1222
@subsubsection Windows 2000 disk full problem
1223

    
1224
Windows 2000 has a bug which gives a disk full problem during its
1225
installation. When installing it, use the @option{-win2k-hack} QEMU
1226
option to enable a specific workaround. After Windows 2000 is
1227
installed, you no longer need this option (this option slows down the
1228
IDE transfers).
1229

    
1230
@subsubsection Windows 2000 shutdown
1231

    
1232
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1233
can. It comes from the fact that Windows 2000 does not automatically
1234
use the APM driver provided by the BIOS.
1235

    
1236
In order to correct that, do the following (thanks to Struan
1237
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1238
Add/Troubleshoot a device => Add a new device & Next => No, select the
1239
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1240
(again) a few times. Now the driver is installed and Windows 2000 now
1241
correctly instructs QEMU to shutdown at the appropriate moment.
1242

    
1243
@subsubsection Share a directory between Unix and Windows
1244

    
1245
See @ref{sec_invocation} about the help of the option @option{-smb}.
1246

    
1247
@subsubsection Windows XP security problem
1248

    
1249
Some releases of Windows XP install correctly but give a security
1250
error when booting:
1251
@example
1252
A problem is preventing Windows from accurately checking the
1253
license for this computer. Error code: 0x800703e6.
1254
@end example
1255

    
1256
The workaround is to install a service pack for XP after a boot in safe
1257
mode. Then reboot, and the problem should go away. Since there is no
1258
network while in safe mode, its recommended to download the full
1259
installation of SP1 or SP2 and transfer that via an ISO or using the
1260
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1261

    
1262
@subsection MS-DOS and FreeDOS
1263

    
1264
@subsubsection CPU usage reduction
1265

    
1266
DOS does not correctly use the CPU HLT instruction. The result is that
1267
it takes host CPU cycles even when idle. You can install the utility
1268
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1269
problem.
1270

    
1271
@node QEMU System emulator for non PC targets
1272
@chapter QEMU System emulator for non PC targets
1273

    
1274
QEMU is a generic emulator and it emulates many non PC
1275
machines. Most of the options are similar to the PC emulator. The
1276
differences are mentioned in the following sections.
1277

    
1278
@menu
1279
* QEMU PowerPC System emulator::
1280
* Sparc32 System emulator::
1281
* Sparc64 System emulator::
1282
* MIPS System emulator::
1283
* ARM System emulator::
1284
* ColdFire System emulator::
1285
@end menu
1286

    
1287
@node QEMU PowerPC System emulator
1288
@section QEMU PowerPC System emulator
1289

    
1290
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1291
or PowerMac PowerPC system.
1292

    
1293
QEMU emulates the following PowerMac peripherals:
1294

    
1295
@itemize @minus
1296
@item
1297
UniNorth or Grackle PCI Bridge
1298
@item
1299
PCI VGA compatible card with VESA Bochs Extensions
1300
@item
1301
2 PMAC IDE interfaces with hard disk and CD-ROM support
1302
@item
1303
NE2000 PCI adapters
1304
@item
1305
Non Volatile RAM
1306
@item
1307
VIA-CUDA with ADB keyboard and mouse.
1308
@end itemize
1309

    
1310
QEMU emulates the following PREP peripherals:
1311

    
1312
@itemize @minus
1313
@item
1314
PCI Bridge
1315
@item
1316
PCI VGA compatible card with VESA Bochs Extensions
1317
@item
1318
2 IDE interfaces with hard disk and CD-ROM support
1319
@item
1320
Floppy disk
1321
@item
1322
NE2000 network adapters
1323
@item
1324
Serial port
1325
@item
1326
PREP Non Volatile RAM
1327
@item
1328
PC compatible keyboard and mouse.
1329
@end itemize
1330

    
1331
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1332
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1333

    
1334
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1335
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1336
v2) portable firmware implementation. The goal is to implement a 100%
1337
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1338

    
1339
@c man begin OPTIONS
1340

    
1341
The following options are specific to the PowerPC emulation:
1342

    
1343
@table @option
1344

    
1345
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1346

    
1347
Set the initial VGA graphic mode. The default is 800x600x15.
1348

    
1349
@item -prom-env @var{string}
1350

    
1351
Set OpenBIOS variables in NVRAM, for example:
1352

    
1353
@example
1354
qemu-system-ppc -prom-env 'auto-boot?=false' \
1355
 -prom-env 'boot-device=hd:2,\yaboot' \
1356
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1357
@end example
1358

    
1359
These variables are not used by Open Hack'Ware.
1360

    
1361
@end table
1362

    
1363
@c man end
1364

    
1365

    
1366
More information is available at
1367
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1368

    
1369
@node Sparc32 System emulator
1370
@section Sparc32 System emulator
1371

    
1372
Use the executable @file{qemu-system-sparc} to simulate the following
1373
Sun4m architecture machines:
1374
@itemize @minus
1375
@item
1376
SPARCstation 4
1377
@item
1378
SPARCstation 5
1379
@item
1380
SPARCstation 10
1381
@item
1382
SPARCstation 20
1383
@item
1384
SPARCserver 600MP
1385
@item
1386
SPARCstation LX
1387
@item
1388
SPARCstation Voyager
1389
@item
1390
SPARCclassic
1391
@item
1392
SPARCbook
1393
@end itemize
1394

    
1395
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1396
but Linux limits the number of usable CPUs to 4.
1397

    
1398
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1399
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1400
emulators are not usable yet.
1401

    
1402
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1403

    
1404
@itemize @minus
1405
@item
1406
IOMMU or IO-UNITs
1407
@item
1408
TCX Frame buffer
1409
@item
1410
Lance (Am7990) Ethernet
1411
@item
1412
Non Volatile RAM M48T02/M48T08
1413
@item
1414
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1415
and power/reset logic
1416
@item
1417
ESP SCSI controller with hard disk and CD-ROM support
1418
@item
1419
Floppy drive (not on SS-600MP)
1420
@item
1421
CS4231 sound device (only on SS-5, not working yet)
1422
@end itemize
1423

    
1424
The number of peripherals is fixed in the architecture.  Maximum
1425
memory size depends on the machine type, for SS-5 it is 256MB and for
1426
others 2047MB.
1427

    
1428
Since version 0.8.2, QEMU uses OpenBIOS
1429
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1430
firmware implementation. The goal is to implement a 100% IEEE
1431
1275-1994 (referred to as Open Firmware) compliant firmware.
1432

    
1433
A sample Linux 2.6 series kernel and ram disk image are available on
1434
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1435
some kernel versions work. Please note that currently Solaris kernels
1436
don't work probably due to interface issues between OpenBIOS and
1437
Solaris.
1438

    
1439
@c man begin OPTIONS
1440

    
1441
The following options are specific to the Sparc32 emulation:
1442

    
1443
@table @option
1444

    
1445
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1446

    
1447
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1448
the only other possible mode is 1024x768x24.
1449

    
1450
@item -prom-env @var{string}
1451

    
1452
Set OpenBIOS variables in NVRAM, for example:
1453

    
1454
@example
1455
qemu-system-sparc -prom-env 'auto-boot?=false' \
1456
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1457
@end example
1458

    
1459
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1460

    
1461
Set the emulated machine type. Default is SS-5.
1462

    
1463
@end table
1464

    
1465
@c man end
1466

    
1467
@node Sparc64 System emulator
1468
@section Sparc64 System emulator
1469

    
1470
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1471
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1472
Niagara (T1) machine. The emulator is not usable for anything yet, but
1473
it can launch some kernels.
1474

    
1475
QEMU emulates the following peripherals:
1476

    
1477
@itemize @minus
1478
@item
1479
UltraSparc IIi APB PCI Bridge
1480
@item
1481
PCI VGA compatible card with VESA Bochs Extensions
1482
@item
1483
PS/2 mouse and keyboard
1484
@item
1485
Non Volatile RAM M48T59
1486
@item
1487
PC-compatible serial ports
1488
@item
1489
2 PCI IDE interfaces with hard disk and CD-ROM support
1490
@item
1491
Floppy disk
1492
@end itemize
1493

    
1494
@c man begin OPTIONS
1495

    
1496
The following options are specific to the Sparc64 emulation:
1497

    
1498
@table @option
1499

    
1500
@item -prom-env @var{string}
1501

    
1502
Set OpenBIOS variables in NVRAM, for example:
1503

    
1504
@example
1505
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1506
@end example
1507

    
1508
@item -M [sun4u|sun4v|Niagara]
1509

    
1510
Set the emulated machine type. The default is sun4u.
1511

    
1512
@end table
1513

    
1514
@c man end
1515

    
1516
@node MIPS System emulator
1517
@section MIPS System emulator
1518

    
1519
Four executables cover simulation of 32 and 64-bit MIPS systems in
1520
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1521
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1522
Five different machine types are emulated:
1523

    
1524
@itemize @minus
1525
@item
1526
A generic ISA PC-like machine "mips"
1527
@item
1528
The MIPS Malta prototype board "malta"
1529
@item
1530
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1531
@item
1532
MIPS emulator pseudo board "mipssim"
1533
@item
1534
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1535
@end itemize
1536

    
1537
The generic emulation is supported by Debian 'Etch' and is able to
1538
install Debian into a virtual disk image. The following devices are
1539
emulated:
1540

    
1541
@itemize @minus
1542
@item
1543
A range of MIPS CPUs, default is the 24Kf
1544
@item
1545
PC style serial port
1546
@item
1547
PC style IDE disk
1548
@item
1549
NE2000 network card
1550
@end itemize
1551

    
1552
The Malta emulation supports the following devices:
1553

    
1554
@itemize @minus
1555
@item
1556
Core board with MIPS 24Kf CPU and Galileo system controller
1557
@item
1558
PIIX4 PCI/USB/SMbus controller
1559
@item
1560
The Multi-I/O chip's serial device
1561
@item
1562
PCI network cards (PCnet32 and others)
1563
@item
1564
Malta FPGA serial device
1565
@item
1566
Cirrus (default) or any other PCI VGA graphics card
1567
@end itemize
1568

    
1569
The ACER Pica emulation supports:
1570

    
1571
@itemize @minus
1572
@item
1573
MIPS R4000 CPU
1574
@item
1575
PC-style IRQ and DMA controllers
1576
@item
1577
PC Keyboard
1578
@item
1579
IDE controller
1580
@end itemize
1581

    
1582
The mipssim pseudo board emulation provides an environment similiar
1583
to what the proprietary MIPS emulator uses for running Linux.
1584
It supports:
1585

    
1586
@itemize @minus
1587
@item
1588
A range of MIPS CPUs, default is the 24Kf
1589
@item
1590
PC style serial port
1591
@item
1592
MIPSnet network emulation
1593
@end itemize
1594

    
1595
The MIPS Magnum R4000 emulation supports:
1596

    
1597
@itemize @minus
1598
@item
1599
MIPS R4000 CPU
1600
@item
1601
PC-style IRQ controller
1602
@item
1603
PC Keyboard
1604
@item
1605
SCSI controller
1606
@item
1607
G364 framebuffer
1608
@end itemize
1609

    
1610

    
1611
@node ARM System emulator
1612
@section ARM System emulator
1613

    
1614
Use the executable @file{qemu-system-arm} to simulate a ARM
1615
machine. The ARM Integrator/CP board is emulated with the following
1616
devices:
1617

    
1618
@itemize @minus
1619
@item
1620
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1621
@item
1622
Two PL011 UARTs
1623
@item
1624
SMC 91c111 Ethernet adapter
1625
@item
1626
PL110 LCD controller
1627
@item
1628
PL050 KMI with PS/2 keyboard and mouse.
1629
@item
1630
PL181 MultiMedia Card Interface with SD card.
1631
@end itemize
1632

    
1633
The ARM Versatile baseboard is emulated with the following devices:
1634

    
1635
@itemize @minus
1636
@item
1637
ARM926E, ARM1136 or Cortex-A8 CPU
1638
@item
1639
PL190 Vectored Interrupt Controller
1640
@item
1641
Four PL011 UARTs
1642
@item
1643
SMC 91c111 Ethernet adapter
1644
@item
1645
PL110 LCD controller
1646
@item
1647
PL050 KMI with PS/2 keyboard and mouse.
1648
@item
1649
PCI host bridge.  Note the emulated PCI bridge only provides access to
1650
PCI memory space.  It does not provide access to PCI IO space.
1651
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1652
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1653
mapped control registers.
1654
@item
1655
PCI OHCI USB controller.
1656
@item
1657
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1658
@item
1659
PL181 MultiMedia Card Interface with SD card.
1660
@end itemize
1661

    
1662
The ARM RealView Emulation/Platform baseboard is emulated with the following
1663
devices:
1664

    
1665
@itemize @minus
1666
@item
1667
ARM926E, ARM1136, ARM11MPCORE or Cortex-A8 CPU
1668
@item
1669
ARM AMBA Generic/Distributed Interrupt Controller
1670
@item
1671
Four PL011 UARTs
1672
@item
1673
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1674
@item
1675
PL110 LCD controller
1676
@item
1677
PL050 KMI with PS/2 keyboard and mouse
1678
@item
1679
PCI host bridge
1680
@item
1681
PCI OHCI USB controller
1682
@item
1683
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1684
@item
1685
PL181 MultiMedia Card Interface with SD card.
1686
@end itemize
1687

    
1688
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1689
and "Terrier") emulation includes the following peripherals:
1690

    
1691
@itemize @minus
1692
@item
1693
Intel PXA270 System-on-chip (ARM V5TE core)
1694
@item
1695
NAND Flash memory
1696
@item
1697
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1698
@item
1699
On-chip OHCI USB controller
1700
@item
1701
On-chip LCD controller
1702
@item
1703
On-chip Real Time Clock
1704
@item
1705
TI ADS7846 touchscreen controller on SSP bus
1706
@item
1707
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1708
@item
1709
GPIO-connected keyboard controller and LEDs
1710
@item
1711
Secure Digital card connected to PXA MMC/SD host
1712
@item
1713
Three on-chip UARTs
1714
@item
1715
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1716
@end itemize
1717

    
1718
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1719
following elements:
1720

    
1721
@itemize @minus
1722
@item
1723
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1724
@item
1725
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1726
@item
1727
On-chip LCD controller
1728
@item
1729
On-chip Real Time Clock
1730
@item
1731
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1732
CODEC, connected through MicroWire and I@math{^2}S busses
1733
@item
1734
GPIO-connected matrix keypad
1735
@item
1736
Secure Digital card connected to OMAP MMC/SD host
1737
@item
1738
Three on-chip UARTs
1739
@end itemize
1740

    
1741
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1742
emulation supports the following elements:
1743

    
1744
@itemize @minus
1745
@item
1746
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1747
@item
1748
RAM and non-volatile OneNAND Flash memories
1749
@item
1750
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1751
display controller and a LS041y3 MIPI DBI-C controller
1752
@item
1753
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1754
driven through SPI bus
1755
@item
1756
National Semiconductor LM8323-controlled qwerty keyboard driven
1757
through I@math{^2}C bus
1758
@item
1759
Secure Digital card connected to OMAP MMC/SD host
1760
@item
1761
Three OMAP on-chip UARTs and on-chip STI debugging console
1762
@item
1763
A Bluetooth(R) transciever and HCI connected to an UART
1764
@item
1765
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1766
TUSB6010 chip - only USB host mode is supported
1767
@item
1768
TI TMP105 temperature sensor driven through I@math{^2}C bus
1769
@item
1770
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1771
@item
1772
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1773
through CBUS
1774
@end itemize
1775

    
1776
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1777
devices:
1778

    
1779
@itemize @minus
1780
@item
1781
Cortex-M3 CPU core.
1782
@item
1783
64k Flash and 8k SRAM.
1784
@item
1785
Timers, UARTs, ADC and I@math{^2}C interface.
1786
@item
1787
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1788
@end itemize
1789

    
1790
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1791
devices:
1792

    
1793
@itemize @minus
1794
@item
1795
Cortex-M3 CPU core.
1796
@item
1797
256k Flash and 64k SRAM.
1798
@item
1799
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1800
@item
1801
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1802
@end itemize
1803

    
1804
The Freecom MusicPal internet radio emulation includes the following
1805
elements:
1806

    
1807
@itemize @minus
1808
@item
1809
Marvell MV88W8618 ARM core.
1810
@item
1811
32 MB RAM, 256 KB SRAM, 8 MB flash.
1812
@item
1813
Up to 2 16550 UARTs
1814
@item
1815
MV88W8xx8 Ethernet controller
1816
@item
1817
MV88W8618 audio controller, WM8750 CODEC and mixer
1818
@item
1819
128?64 display with brightness control
1820
@item
1821
2 buttons, 2 navigation wheels with button function
1822
@end itemize
1823

    
1824
The Siemens SX1 models v1 and v2 (default) basic emulation.
1825
The emulaton includes the following elements:
1826

    
1827
@itemize @minus
1828
@item
1829
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1830
@item
1831
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1832
V1
1833
1 Flash of 16MB and 1 Flash of 8MB
1834
V2
1835
1 Flash of 32MB
1836
@item
1837
On-chip LCD controller
1838
@item
1839
On-chip Real Time Clock
1840
@item
1841
Secure Digital card connected to OMAP MMC/SD host
1842
@item
1843
Three on-chip UARTs
1844
@end itemize
1845

    
1846
The "Syborg" Symbian Virtual Platform base model includes the following
1847
elements:
1848

    
1849
@itemize @minus
1850
@item
1851
ARM Cortex-A8 CPU
1852
@item
1853
Interrupt controller
1854
@item
1855
Timer
1856
@item
1857
Real Time Clock
1858
@item
1859
Keyboard
1860
@item
1861
Framebuffer
1862
@item
1863
Touchscreen
1864
@item
1865
UARTs
1866
@end itemize
1867

    
1868
A Linux 2.6 test image is available on the QEMU web site. More
1869
information is available in the QEMU mailing-list archive.
1870

    
1871
@c man begin OPTIONS
1872

    
1873
The following options are specific to the ARM emulation:
1874

    
1875
@table @option
1876

    
1877
@item -semihosting
1878
Enable semihosting syscall emulation.
1879

    
1880
On ARM this implements the "Angel" interface.
1881

    
1882
Note that this allows guest direct access to the host filesystem,
1883
so should only be used with trusted guest OS.
1884

    
1885
@end table
1886

    
1887
@node ColdFire System emulator
1888
@section ColdFire System emulator
1889

    
1890
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1891
The emulator is able to boot a uClinux kernel.
1892

    
1893
The M5208EVB emulation includes the following devices:
1894

    
1895
@itemize @minus
1896
@item
1897
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1898
@item
1899
Three Two on-chip UARTs.
1900
@item
1901
Fast Ethernet Controller (FEC)
1902
@end itemize
1903

    
1904
The AN5206 emulation includes the following devices:
1905

    
1906
@itemize @minus
1907
@item
1908
MCF5206 ColdFire V2 Microprocessor.
1909
@item
1910
Two on-chip UARTs.
1911
@end itemize
1912

    
1913
@c man begin OPTIONS
1914

    
1915
The following options are specific to the ARM emulation:
1916

    
1917
@table @option
1918

    
1919
@item -semihosting
1920
Enable semihosting syscall emulation.
1921

    
1922
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1923

    
1924
Note that this allows guest direct access to the host filesystem,
1925
so should only be used with trusted guest OS.
1926

    
1927
@end table
1928

    
1929
@node QEMU User space emulator
1930
@chapter QEMU User space emulator
1931

    
1932
@menu
1933
* Supported Operating Systems ::
1934
* Linux User space emulator::
1935
* Mac OS X/Darwin User space emulator ::
1936
* BSD User space emulator ::
1937
@end menu
1938

    
1939
@node Supported Operating Systems
1940
@section Supported Operating Systems
1941

    
1942
The following OS are supported in user space emulation:
1943

    
1944
@itemize @minus
1945
@item
1946
Linux (referred as qemu-linux-user)
1947
@item
1948
Mac OS X/Darwin (referred as qemu-darwin-user)
1949
@item
1950
BSD (referred as qemu-bsd-user)
1951
@end itemize
1952

    
1953
@node Linux User space emulator
1954
@section Linux User space emulator
1955

    
1956
@menu
1957
* Quick Start::
1958
* Wine launch::
1959
* Command line options::
1960
* Other binaries::
1961
@end menu
1962

    
1963
@node Quick Start
1964
@subsection Quick Start
1965

    
1966
In order to launch a Linux process, QEMU needs the process executable
1967
itself and all the target (x86) dynamic libraries used by it.
1968

    
1969
@itemize
1970

    
1971
@item On x86, you can just try to launch any process by using the native
1972
libraries:
1973

    
1974
@example
1975
qemu-i386 -L / /bin/ls
1976
@end example
1977

    
1978
@code{-L /} tells that the x86 dynamic linker must be searched with a
1979
@file{/} prefix.
1980

    
1981
@item Since QEMU is also a linux process, you can launch qemu with
1982
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1983

    
1984
@example
1985
qemu-i386 -L / qemu-i386 -L / /bin/ls
1986
@end example
1987

    
1988
@item On non x86 CPUs, you need first to download at least an x86 glibc
1989
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1990
@code{LD_LIBRARY_PATH} is not set:
1991

    
1992
@example
1993
unset LD_LIBRARY_PATH
1994
@end example
1995

    
1996
Then you can launch the precompiled @file{ls} x86 executable:
1997

    
1998
@example
1999
qemu-i386 tests/i386/ls
2000
@end example
2001
You can look at @file{qemu-binfmt-conf.sh} so that
2002
QEMU is automatically launched by the Linux kernel when you try to
2003
launch x86 executables. It requires the @code{binfmt_misc} module in the
2004
Linux kernel.
2005

    
2006
@item The x86 version of QEMU is also included. You can try weird things such as:
2007
@example
2008
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2009
          /usr/local/qemu-i386/bin/ls-i386
2010
@end example
2011

    
2012
@end itemize
2013

    
2014
@node Wine launch
2015
@subsection Wine launch
2016

    
2017
@itemize
2018

    
2019
@item Ensure that you have a working QEMU with the x86 glibc
2020
distribution (see previous section). In order to verify it, you must be
2021
able to do:
2022

    
2023
@example
2024
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2025
@end example
2026

    
2027
@item Download the binary x86 Wine install
2028
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2029

    
2030
@item Configure Wine on your account. Look at the provided script
2031
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2032
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2033

    
2034
@item Then you can try the example @file{putty.exe}:
2035

    
2036
@example
2037
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2038
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2039
@end example
2040

    
2041
@end itemize
2042

    
2043
@node Command line options
2044
@subsection Command line options
2045

    
2046
@example
2047
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2048
@end example
2049

    
2050
@table @option
2051
@item -h
2052
Print the help
2053
@item -L path
2054
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2055
@item -s size
2056
Set the x86 stack size in bytes (default=524288)
2057
@item -cpu model
2058
Select CPU model (-cpu ? for list and additional feature selection)
2059
@item -B offset
2060
Offset guest address by the specified number of bytes.  This is useful when
2061
the address region rewuired by guest applications is reserved on the host.
2062
Ths option is currently only supported on some hosts.
2063
@end table
2064

    
2065
Debug options:
2066

    
2067
@table @option
2068
@item -d
2069
Activate log (logfile=/tmp/qemu.log)
2070
@item -p pagesize
2071
Act as if the host page size was 'pagesize' bytes
2072
@item -g port
2073
Wait gdb connection to port
2074
@item -singlestep
2075
Run the emulation in single step mode.
2076
@end table
2077

    
2078
Environment variables:
2079

    
2080
@table @env
2081
@item QEMU_STRACE
2082
Print system calls and arguments similar to the 'strace' program
2083
(NOTE: the actual 'strace' program will not work because the user
2084
space emulator hasn't implemented ptrace).  At the moment this is
2085
incomplete.  All system calls that don't have a specific argument
2086
format are printed with information for six arguments.  Many
2087
flag-style arguments don't have decoders and will show up as numbers.
2088
@end table
2089

    
2090
@node Other binaries
2091
@subsection Other binaries
2092

    
2093
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2094
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2095
configurations), and arm-uclinux bFLT format binaries.
2096

    
2097
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2098
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2099
coldfire uClinux bFLT format binaries.
2100

    
2101
The binary format is detected automatically.
2102

    
2103
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2104

    
2105
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2106
(Sparc64 CPU, 32 bit ABI).
2107

    
2108
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2109
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2110

    
2111
@node Mac OS X/Darwin User space emulator
2112
@section Mac OS X/Darwin User space emulator
2113

    
2114
@menu
2115
* Mac OS X/Darwin Status::
2116
* Mac OS X/Darwin Quick Start::
2117
* Mac OS X/Darwin Command line options::
2118
@end menu
2119

    
2120
@node Mac OS X/Darwin Status
2121
@subsection Mac OS X/Darwin Status
2122

    
2123
@itemize @minus
2124
@item
2125
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2126
@item
2127
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2128
@item
2129
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2130
@item
2131
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2132
@end itemize
2133

    
2134
[1] If you're host commpage can be executed by qemu.
2135

    
2136
@node Mac OS X/Darwin Quick Start
2137
@subsection Quick Start
2138

    
2139
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2140
itself and all the target dynamic libraries used by it. If you don't have the FAT
2141
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2142
CD or compile them by hand.
2143

    
2144
@itemize
2145

    
2146
@item On x86, you can just try to launch any process by using the native
2147
libraries:
2148

    
2149
@example
2150
qemu-i386 /bin/ls
2151
@end example
2152

    
2153
or to run the ppc version of the executable:
2154

    
2155
@example
2156
qemu-ppc /bin/ls
2157
@end example
2158

    
2159
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2160
are installed:
2161

    
2162
@example
2163
qemu-i386 -L /opt/x86_root/ /bin/ls
2164
@end example
2165

    
2166
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2167
@file{/opt/x86_root/usr/bin/dyld}.
2168

    
2169
@end itemize
2170

    
2171
@node Mac OS X/Darwin Command line options
2172
@subsection Command line options
2173

    
2174
@example
2175
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2176
@end example
2177

    
2178
@table @option
2179
@item -h
2180
Print the help
2181
@item -L path
2182
Set the library root path (default=/)
2183
@item -s size
2184
Set the stack size in bytes (default=524288)
2185
@end table
2186

    
2187
Debug options:
2188

    
2189
@table @option
2190
@item -d
2191
Activate log (logfile=/tmp/qemu.log)
2192
@item -p pagesize
2193
Act as if the host page size was 'pagesize' bytes
2194
@item -singlestep
2195
Run the emulation in single step mode.
2196
@end table
2197

    
2198
@node BSD User space emulator
2199
@section BSD User space emulator
2200

    
2201
@menu
2202
* BSD Status::
2203
* BSD Quick Start::
2204
* BSD Command line options::
2205
@end menu
2206

    
2207
@node BSD Status
2208
@subsection BSD Status
2209

    
2210
@itemize @minus
2211
@item
2212
target Sparc64 on Sparc64: Some trivial programs work.
2213
@end itemize
2214

    
2215
@node BSD Quick Start
2216
@subsection Quick Start
2217

    
2218
In order to launch a BSD process, QEMU needs the process executable
2219
itself and all the target dynamic libraries used by it.
2220

    
2221
@itemize
2222

    
2223
@item On Sparc64, you can just try to launch any process by using the native
2224
libraries:
2225

    
2226
@example
2227
qemu-sparc64 /bin/ls
2228
@end example
2229

    
2230
@end itemize
2231

    
2232
@node BSD Command line options
2233
@subsection Command line options
2234

    
2235
@example
2236
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2237
@end example
2238

    
2239
@table @option
2240
@item -h
2241
Print the help
2242
@item -L path
2243
Set the library root path (default=/)
2244
@item -s size
2245
Set the stack size in bytes (default=524288)
2246
@item -bsd type
2247
Set the type of the emulated BSD Operating system. Valid values are
2248
FreeBSD, NetBSD and OpenBSD (default).
2249
@end table
2250

    
2251
Debug options:
2252

    
2253
@table @option
2254
@item -d
2255
Activate log (logfile=/tmp/qemu.log)
2256
@item -p pagesize
2257
Act as if the host page size was 'pagesize' bytes
2258
@item -singlestep
2259
Run the emulation in single step mode.
2260
@end table
2261

    
2262
@node compilation
2263
@chapter Compilation from the sources
2264

    
2265
@menu
2266
* Linux/Unix::
2267
* Windows::
2268
* Cross compilation for Windows with Linux::
2269
* Mac OS X::
2270
@end menu
2271

    
2272
@node Linux/Unix
2273
@section Linux/Unix
2274

    
2275
@subsection Compilation
2276

    
2277
First you must decompress the sources:
2278
@example
2279
cd /tmp
2280
tar zxvf qemu-x.y.z.tar.gz
2281
cd qemu-x.y.z
2282
@end example
2283

    
2284
Then you configure QEMU and build it (usually no options are needed):
2285
@example
2286
./configure
2287
make
2288
@end example
2289

    
2290
Then type as root user:
2291
@example
2292
make install
2293
@end example
2294
to install QEMU in @file{/usr/local}.
2295

    
2296
@node Windows
2297
@section Windows
2298

    
2299
@itemize
2300
@item Install the current versions of MSYS and MinGW from
2301
@url{http://www.mingw.org/}. You can find detailed installation
2302
instructions in the download section and the FAQ.
2303

    
2304
@item Download
2305
the MinGW development library of SDL 1.2.x
2306
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2307
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2308
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2309
directory. Edit the @file{sdl-config} script so that it gives the
2310
correct SDL directory when invoked.
2311

    
2312
@item Extract the current version of QEMU.
2313

    
2314
@item Start the MSYS shell (file @file{msys.bat}).
2315

    
2316
@item Change to the QEMU directory. Launch @file{./configure} and
2317
@file{make}.  If you have problems using SDL, verify that
2318
@file{sdl-config} can be launched from the MSYS command line.
2319

    
2320
@item You can install QEMU in @file{Program Files/Qemu} by typing
2321
@file{make install}. Don't forget to copy @file{SDL.dll} in
2322
@file{Program Files/Qemu}.
2323

    
2324
@end itemize
2325

    
2326
@node Cross compilation for Windows with Linux
2327
@section Cross compilation for Windows with Linux
2328

    
2329
@itemize
2330
@item
2331
Install the MinGW cross compilation tools available at
2332
@url{http://www.mingw.org/}.
2333

    
2334
@item
2335
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2336
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2337
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2338
the QEMU configuration script.
2339

    
2340
@item
2341
Configure QEMU for Windows cross compilation:
2342
@example
2343
./configure --enable-mingw32
2344
@end example
2345
If necessary, you can change the cross-prefix according to the prefix
2346
chosen for the MinGW tools with --cross-prefix. You can also use
2347
--prefix to set the Win32 install path.
2348

    
2349
@item You can install QEMU in the installation directory by typing
2350
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2351
installation directory.
2352

    
2353
@end itemize
2354

    
2355
Note: Currently, Wine does not seem able to launch
2356
QEMU for Win32.
2357

    
2358
@node Mac OS X
2359
@section Mac OS X
2360

    
2361
The Mac OS X patches are not fully merged in QEMU, so you should look
2362
at the QEMU mailing list archive to have all the necessary
2363
information.
2364

    
2365
@node Index
2366
@chapter Index
2367
@printindex cp
2368

    
2369
@bye